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Abstract

A binary model of the immune system is used
to study the effects of evolution on the ge-
netic encoding for antibody molecules. One
feature of this encoding is that, unlike typ-
ical genetic algorithm experiments, not all
genes found in the genotype are expressed in
the phenotype. We report experiments which
show that the evolution of immune system
genes, simulated by the genetic algorithm,
can induce a high degree of genetic organiza-
tion even though that organization is not ex-
plicitly required by the fitness function. We
hypothesize about the nature of this organi-
zation and introduce a measure called Ham-
ming Separation to observe its change during
the evolution of the immune system.

1 Introduction

How can selection pressures operating only on the phe-
notype drive evolutionary changes in the genotype?
In contrast with typical genetic algorithm representa-
tions, in which all genes contribute to the calculation
of fitness, the genetic material in natural organisms is
not completely expressed. Some aspects of the geno-
type may not be reflected in the phenotype and are
therefore hidden from selection pressure temporarily.
The immune system provides a good subject for mod-
eling and experimentation from this point of view—the
genotype is never completely expressed in the pheno-
type, but the mapping from the genotype to the phe-
notype is simple enough that it can be effectively mod-
eled in a computer simulation.

The immune system has an overall complexity that
rivals that of the central nervous system. In this
research we only consider the evolution of antibody
molecules, which are responsible for recognizing for-
eign cells and molecules, called antigens. The first
step in antigen recognition occurs when an antibody
physically binds to an antigen molecule. This binding
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requires that the two molecules, antibody and anti-
gen, have complementary shapes. Because the two
molecules must “match” in order to bind, it would
seem that every antigen requires a corresponding anti-
body molecule in order to be detected. An undetected
antigen could cause infection, illness, or death, so a
fit individual should have an immune system that can
recognize all possible antigens.

However, there are an almost limitless number of possi-
ble antigens, and an individual has only limited genetic
resources to allocate to the immune system. Both mice
and humans, for example, have fewer than 10° genes
in their entire genome, but their immune systems can
malke on the order of 10! different antibody molecules
(Berek and Milstein 1988, Darnell et al 1986). The
mouse and the human immune systems both use a sim-
ilar genetic mechanism to produce this large number of
different antibody molecules. The genetic material for
one antibody molecule is stored in five separate com-
ponent libraries. Producing one antibody molecule be-
gins with the random selection of a genetic component
from each of the libraries. There are many possible
combinations of the available components, so the im-
mune system can generate a large number of antibod-
ies, even though the libraries contain a limited amount
of genetic information. As discussed later, this combi-
natorial mechanism is most effective when the variants
(the different components in each library) are dissimi-
lar. If all variants were the same there would be little
advantage to interchangeability.

Because the components are randomly chosen, only a
fraction of the available genetic material is expressed
at any one time. Hence the phenotype of the immune
system—the expressed antibody molecules—does not
completely represent the genotype, which is the total
collection of gene segments in all the libraries.

We have defined an abstract model of immune system
libraries and used the genetic algorithm to simulate the
evolution of individuals. Each individual represents
the genetic specification for the antibody libraries of
one immune system. In the first set of experiments we
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Figure 1: Binding/recognition process for binary

molecules

observed the effects of partial gene expression and par-
tial fitness evaluation on the average fitness of the pop-
ulation. Forcing the genetic algorithm to operate on
the basis of this incomplete information causes some
reduction in progress, but not as much as we might
expect. The second set of experiments shows that the
entries in the libraries become progressively more dis-
similar under evolution, even though dissimilarity is
not explicitly required by the fitness function. This
organization of the libraries is an “emergent effect”
that can be interpreted as a balanced allocation of an-
tibodies to the task of antigen recognition. Sections 2
and 3 describe the artificial immune system model and
briefly summarize the experiments that tested the per-
formance of the model over varying rates of antibody
expression and antigen exposure. In Sections 4 and 5
we take a closer look at the effects of evolution on the
genotype. Section 4 motivates a measure of library or-
ganization called Hamming separation, and Section 5
experimentally compares this measure with the fitness
of the immune system.

2 Artificial Immune System

In our simplified model of the immune sys-
tem bit strings are used to represent both the
genotype—libraries of gene segments—and the an-
tibody molecules of the phenotype. For a binary
molecule, the pattern of the bits represents the shape
of the molecule, and the comparison of two binary
molecules will determine their ability to bind. In
our bit string universe, molecular binding takes place
when an antibody bit string and an antigen bit string
“match” each other, in the sense that they have com-
plementary shapes (i.e., binary patterns). This reflects
the lock-and-key fit of actual molecules during bind-
ing. This representation is loosely based on a bit string
universe introduced by Farmer et al (1986). Figure 1
shows a binary antigen molecule and a binary antibody
molecule.

The binding affinity between two molecules is com-
puted by finding the number of bitwise complementary
matches. The bits that match can be used to compute
a “match score” in a variety of ways, but for the ex-
periments reported here the match score is simply the
sum of the number of matching bits. The match score
between the two molecules in Figure 1, for example, is
27.

The bit string representing the genotype of an individ-
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Figure 2: Process of constructing/expressing antibody
from genetic library

ual is divided into four equal-size libraries of antibody
segments as shown at the top of Figure 2. Within
each library there are eight elements, represented as
bit strings of length sixteen, so each individual has a
total of 512 bits. This structure is a simplified model of
the human immune system which has seven libraries,
each with a different number of gene segments (Leder

1982).

The process of expressing an antibody is also shown
in Figure 2. One segment is chosen randomly from
each library and the four selected elements are con-
catenated into a single bit string that is sixty-four bits
in length. We call this bit string an antibody molecule,
one of several that will be used to compute the fitness
of the individual. The set of antibodies that can be
constructed from the libraries is called the potential
antibody repertoire. Not every antibody from the po-
tential repertoire is present in an individual at a given
time. The set of antibodies that are expressed in the
phenotype is called the expressed antibody repertoire.

The fitness of an individual is determined by its overall
ability to recognize antigen molecules. Fitness is evalu-
ated by exposing an individual to a set of antigens and
testing how well it recognizes each antigen in that set.
The expressed antibodies are responsible for the recog-
nition task. Each antigen receives an antigen score,
which is the maximum of all the match scores com-
puted between that antigen and the expressed antibod-
ies. The antigen score quantifies how well the immune
system recognized that particular antigen. The over-
all fitness of the individual is found by combining the
various antigen scores. The simplest method for com-
puting the fitness, used here, is to average the scores
for the different antigens. An alternative method is
to use the minimum antigen score for the fitness, with
the rationale that the antigen you are least equipped to
recognize is the one that best characterizes the fitness
of your immune system.

3 Stochastic Gene Expression and
Stochastic Fitness Evaluation

In the experiments described in this section, our arti-
ficial immune system is evolved using the genetic al-
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Figure 3: Stochastic Evaluation and Stochastic Expression.

gorithm (Holland 1975, Goldberg 1989, Forrest 1993).
Fitness is computed according to an individual’s abil-
ity to recognize antigen strings. In the initial experi-
ments the fitness of individuals was evaluated on the
basis of incomplete information, as is the case with real
immune systems. First, each individual was exposed
to only a subset of the existing antigens, modeling the
fact that real individuals are not exposed to all dis-
eases during their lifetimes. K represents the number
of antigens to which an individual is exposed. Second,
each individual was only allowed to express a fraction
of its potential antibody repertoire. This sampling op-
eration was motivated by the fact that at most 107 of
the 10! possible antibodies are present in the body, as
expressed molecules, at any given time. N represents
the number of antibodies expressed by an individual.

The experiments reported here were conducted with a
modified version of the genetic algorithm package Gen-
esis 1.2ucsd, (Grefenstette 1984). Population size was
500. The mutation rate was 0.002 and the crossover
rate was 0.6. Sigma scaling was used. The population
was initialized with all bits set to zero, rather than
randomly initializing the population. This reflects the
biological hypothesis that the antibody libraries orig-
inated through a process of gene duplication, which
caused the library elements to be similar until muta-
tion caused diversification. The antigen varying ex-
periments extended for 1000 generations, and the an-
tibody experiments extended for 2000 generations.

Genetic algorithm experiments were performed for var-
ious antigen exposure rates and antibody expression
rates (i.e. varying K and N). Figure 3a shows the fit-
ness trajectories of genetic algorithm experiments with
antigen exposure, K, varying between 1 and 128, while
the number of expressed antibodies, N, was held con-
stant at 8. (Antigen bit strings were drawn from a
predefined set called the “antigen universe.”)! Figure
3b shows the fitness trajectories of genetic algorithm
experiments with antibody expression, N, varying be-
tween 1 and 256, while the number of antigens ex-
posed, K, was held constant at 8. Both antigens and
antibodies were sampled with replacement. The plot-
ted results are the mean values from 30 runs of the
genetic algorithm.

Figure 3¢ compares the population averages at the end
of the genetic algorithm experiments with various val-
ues for antigen exposure, and Figure 3d makes the
same comparison for values of antibody expression.
These experiments demonstrated that the genetic al-
gorithm was capable of improving the fitness of the
population, even when given sparse and incomplete in-
formation about the performance of individuals. The

!Increasing the size of the antigen universe makes the
recognition task more difficult, and also increases the run-
time of the simulation. We determined empirically (data
not shown) that an antigen universe with 32 antigen bit
strings was nearly as difficult to recognize as larger ones,
yvet made the experiments tractable.



next step was to explore what was happening within
the components of the gene libraries and to determine
the internal structure of a succesful immune system.

4 Coverage of Antigen Space

In this section we take a closer look at the nature of the
antigen recognition task and discuss the type of solu-
tions the genetic algorithm is finding. One perspective
on the antigen recognition task is to consider the set of
all possible antigens as a space of points, where anti-
gen molecules with similar shape occupy neighboring
points in the space. We call this antigen space. Be-
cause antigen molecules in the binary model are 64
bits in length, the total number of unique antigens is
264 = 1.8 x 10!, which is the size of this antigen space.

A given antibody molecule recognizes some set of anti-
gens and therefore covers some portion of antigen
space. The amount of coverage provided by one an-
tibody is determined by the acceptable matching er-
ror. If no error is allowed during matching an antibody
can only recognize the antigen that is its exact com-
plement. If, however, the immune system is allowed to
make a one-bit error during matching then each anti-
body can cover 65 antigens: the one antigen it matches
exactly and the 64 antigens created by changing one of
its 64 bits. The error radius, r,is the number of bits
that may be in error during matching. The number of
antigens covered by one antibody within a given error

radius 1s:
Na
coverage = E ( ; )

i=0

where 1 equals 64, the length of the bit strings. An
error radius of two bits, for example, allows one anti-
body to cover 1+ 644 2016 = 2081 antigens, while an
error radius of 25 bits lets one antibody cover 9.5x 107
antigens, which is roughly 5 percent of antigen space.
Figure 4a shows a stylized image of antigen space be-
ing covered by antibody molecules. The crosses de-
note the location of antigen molecules and the black
dots are antibody molecules. The circles around the
antibodies show the coverage each one provides for a
given error radius. If the error radius were reduced
then each antibody would provide less coverage.

Figure 4 can be used to discuss some important aspects
of the immune system libraries, although both real
antigen space and our model have a much higher di-
mensionality than the two-dimensional picture shows.
First, note that every antibody is associated with a
unique location in antigen space—the location of the
antigen that has an exactly complementary shape.
Second, the distance between two molecules in anti-
gen space is equal to the Hamming distance between
the two bit strings. Because the distance between two
similar antibody molecules is small, such molecules
would recognize many of the same antigens. Similar

() (b)

Figure 4: Coverage of antigen space by antibodies.
X’s represent a projection of antigens in antigen space.
Circles represent the portion of antigen space recogized
by the corresponding antibodies (black dots). In (a)
the antibodies are far apart (dissimilar) and their ar-
eas of coverage do not overlap. This leads to gaps in
the coverage. In (b) the antibodies are closer to each
other, eliminating the intervening gaps, but leading to
redundant coverage.

molecules would therefore have overlapping coverage
in antigen space. Overlapping coverage is redundant
and potentially reduces antibodies’ capacity for recog-
nizing antigen. Because the immune system only has
a limited number of antibodies, it is desirable to re-
duce redundant coverage by arranging antibodies as
far from each other as possible. This provides a possi-
ble way of indirectly measuring coverage, as discussed
in Section 5.

Figure 4a suggests that if the Hamming distance be-
tween all antibodies is greater than or equal to the
error radius, then gaps of coverage might exist. On
the other hand, Figure 4b shows that if the Hamming
distance between antibodies is less than twice the er-
ror radius (the radius of the circles in the figure) then
their coverage will overlap.

Randomly generated 64-bit antibodies have an average
Hamming distance of 32 bits. (Given one antibody,
any other randomly chosen antibody will have a 50%
chance of having the same value for any particular bit,
so the two bit strings will differ on average in half their
bits.) A set of randomly generated antibodies will tend
to be an average of 32 bits from one another. We have
found empirically that randomly generated antibodies
provide a good coverage of antigen space (shown in 6).

5 Hamming Separation and True
Fitness

Section 4 explained that similar antibodies have a
small Hamming distance between them and this corre-
sponds to an overlapping coverage of antigen space. As
the antibodies become increasingly close together, the
redundant coverage increases and their overall com-
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Figure 5: Hamming Separation for 30 Experiments

bined coverage is reduced. Compare Figure 4a with
Figure 4b to see this effect.

As antibodies become increasingly further apart that
the redundant coverage is reduced. We might predict
that the maximum coverage of antigen space would
be achieved when the antibodies were maximally dis-
tant. The amount of overlapping coverage would be
minimized. This suggests an indirect method for mea-
suring the efficiency of antigen coverage and a direct
method of measuring genetic organization. The Ham-
ming distance between pairs of antibodies, averaged
over all pairs of antibodies in the repertoire, might
have a high correlation with the fitness of the immune
system. We call this measure of genetic organization
Hammang separation.

Hamming separation compares all pairs of antibody
bit strings, requiring N? comparisons, which can be
computationally expensive for the size of the antibody
repertoire, N = 4096, However, the gene libraries can
be considered independently in this computation, so
N? comparisons only need be made over the N = 8
elements in each library, times four libraries. So Ham-
ming separation is computed by finding the average
Hamming distance between all pairs of gene segments
in each of the four libraries and summing the result.
(In our model there are 8 elements in a library and
each library elements is 16 bits in length. Recall, that
the average Hamming distance between elements, for
random libraries, is 50% of the bit string length, or
8 bits. For four libraries, then, the average distance

would be 32 bits.)

The hypothesis is that the fitness of an immune sys-
tem correlates with Hamming separation of its gene
segment libraries. This was tested by running 30 ex-
periments like those described in Section 3 with the
additional computation of the Hamming separation
and the true fitness of each individual. (True fitness
is a complete evaluation of the genotype and consid-
ers all antibodies as well as all antigens.) For all 30

experiments each phenotype consisted of N = 8 ran-
domly expressed antibodies, which was then exposed
to K = 8 randomly chosen antigens. Figure 5 shows
the results of this experiment. The graph shows that
the Hamming separation gradually improves as the
genetic algorithm progresses, as does the fitness tra-
jectory of the various experiments shown in Figure 3.
What is the relationship between Hamming separation
and the true fitness of the immune system?
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Figure 6: True Fitness versus Hamming Separation.
Average trajectory for 30 genetic algorithm experi-
ments. Compare with the region of randomly gen-
erated individuals.
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Figure 7: Expanded view of the attractor for the ge-
netic algorithm experiments.

A comparison of Hamming separation with average
true fitness is shown in Figure 6. The curve shows
the average trajectory of 30 genetic algorithm experi-
ments through this fitness/separation space. (The ex-
periments were sampled every 20 generations, shown
as black points along the curve.) As mentioned pre-
viously the experiments begin with the individuals in
the population initialized to all zeros. This means that
all antibodies are initially zero, so the Hamming sep-
aration begins at zero and the initial fitness is only
fifty percent. Both the fitness measure and Hamming
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Figure 8: Trajectories for genetic algorithm experi-
ments with individuals initialized to all zeros compared
with randomly initialized populations.

separation improved steadily during the experiment,
ending with a true fitness around 0.74 and a Hamming
separation near 27.5.

Figure 7 shows an enlarged view of the region where
the genetic algorithm experiments terminate. Each
path in the graph is a trajectory followed by one of
the 30 experiments. This graph shows that the ge-
netic algorithm repeatedly converges to a particular
region of the fitness/separation space. In all 30 ex-
periments the genetic algorithm reaches this region by
generation 300 and never leaves, even after generation
2000 (Figure 5 also shows that the experiments have
converged).

The relationship between true fitness and the Ham-
ming separation measure is very nearly linear. So our
hypothesis appeared to be correct: the antibodies li-
braries evolve towards a good coverage of antigen space
and the degree of this coverage can be quantified using
the Hamming separation measure.

However, there was a problem reconciling these results
with what we knew about randomly generated individ-
uals. We knew from earlier results that the genetic al-
gorithm was finding solutions with fitness values above
those of randomly generated individuals. But we also
knew that the expected Hamming separation for such
randomly generated individuals is 32 bits, while the
Hamming separation of evolved individuals was con-
verging to a value near 27.5. For comparison we gen-
erated random genomes for five hundred individuals,
and computed their true fitnesses and Hamming sepa-
ration values. The results are shown in Figure 6, as a
cloud of points in the lower right corner, far from the
trajectories of the genetic algorithm experiments. The
average fitness of the randomly generated individuals
is about 0.67 of the maximum true fitness.

Although Hamming separation and true fitness are

highly correlated for the individuals from the ge-
netic algorithm experiments, the relationship is not as
strong with respect to randomly generated individuals.
Additional experiments show that genetic algorithm
runs starting with randomly generated individuals fol-
low the trajectory shown in Figure 8. This suggests
that the optimal solution to the antigen recognition
task is not simply a maximization of the Hamming sep-
aration measure, as originally hypothesized. Rather,
an optimal solution requires a balance between the
conflicting issues of coverage redundancy and cover-
age gaps, discussed earlier.

6 Conclusions

The artificial immune system model uses a binary rep-
resentation for both molecular interaction and the ge-
netic encoding of individuals. The interaction between
antigen and antibody molecules in this representation
is sufficiently complex to exhibit interesting behavior,
without being so complex as to be computationally
intractable. The library mechanism for storing anti-
body components is a simplified version of the real im-
mune system and exhibits a non-trivial mapping from
genotype to phenotype. This binary model allows us
to study concepts like the coverage of antigen space
and genetic organization with a manageable amount
of complexity.

The genetic algorithm experiments with the artificial
immune system show that the genetic algorithm can
optimize complex genetic information. In fact the ge-
netic algorithm has been able to organize the complex
structure of the antibody libraries acting on the basis
of incomplete fitness information. We have also shown
that selection pressure operating on the phenotype as a
whole can translate to selection pressure acting on in-
dividual genes, even though not all genes are expressed
in the phenotype.

By considering the antigen recognition task in terms
of a spatial coverage problem we were able to devise
a measure of organization for the immune system li-
braries. The Hamming separation measure provided
a simple preliminary tool for observing the effects of
evolution on the genotype of the immune system. This
measure was shown to have a high correlation with the
true fitness of the population, verifying the “space cov-
erage” hypothesis, and providing additional evidence
that the genetic information is undergoing implicit or-
ganization not directly required by the fitness function.
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