Coverage and Generalization in an Artificial Immune System*

Justin Balthrop
judd@cs.unm.edu
Computer Science Dept.
University of New Mexico
Albuquerque, NM 87131

Fernando Esponda
fesponda@cs.unm.edu
Computer Science Dept.
University of New Mexico
Albuquerque, NM 87131

Abstract

LISYS is an artificial immune system frame-
work which is specialized for the problem of
network intrusion detection. LISYS learns to
detect abnormal packets by observing normal
network traffic. Because LISYS sees only a
partial sample of normal traffic, it must gen-
eralize from its observations in order to char-
acterize normal behavior correctly. A vari-
ation of the r-contiguous bits matching rule
is introduced, and its effect on coverage and
generalization is studied. The effect of rep-
resentation diversity on coverage and gener-
alization is also explored by studying permu-
tations in the order of bits in the representa-
tion.

1 Introduction

The natural immune system uses a variety of evolu-
tionary and adaptive mechanisms to protect organisms
from foreign pathogens and misbehaving cells in the
body. Artificial immune systems (AISs) seek to cap-
ture some aspects of the natural immune system in
a computational framework, either for the purpose of
modeling the natural immune system or for solving
engineering problems. In either form, the fundamen-
tal problem solved by most AISs can be thought of as
learning to discriminate between “self” (the normally
occurring patterns in the system being protected, e.g.,
the body) and “non-self” (foreign pathogens, such as
bacteria or viruses, or components of self that are
no longer functioning normally). Almost any set of
patterns that can be expressed as strings of symbols

“This paper appears in the proceedings of the 2002 Ge-
netic and Evolutionary Computation Conference (GECCO
2002).

Matthew Glickman
glickman@cs.unm.edu
Computer Science Dept.
University of New Mexico
Albuquerque, NM 87131

Stephanie Forrest
forrest@cs.unm.edu
Computer Science Dept.
University of New Mexico
Albuquerque, NM 87131

can be placed into this framework, for example, the
set of normally occurring TCP connections in a local
area network (LAN) and the set of TCP connections
observed during a network attack [Hofmeyr, 1999,
Kim and Bentley, 2001]. This is the example on which
we will focus in this paper.

We are interested in the question of representation—
how well a set of AIS detectors covers the set of nor-
mally occurring patterns (or conversely, how well it
can detect the set of abnormal patterns). Because AIS
detectors are typically generated on-line in a fluctuat-
ing environment, they are highly unlikely to be ex-
posed to every possible normal pattern during train-
ing. Consequently, it is important for detectors to gen-
eralize from the set of observed normal patterns to the
set of expected normal patterns. The generalization
properties of the AIS affect both false positives (mis-
takenly identifying normal patterns as abnormal) and
false negatives (mistakenly identifying abnormal pat-
terns as legitimate). These are known as Type I and
Type II errors respectively in the statistical decision
theory literature.

There are several components of the AIS that affect
how well it represents its environment and how well it
generalizes. The first of these is the mapping from the
domain to detectors, or what information is presented
to the AIS. Here we will use the 49-bit compressed
representation of TCP SYN packets, introduced by
Hofmeyr [Hofmeyr, 1999, Hofmeyr and Forrest, 1999,
Hofmeyr and Forrest, 2000]. In this representation
each detector is a 49-bit string. Detectors are matched
against the compressed 49-bit SYN packets (see Fig-
ure 1) using a partial matching rule which scores how
closely they match. Choosing an appropriate map-
ping for a given problem in the AIS context has all
the same complications as choosing a representation
for a genetic algorithms problem. Some representa-
tions are clearly better than others, but it is difficult
to formalize criteria by which one can choose a good

Incoming/Outgoing Bit
| | Compressed Port |
39 40 41 48

[Local Address | Remote Address

0 78

Figure 1: The 49-bit compression scheme used by
LISYS to represent TCP SYN packets. Strings are
compressed in two ways. First, it is assumed that one
of the TP addresses is always internal, so only the fi-
nal byte of this address needs to be stored. The port
number is also compressed from 16 bits to 8 bits by
re-mapping the ports into several different classes.

one in a particular instance. The 49-bit representation
chosen by Hofmeyr works surprisingly well, although
it contains a minimal amount of information and the
information is arranged in an arbitrary ordering.

The second component is the match rule that is used
to assess how well an AIS detector matches a particu-
lar pattern. A perfect match between a detector and a
compressed SYN packet means that at each location in
the 49-bit string, the symbols are identical. However,
perfect matching (binding) is rare in the immune sys-
tem and improbable between strings of any significant
length. We use a matching rule known as r-contiguous
bits [Percus et al., 1993]. This rule looks for r contigu-
ous matches between symbols in corresponding posi-
tions. Thus, for any two strings = and y, we say that
match(z,y) is true if z and y agree (match) in at least
r contiguous locations. We also introduce a variant of
this rule which we refer to as r-contiguous templates,
or more simply, r-chunks. Both r-contiguous bits and
r-chunks are related to genetic algorithms and classi-
fier systems in interesting ways.

A third component is the permutation mask, also
introduced by Hofmeyr. Permutation masks are a
mechanism for introducing diversity of representation,
crudely analogous to MHC diversity in the natural im-
mune system. The idea behind this form of diversity
is that different representations will match different
patterns, and that the union of a set of different repre-
sentations will have greater detection ability than any
single representation. This insight is complicated by
the form of our problem, in which detecting more pat-
terns is not always better (because patterns detected in
error lead to false positives). Permutation masks sim-
ply store a different permutation of the 49-bit map-
ping, one permutation for each detector set!. This,
combined with r-contiguous bits matching, causes dif-
ferent permutations to discover different correlations
among bits in the representation.

'Permutation masks are one possible means of gener-
ating secondary representations. A variety of alternative
schemes are explored in [Hofmeyr, 1999].

2 LISYS

The following summary of LISYS is largely drawn from
[Balthrop et al., 2002]. LISYS is situated in a local-
area broadcast network and used to protect the LAN
from network-based attacks. In contrast with switched
networks, broadcast LANs have the convenient prop-
erty that every location (computer) sees every packet
passing through the LAN. In this domain, self is de-
fined to be the set of normal pairwise connections (at
the TCP/IP level) between computers, and non-self
is the set of connections, which are not normally ob-
served on the LAN and are likely to be correlated with
network intrusions. A connection is defined in terms of
its “data-path triple”—the source IP address, the des-
tination IP address, and the service (or port) by which
the computers communicate [Mukherjee et al., 1994,
Heberlein et al., 1990].

LISYS consists of sets of detectors, where each detector
is a 49-bit string and a small amount of local state.
The detectors can be distributed across multiple hosts,
and they can perform their function with virtually no
communication. The detectors assigned to a particular
host are referred to as a detector set.

LISYS uses negative detection in the sense that valid
detectors are those that fail to match the normally
occurring behavior patterns in the network. LISYS
generates random detectors, censors them against self,
and eliminates those that match self (negative selec-
tion). The censoring process, known as the toleriza-
tion period, lasts for a few days during which time the
detector is matched against every SYN packet occur-
ring in the network. More efficient detector generation
algorithms are described in [D’haeseleer et al., 1996,
Wierzchon, 2000, Wierzchon, 2001]. However, when
generating detectors asynchronously for a dynamic self
set, such as the network setting, these methods are
not directly applicable and random generation seems
to work well.

Detectors in LISYS have a finite lifetime. The ex-
pected lifetime of a mature detector is a parameter of
the system. Detectors can die in several ways, through
negative selection, old age, or lack of co-stimulation
(see [Hofmeyr, 1999]). The finite lifetime of detectors,
when combined with detector re-generation and toler-
ization, results in rolling coverage of the self set.

Each independent detector set has its own permutation
mask, as described above. A permutation mask defines
a permutation of the bits in the string representation
of the network packets. Each detector set (network
host) has a different, randomly-generated permutation
mask. One feature of the negative-selection algorithm

as originally implemented is that it can result in unde-
tectable patterns called holes [D’haeseleer et al., 1996,
D’haeseleer, 1996], or put more positively generaliza-
tions [Esponda and Forrest, 2002]. Holes can exist for
any symmetric, fixed-probability matching rule, but
permutation masks effectively change the match rule
and thus the distribution of holes. Using a different
permutation on each host allows us to control how
much the system generalizes in the vicinity of self, and
thus gives us more control over the undetectable holes
[Esponda and Forrest, 2002].

The original LISYS system uses several other mecha-
nisms, such as activation thresholds, sensitivity levels,
and co-stimulation to reduce false positives, and mem-
ory detectors to increase true positives. For details
on the full system, the reader is referred to [Hofmeyr,
1999, Hofmeyr and Forrest, 2000).

3 Data Set

The experiments reported in this paper use the data
set described in [Balthrop et al., 2002]. Our data col-
lection strategy was to control the data set as much as
possible while still collecting data in a realistic context.
The data set was collected from an internal restricted
network of computers in a small university research
group. The six internal computers in this network
connected to the Internet through a single Linux ma-
chine that acted as a firewall, router and masquerading
server for the internal machines. The internal network
was set up as a broadcast network, so we were able to
monitor the traffic of all the computers easily.

This scenario provided a data set that satisfied both
objectives. The internal restricted network was much
more controlled than the external university or depart-
mental networks. In this environment, we can under-
stand all of the connections that occur, and we can
be relatively certain that there were no attacks during
the normal training periods. Moreover, this environ-
ment is realistic. Many corporations have intranets
in which activity is somewhat restricted and external
connections must pass through a firewall. This en-
vironment could also model the increasingly common
home network that connects to the Internet through
a cable or DSL modem and has a single external IP
address. Attacks are a reality in environments such as
these, and the attack scenarios corresponded to plau-
sible occurrences in this class of environment.

2The programs used to generate the results in this paper
are available from http://www.cs.unm.edu/~immsec. The
programs are part of LISYS and are found in the LisysSim
directory of that package.

The normal network data in our data set consist of two
weeks of data collected in November, 2001. In these
data, there are a total of 22,329 TCP SYN packets,
and roughly 55% of this is web traffic. Thus, there
was an average of approximately 1600 packets per day
during the normal period. Because the network data
being produced is dependent on a small number of
users, two weeks seemed to be the shortest period of
time that could possibly give a reasonable character-
ization of self. Attack data were generated over the
course of two days near the end of the collection pe-
riod. The attacks took place about one week after the
normal period ended, and consisted of 76,179 TCP
SYN packets.

In [Hofmeyr, 1999], network connections to web servers
are removed from the data by filtering out all con-
nections to port 80. Instead of completely removing
web connections, the data set simulates the behavior
of a proxy server. All outgoing connections to port 80
(http) or port 443 (https) are re-mapped to port 3128
on the proxy machine. This is very close to what the
traffic would have been like if we were using the web
proxy cache SQUID.

All of the attacks, with the exception of the denial-
of-service attack, were performed using a laptop con-
nected to the internal network. The firewall machine
was configured as a DHCP server, so the laptop was
able to acquire a dynamic IP address because it had
a physical connection to the internal network. We
used the free security scanner Nessus to perform the
attacks. A total of eight attacks were run, includ-
ing denial of service (from an internal computer to an
external computer), a firewall attack against the fire-
wall/gateway machine, an ftp attack against an inter-
nal machine, an ssh probe against several internal ma-
chines, an attack probing for certain services, a TCP
SYN scan, an nmap tcp connect() scan against several
internal computers, and a full nmap port scan.

4 r-Chunks Matching

In this section we introduce a variant of the r-
contiguous bits matching rule, which we refer to as
“r-chunks.” We will show in section 7 that r-chunks
matching performs better than full-length r-contiguous
bits matching for our data set. However, r-chunks
matching also has the virtue of being more amenable
to mathematical analysis than full-length matching
[Esponda and Forrest, 2002]. r-Chunks matching is
reminiscent of the {1,0,#} matching rule for classi-
fier systems [Holland et al., 1986], with the additional
restrictions that all detectors have a constant number
of defined bits (the r parameter) and that all the de-

fined bits are located in contiguous positions. Match-
ing with both r-chunks and full-length detectors is re-
lated to the crossover operator in genetic algorithms
[Holland, 1975].

In r-chunks detectors, only r contiguous positions of
the detector are specified (known as the window of the
detector); the remaining bit positions can be thought
of as “don’t cares.” Alternatively, an r-chunks detec-
tor can be thought of as a string of r bits together
with a specification of the window to which it refers.
An r-chunks detector d is said to match a string x if all
the bits of d are equal to the r bits of z in the window
specified by d.

The relation between full-length detectors and r-
chunks is shown in the following figure for | = 4
and r = 2. A single full-length detector can be de-
composed into | —r + 1 (the number of windows) r-
chunks detectors. Let dy; be the full-length detector
and d¢1,dc2,d.3 the r-chunks detectors into which it
can be decomposed:

dri:

dey:
dep: [0]1]
des:

An important difference between the two match rules
is in the number of undetectable strings they induce.
We refer to these strings as “holes” and the set of holes
for a given self set S as H. For full-length matching
there are two sources of holes: crossover holes and
length-limited holes.

Hence, a crossover hole is a string h not in S, for
which all windows in A are crossovers of adjacent win-
dows in S, according to the restricted crossover opera-
tion defined below. A crossover occurs in this context
between two adjacent windows W; = v;..v;4,—1 and
Wit1 = Ujt1.-.Ui+r Whenever bits v; = u; V;:i4+1 <
j <i+r—1. There is an example of this type of hole
at the end of this section.

The second source of holes arises because in full-length
detectors, all the bit positions are specified. This can
induce holes h which are strings that have at least
one window of r bits not present in S, but for which
a detector still cannot be generated. For instance, let
S ={110,010},1 = 3, r = 2 and let h = 011 be a string
that has r contiguous bits not exhibited in any string
in S. A full-length detector for h must either start with
the pattern 01 and/or end with the pattern 11 but any
detector starting with 01 will match self and hence can
not be generated. Similarly, if a potential detector for

h ends with pattern 11 the two possible strings 011 and
111 match a string in S as well, therefore a detector
for h cannot be generated.

r-Chunks detection does not induce length-limited
holes, because a detector can always be generated for a
pattern of length r which is not present in S. Thus, the
only holes induced by r-chunks matching are crossover
holes. This greatly simplifies the task of characterizing
and managing holes. For example, the generalization
of a set S, for r-chunks, can be depicted as a directed
acyclic graph (DAG) with as many nodes as there are
distinct bit patterns for each window (each node la-
belled as the bit pattern it represents) where two nodes
are connected together if the windows they refer to
crossover. Consider, for example, a self set S com-
prised of the following two strings S = {0001,1011}
with | =4, r = 2:

Following all the paths, starting from the left-
most nodes, yields the strings {0001,0011,1001,1011}
which constitute the generalization of the r-chunks
matching rule, out of which {0011, 1001} are crossover
holes. We refer to the holes plus the self strings that
induced them as the crossover-closure [Helman, 2002].

5 The Experimental Setup

In LISYS, new detectors are generated when the sys-
tem is initialized. Thereafter, new detectors are gener-
ated whenever another detector dies, usually through
negative selection or old-age. Detectors are generated,
trained, tested, and killed asynchronously throughout
a LISYS run. Consequently, different detectors are
tolerized at different times and are thus exposed to
different samples of self.

Although this rolling coverage is desirable for dynam-
ically changing self sets and to make evasion by an
adversary more difficult, it also complicates analysis.
Accordingly, for the experiments reported in this pa-
per, we trained all detectors on the identical set of self
strings (training set), and tested them subsequently
against the identical set of test strings. We did not kill
off detectors due to old age. In all of the experiments

the initial tolerization period was set to 15,000 packets,
corresponding to approximately 8 days. Among these
15,000 initial packets, there were 131 unique strings to
which the immature detectors were exposed.

6 The Effect of Permutation Masks

The goal of the first experiment was to assess how
different permutations affect the performance of the
system. Because performance is measured in terms
of true and false positives, this experiment also tests
the effect of permutations on the system’s ability to
generalize (because low false positive rates correspond
to good generalization).

100 sets of detectors were tolerized using the 131
unique strings derived from the first 15,000 packets
in the data-set (the training set), and each detector
set was assigned a random permutation mask. Each
detector set had exactly 5,000 mature detectors at the
end of the tolerization period and an r-value of 10.
These numbers were chosen on the basis of previous
experiments [Balthrop et al., 2002] which showed that
5,000 detectors provide maximal coverage (i.e. adding
more detectors does not improve subsequent match-
ing) for this data set and r threshold.®> Each set of
detectors was then run against the remaining 7,329
normal packets, as well as against the simulated at-
tack data. In these data (the test sets), there are a
total of 476 unique 49-bit strings. Of these 476, 50
also occur in the training set and are thus undetectable
(because any detectors which would match them are
eliminated during negative selection). This leaves 426
potentially detectable strings, of which 26 come from
the normal test set and 400 are from the attack test
set. The maximal possible coverage by a detector set
is thus 426 unique matches.

An ideal detector set would achieve zero false positives
on the normal test data and a high number of true
positives on the attack data. Thus, a perfect detector
set would match the 400 unique attack strings, and
fail to match the 26 unique normal strings in the test
set, thus generalizing from the self observed during
training. Note that because network attacks rarely,
if ever, produce only a single anomalous packet, we

3The use of 5,000 detectors to protect 131 unique strings
is clearly a somewhat artificial situation. This arises from
the small size of our data set and the decision to provide
maximal coverage of non-self. In general, once the num-
ber of self strings increases above a certain threshold, the
number of detectors needed to cover non-self through nega-
tive detection becomes less than that required for positive
detection (see [Esponda and Forrest, 2002] for the exact
tradeoff). And, for most applications, complete coverage
of non-self is an overly strict requirement.

400 g x o

True Positives
N
o
o
T
|

[X —
100 A

L x permutations| |
A unpermuted

0 | \ \ \ \

0 5 10 15 20 25

False Positives

Figure 2: LISYS performance under different permu-
tations. Each plotted point corresponds to a different
permutation, showing false positives (x-axis) and true
positives (y-axis). The inset shows a zoomed view of
the same data.

don’t need to achieve perfect true-positive rates at the
packet level in order to detect all attacks against the
system.

Figure 2 shows the results of this experiment. The
performance of each detector set is shown as a sep-
arate point on the graph. Each detector set has its
own randomly generated permutation of the 49 bits,
so each point shows the performance of a different per-
mutation. The numbers on the x-axis correspond to
the number of unique self-strings in the test set which
are matched by the detector set, i.e. the number of
false positives (up to a maximum of 26). The y-axis
plots the corresponding value with respect to the at-
tack data, i.e. the number of unique true positive
matches (up to a maximum of 400). The graph shows
that there is a large difference in the discrimination
ability of different permutations. Points in the up-
per left of the graph are the most desirable, i.e. they
correspond to permutations which minimize the num-
ber of false positives and maximize the number of true
positives; points toward the lower right corner of the
graph indicate higher false positives and/or lower true
positives.

Surprisingly, the performance of the original (unper-
muted) mapping is among the worst we found, suggest-
ing that the results reported in [Balthrop et al., 2002]
are a worst case in terms of true vs. false positives.
Almost any other random permutation we tried out-
performs the original mapping. Although we don’t yet
have definitive proof, we believe this behavior arises in
the following way.

The LISYS design assumes that there are certain pre-
dictive bit-patterns that exhibit regularity in self, and
that these can be the basis of distinguishing self from
non-self. As it turns out, there are also deceptive bit-
patterns which exhibit regularity in the training set
(observed self), but the regularity does not generalize
to the rest of self (the normal part of the test set).
These patterns tend to cause false positives when self
strings that do not fit the predicted regularity occur.

We believe that the identity permutation is bad be-
cause the predictive bits are at the ends of the string,
while the deceptive region is in the middle. Under
such an arrangement, it is difficult to find a window
that covers many predictive bit positions without also
including deceptive ones. It is highly likely that a
random permutation will break up the deceptive re-
gion, and bring the predictive bits closer to the middle,
where they will appear in more windows.

7 r-Chunks vs. Full-Length Detectors

In this section we compare the performance of r-
chunks matching to that of r-contiguous bits match-
ing with full-length detectors on our data set. The
essential difference between full-length detectors and
r-chunks lies in the holes which they induce, as dis-
cussed earlier. Holes are desirable to the extent that
they prevent false positives (strings which are close to
self and represent legitimate but novel behavior of the
network)?; holes are undesirable to the extent which
they lead to false negatives (a failure to match strings
which correspond to attempted intrusions). Although
both representations are subject to crossover holes,
full-length detectors are additionally subject to length-
limited holes. Therefore, we are interested in knowing
if in practice length-limited holes generalize over true
positives or false positives.

For this experiment, we generated one set of r-chunks
detectors for each value of r, ranging from 1 to 12. Be-
cause there are only 2" x (I —r + 1) possible r-chunks
detectors, we generated all of them, and then elim-
inated through negative selection any detector that
matched a string in the training set. Full-length de-
tectors were generated according the the procedure de-
scribed in Section 5.

The results of this experiment are shown in Figure
3. As in the initial permutation-mask experiment,
the number of false positives is plotted on the z-axis
and the number of true positives on the y-axis. There
are two sets of points, each connected by lines. One

“This is the sense in which holes can be thought of as
generalizations.

b

True Positives
8
T
|

L *—x r-chunk detectors]
A--A full length detectors

0 \ \ \ \ \
0 5 10 15 20 %

False Positives

Figure 3: LISYS performance under different r-values.
For r-chunks we plotted » =1..12 and for full length
detectors we plotted r =8, 10 and 12 (the points for
r-chunks and those for full-length detectors are each
connected via a line to indicate the ordering in terms
of 7). Each point shows false positives (x-axis) and
true positives (y-axis).

set indicates the results obtained with r-chunks for
values of r ranging from 1 to 12. The second set,
shows the results of using full-length detectors for
r =8,10, and 12.

Section 4 tells us that for any self set, a given value of r
will always achieve equivalent-or-greater overall cover-
age (i.e. a greater sum-total of true and false positives)
when using r-chunks than with using full-length detec-
tors. This follows from the fact that there are no holes
induced by r-chunks which are not also induced using
full-length detectors. The experiment shows whether
or not this additional coverage is helpful. Figure 3
shows that for this data set r-chunks outperforms full-
length detectors. The greater coverage achieved by
r-chunks more often results in the detection of true
positives than false positives. In fact, for any value of
r shown using full-length detectors, there exists some
value of r for which r-chunks achieve a higher rate of
true positives while incurring an equal or lesser num-
ber of false positives.

Another property of r-chunks illustrated by the graph
is that for a given value of r, equivalent-or-greater
overall coverage will always be achieved using r + 1
rather than 7. This is because any string detected us-
ing r can be detected using r+1. For this reason, as we
increase r, while the number of true and/or false pos-
itives may increase or remain constant, neither value
can decrease.

A surprising result is how well r-chunks performs as r
becomes low (e.g. even for r = 1). An explanation for
this phenomenon is discussed below. This is surprising
in part because of the difficulty reported by Kim and
Bentley [2001] in finding detectors using r-contiguous
bits and negative selection, a result explained in part
by their choice of a low value for r [Balthrop et al.,
2002).

7.1 r-Chunks and the Magic Bit

We were interested in how r-chunks could perform so
well, especially for r = 1. A closer examination of the
data revealed that the DHCP (Dynamic Host Configu-
ration Protocol) configuration on the internal network
was set up in such a way that dynamic IP addresses
were always assigned with the final byte in the range
128-254, while static IP addresses were always in the
range of 1-127 for the same byte. This is not an un-
usual DHCP configuration. As it happened, however,
no hosts connected to the network using DHCP during
the normal data collection period. When we ran the
attacks, the attacking laptop did use DHCP to con-
nect to the network, and the majority of the attacks
were launched from this laptop (the Denial-of-Service
attack is the only one that wasn’t).

As a consequence, the majority of our attack data had
the first bit of the 49-bit string (the internal IP is at
the start of the string) set to one, while none of the
normal data had this bit set. In other words, there
was a single “magic bit” that identified approximately
84% of the attack SYN packets. r-chunks was able to
detect this magic bit and take advantage of it. Thus,
even the smallest possible window » = 1 could take
advantage of the magic bit, and because r + 1 can
detect everything that r can detect, all of the other r
values can use the magic bit as well.

Although artifacts such as these are not unlikely oc-
currences in real data, we were curious to see what the
results would be without the presence of a magic bit.
Would r-chunks (and full-length detectors) still per-
form well? To answer this question we eliminated the
magic bit from our data by systematically changing
the internal address of the computer from which the
attacks originated to look like the address of another
internal computer. This scenario is also realistic, be-
cause the attacks could as easily have originated from
an internal computer as from a malicious laptop, and
such an internal attack might be more difficult to de-
tect.

We repeated the r-chunks experiments with this modi-
fied data set. The results are shown in Figure 4. From
this figure, we can see that r-chunks did not perform as

True Positives
N
3

100

N *— r-chunk detectors | |
A—A full length detectors

0 | L \ L L
0 5 10 15 20 3

False Positives

Figure 4: LISYS performance under different r-values
after the magic bit has been removed. For r-chunks we
plotted r =1..12 and for full length detectors we plot-
ted r =8, 10 and 12. Each point shows false positives
(x-axis) and true positives (y-axis).

well as before. In particular, the low r-values did not
yield results as dramatically positive as before. Re-
moving the magic bit also hurt the performance of
r-contiguous bits for » = 10 and r = 12, although
the effect was not as significant as for r-chunks. How-
ever, r-chunks without the “magic bit” still outper-
forms full-length detectors with the magic bit for all
the r-values we tested (r = 8,10,12).

8 Conclusions

In this paper we introduced a new matching rule, r-
chunks, and showed that it performs better than full-
length r-contiguous bits matching on one data set. r-
Chunks is appealing because it is easier to analyze
mathematically [Esponda and Forrest, 2002] and it
scales well as the length of [increases (both in terms
of efficiency of matching and in terms of number of de-
tectors that are required for a given level of coverage).
This second property is essential if AIS frameworks
such as LISYS are to be used for real applications.
We also studied the effect of different permutations
on the ability of LISYS to generalize from an initial
sample self. This form of generalization is important
for controlling false positives. The results reported
here show that some permutations perform much bet-
ter than others, and we have given an informal expla-
nation for why that is true.

The r-chunks detection scheme is intriguing because
it solidifies the connection between r-contiguous bits
matching and crossover. Although we have shown that

the crossover-closure is a good generalization for this
data set, we still don’t know whether it will carry over
to related problems. However, the connection is tanta-
lizing, and one that we plan to explore in future work.

It is important to emphasize that the results presented
here are empirical and are based on one small data
set. An important avenue for further work is to con-
duct experiments on other applications and to develop
a mathematical understanding of the properties of this
system. A second caveat concerns the simplified ver-
sion of LISYS used to conduct these experiments. In
the future, it will be important to confirm how well
permutations and r-chunks perform in the context of
the complete LISYS system.

Acknowledgments

The authors gratefully acknowledge the support of
the National Science Foundation (grants IRI-9711199,
CDA-9503064, and ANIR-9986555), the Office of
Naval Research (grant N00014-99-1-0417), Defense
Advanced Projects Agency (grant AGR F30602-00-2-
0584), the Intel Corporation, and the Santa Fe Insti-
tute.

References

[Balthrop et al., 2002] J. Balthrop, S. Forrest, and
M. Glickman. Revisiting lisys: Parameters and nor-
mal behavior. In CEC-2002: Proceedings of the
Congress on Evolutionary Computing, 2002.

[D’haeseleer et al., 1996] P. D’haeseleer, S. Forrest,
and P. Helman. An immunological approach to
change detection: algorithms, analysis and impli-
cations. In Proceedings of the 1996 IEEE Sym-
posium on Computer Security and Privacy. IEEE
Press, 1996.

[D’haeseleer, 1996] P. D’haeseleer. An immunologi-
cal approach to change detection: theoretical re-
sults. In Proceedings of the 9th IEEE Computer Se-
curity Foundations Workshop. IEEE Computer So-
ciety Press, 1996.

[Esponda and Forrest, 2002] F. Esponda and S. For-
rest. Defining self: Positive and negative detec-
tion. Technical Report TR-CS-2002-03, University
of New Mexico, 2002.

[Heberlein et al., 1990] L. T. Heberlein, G. V. Dias,
K. N. Levitte, B. Mukherjee, J. Wood, and D. Wol-
ber. A network security monitor. In Proceedings of
the IEEE Symposium on Security and Privacy. IEE
Press, 1990.

[Helman, 2002] Paul Helman, 2002. Personal commu-
nication.

[Hofmeyr and Forrest, 1999] S. Hofmeyr and S. For-
rest. Immunity by design: An artificial immune sys-
tem. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pages 1289-
1296, San Francisco, CA, 1999. Morgan-Kaufmann.

[Hofmeyr and Forrest, 2000] S. Hofmeyr and S. For-
rest. Architecture for an artificial immune system.
Evolutionary Computation Journal, 8(4):443-473,
2000.

[Hofmeyr, 1999] S. Hofmeyr. An immunological model
of distributed detection and its application to com-
puter security. PhD thesis, University of New Mex-
ico, Albuquerque, NM, 1999.

[Holland et al., 1986] J.H. Holland, K.J. Holyoak,
R.E. Nisbett, and P. Thagard. Induction: Processes
of Inference, Learning, and Discovery. MIT Press,
1986.

[Holland, 1975] John H. Holland. Adaptation in Natu-
ral and Artificial Systems. The University of Michi-
gan Press, Ann Arbor, MI, 1975.

[Kim and Bentley, 2001] J. Kim and P. J. Bentley. An
evaluation of negative selection in an artificial im-
mune system for network intrusion detection. In
GECCO-2001: Proceedings of the Genetic and Evo-
lutionary Computation Conference, 2001.

[Mukherjee et al., 1994] B. Mukherjee, L. T. Heber-
lein, and K. N. Levitt. Network intrusion detection.
IEEE Network, pages 26-41, 1994.

[Percus et al., 1993] J. K. Percus, O. Percus, and
A. S. Perelson. Predicting the size of the anti-
body combining region from consideration of effi-
cient self/non-self discrimination. Proceedings of the
National Academy of Science, 90:1691-1695, 1993.

[Wierzchon, 2000] S. T. Wierzchon. Discriminative
power of the receptors activated by k-contiguous
bits rule. Journal of Computer Science and Tech-
nology, 1(3):1-13, 2000.

[Wierzchon, 2001] S. T. Wierzchon. Deriving concise
description of non-self patterns in an artificial im-
mune system. In S. T. Wierzchon, L. C. Jain,
and J. Kacprzyk, editors, New Learning Paradigm
in Soft Computing, pages 438—458, Heidelberg New
York, 2001. Physica-Verlag.

