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ABSTRACT

Program invariants are important for defect detection, pro-
gram verification, and program repair. However, existing
techniques have limited support for important classes of in-
variants such as disjunctions, which express the semantics
of conditional statements. We propose a method for gener-
ating disjunctive invariants over numerical domains, which
are inexpressible using classical convex polyhedra. Using
dynamic analysis and reformulating the problem in non-
standard “max-plus” and “min-plus” algebras, our method
constructs hulls over program trace points. Critically, we
introduce and infer a weak class of such invariants that bal-
ances expressive power against the computational cost of
generating nonconvex shapes in high dimensions.

Existing dynamic inference techniques often generate spu-
rious invariants that fit some program traces but do not gen-
eralize. With the insight that generating dynamic invariants
is easy, we propose to verify these invariants statically us-
ing k-inductive SMT theorem proving which allows us to
validate invariants that are not classically inductive.

Results on difficult kernels involving nonlinear arithmetic
and abstract arrays suggest that this hybrid approach effi-
ciently generates and proves correct program invariants.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation— Validation; F.3.1 [Logics and Meanings of Pro-
grams|: Specifying, Verifying and Reasoning about Pro-
grams— Invariants; F.4.1 [Mathematical Logic and For-
mal Language]: Mathematical Logic—Mechanical theorem
proving

General Terms
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1. INTRODUCTION

Program invariants are logical properties that hold at cer-
tain program locations. Invariants are important for defect
detection (e.g., [3,13,22]), program verification (e.g., [10,14,
29]), and even program repair (e.g., [42,43]). Invariants can
be found using static or dynamic program analyses. Static
reasoning about source code can generate invariants without
executing the program, but is often expensive and therefore
considers relatively simple forms of invariants. In contrast,
dynamic analyses infer invariants from execution traces [19].
The quality and completeness of these traces determine the
accuracy of the inferred invariants. As a result, dynamic
analyses often produce spurious invariants that match some
observations but are not sound with respect to general pro-
gram behavior. However, dynamic analyses are generally
more efficient and can be targeted to discover more complex
forms of invariants.

Existing invariant inference techniques tend to focus on
conjunctive, polynomial and convex invariants. Polynomial
invariants, which are relations among polynomials over nu-
merical program variables, are particularly important for
many applications. As one example, polynomial inequalities
are used to represent pointer arithmetic and other memory
related properties [10]. Inspired by abstract interpretation
approaches in static analysis [8,11], recent dynamic analy-
sis methods use geometric shapes to represent polynomial
invariants [31, 32]. Although these convex shapes capture
conjunctions of polynomial relations, they cannot represent
disjunctive program properties.

Disjunctive invariants, which represent the semantics of
branching, are more difficult to analyze but crucial to many
programs. For example, after if (p) {a=1;} else {a=2;}
neither @ = 1 nor a = 2 is an invariant, but (p Aa = 1) V
(-pAa = 2) is a disjunctive invariant. Disjunctive invariants
thus capture path-sensitive reasoning, such as those found
in most sorting and searching tasks, as well as functions like
strncpy in the C standard library.

Existing approaches thus suffer from the twin problems of
soundness and expressive power: Sound static approaches
are too inefficient to target complex and expressive invari-
ants, while efficient dynamic approaches often yield spu-
rious invariants. For example, Interproc [23], a popular



static analyzer that employs different abstract domains, and
Astrée [4,9], a successful program analyzer used for verify-
ing the absence of run-time errors in Airbus avionic systems,
consider only conjunctive invariants, and thus lack expres-
sive power. Dynamic convex hull methods capture complex
structures but can yield many spurious invariants. In fact,
such approaches are not used by default because of false
positive issues [32], and instead users are asked to specify
invariant shapes manually.

We address both expressive power and soundness with a
hybrid technique combining a novel method for inferring ex-
pressive invariants dynamically with a static approach for
validating invariants by formal proof. At the heart of our
dynamic analysis is the insight that disjunctive invariants,
which are not classically convex, can be reformulated in a
non-standard algebra. Once reformulated, inference pro-
ceeds using a variant of existing geometric hull approaches.
Our static verification technique rests on the observation
that many practical program invariants are k-inductive but
not classically inductive [17,26,40]. That is, they can be
proved by considering k base cases with an inductive step
that has access to the k previous instances. Our hybrid al-
gorithm leverages the fact that it is easier to infer complex
candidate invariants dynamically and verify them statically.

‘We build convex hulls for a special type of nonconvex poly-
hedra called maz-plus to capture certain disjunctive infor-
mation. A polyhedron using max-plus algebra is a set of rela-
tions of the form max(co, c1+v1,. .., cn+vn) > max(do, d1 +
V1,...,dn + v,) over program variables v; with coefficients
ci,d; € RU{—o0}. For instance, the max-plus polyhedron
max(z,y) > max(—o0,z) encodes the disjunctive informa-
tion (x < yAy > z)V(z > yAx > z) orsimplyy > 2z V z > z.
Max-plus polyhedra are the analogues of classical convex
polyhedra in the max-plus algebra, which operate over the
reals and —oo with max as the additive and + as the multi-
plicative operator [1,27]. Dually, we also consider min-plus
polyhedra and combined max- and min-plus relations cap-
turing if-and-only-if information.

We augment our dynamic analysis with a theorem prover
based on k-induction and SMT solving to verify candidate
invariants. Proven results are true invariants of the program.
Iterative reasoning using k-induction allows us to prove in-
variants that cannot be proved using standard induction,
and in some cases to prove results that are not k-inductive.
Moreover, recent advances in SMT solving (e.g., [14,24,35])
allow for efficient analysis over formulas in more expressive
logical theories, such as the theory of nonlinear arithmetic.

In summary, the paper makes the following contributions:

e A new algorithm to infer certain disjunctive invariants
dynamically by constructing nonconvex max- and min-
plus polyhedra over observed traces.

e The definition of a novel restricted class of max- and
min-plus invariants, called “weak” invariants, that strike
a balance between expressive power and computational
complexity. Weak invariants express useful max- and
min-plus relations and can be computed efficiently.

e KIP, a theorem prover based on iterative k-induction
and SMT solving to verify dynamically inferred invari-
ants against program source code. When parallelized,
KIP efficiently and correctly processes many complex
and potentially spurious invariants.

e An experimental evaluation on difficult kernels involv-
ing nonlinear arithmetic and abstract arrays. Our ap-
proach is efficient, both at learning disjunctive invari-
ants and at proving them correct.

2. MOTIVATING EXAMPLE

We illustrate our methods with a simple example program
containing a disjunctive invariant.

void ex1(int x){ z |

int y=5; 2y v
if (x>y) x=y; 1]5 11
while [L](x<100{ . | . -/
if (x>5) . - anm
y=y+1; 5 5 5
x=x+1; 6|6
' ( ) : : 0 0 5 11 *
assert(y==11); : :
) y 11| 11
Figure 1: Program ex1, the observed trace on input x = —1,

and the geometric representation of its invariant (x < 5 Ay =
5) V (5 <z <11 Az =y) at location L.

Figure 1 shows program ex1, adapted from Gulwani and
Jojic [20]. The program ex1 initializes y to 5 and ensures
x < y, then enters a loop that increments y conditionally
on the value of x. Figure 1 also shows the trace values for
xz,y at location L on the input x = —1, and it depicts the
nonconvex region (a bent line) covering these trace points.
Validating the postcondition y==11 requires analyzing the
semantics of the loop by identifying the invariants at L.

From the given trace, existing tools such as Daikon [18,19]
and DIG [31, 32] can generate only conjunctive invariants
such as

11 > =z
11 > vy = 5
y =2z

These relations are not expressive enough to capture the
disjunctive dependency between x and y, and they fail to
prove the desired postcondition.

By building a max-plus polyhedra over the trace points in
Figure 1, we obtain relations that simplify to:

1 > T > -1
1> y > 5
0 > z—-y > —6

(x<B5AE>y) V (z>5Az>y)

Note that the last relation is disjunctive. Next, we verify
these candidate invariants against the source code (Figure 1)
using k-induction and remove the spurious relations x > —1
and z — y > —6. The rest are true invariants at L.

We note that the invariant y > x is not directly k-inductive
for £ < 5. However, by using the previously proven results
y>5and (x <5A5>y)V(z>5Az>y) as lemmas, our
prover also verifies this relation y > z. Further, the prover
shows that 11 > z is redundant (i.e., implied by other proved
results) and can be removed. The remaining invariants are:

1 > y =5
0 > x—y
(z<5A5>y) V (z>5Az>y)

Intuitively, the code in Figure 1 has two phases: either z < 5
(at which point the if inside the while loop is not true and y
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Figure 2: (a) A set of points in 2D and its approximation using
a (b) zone and (c) polygon region.

remains 5) or z is between 5 and 11 (at which point the if in-
side the while loop is true, and y = x because they are both
incremented). The inferred invariants are mathematically
equivalent to the encoding of that intuitive explanation:

(<5 ANy=5) vV (<z<1l Ny=n=x)

They are also the precise invariants of the loop and can prove
the postcondition y==11. This example required that the
dynamic analysis be expressive and efficient enough to gen-
erate disjunctive invariants, and it required that the static
prover be expressive and efficient enough to remove spurious
invariants and prove the others correct. In the remainder of
the paper we describe these methods in detail.

3. INVARIANT INFERENCE ALGORITHM

This section describes our algorithm for inferring disjunc-
tive invariants from dynamic traces. We consider the con-
struction of max-plus, weak max-plus, and min-plus invari-
ants. We begin in Section 3.1 with a discussion of exist-
ing approaches to inferring convex geometric invariants. We
then explain how to apply such techniques to the inference
of disjunctive invariants by reformulating the problem in the
max-plus algebra in Section 3.2. In Section 3.3 we formalize
that intuition and present our algorithm pseudocode. We
then introduce in Section 3.4 an efficient and expressive re-
stricted subclass, which we call weak max-plus invariants.
In Section 3.5 we describe the dual, min-plus invariants. Fi-
nally, in Section 3.6 we analyze the guaranteed properties of
our algorithm.

3.1 Inferring Convex Geometric Invariants

We review the problem of learning convex geometric in-
variants. Figure 2 visualizes these invariants, showing 2D
points (panel a) and two examples of increasingly precise,
but also increasingly expensive, convex shapes containing
those points (panels b and ¢). The inferred invariants cor-
respond to the relations defining the enclosing shapes given
the trace points from panel a.

The dynamic analysis tool DIG [31,32] generates different
forms of polynomial invariants by building geometric shapes,
such as those shown in Figure 2, enclosing the trace points.
DIG first determines if the points lie in a simple hyperplane.
If such a plane does not exist, DIG then computes a convex
hull over the trace points. Such hulls are bounded convex
polyhedra—each polyhedron is enclosed by a finite number
of facets and contains the line joining any pair of its points.
The half-space representation of such a polyhedron is a set of
finite linear relations of the form civ1 +- - - +c¢pvn > co. The
facets of the polyhedron, corresponding to the solutions of
the set of linear inequalities, give a set of candidate inequal-
ity invariants among the variables v;. Figure 2c shows a 2D

polyhedron with five facets, represented by five linear in-
equalities. For efficiency, DIG also considers more restricted
forms of inequalities representing simpler geometric shapes,
such as the six-edged zone relation [10,30] in Figure 2b and
the eight-edged octagon relation [10].

To support nonlinear relations, DIG lifts its analysis to
terms representing nonlinear polynomials over program vari-
ables. For example, rather than analyzing variables v; and
v directly, relations can be constructed among the terms
t1 = vi,t2 = vive (note that ¢z is nonlinear). Thus, equa-
tions such as t1 + t2 = 1 can be generated, which represents
a line over t1,t2 but a hyperbola over vi,v2. When addi-
tional traces are available, filtering step removes spurious
invariants [31].

These existing approaches lack the expressive power to
learn disjunctive invariants, a gap that we address in the
following subsection by reformulating in the max-plus alge-
bra.

3.2 Max-Plus Invariants

As discussed earlier, programs containing loops or condi-
tional branches are not adequately modeled by purely con-
junctive invariants. Figure 1 depicts the nonconvex region
defined by the loop invariant (z < 5Ay =5)V (5 <z <
11 Az = y) in our program ex1. Such disjunctive informa-
tion cannot be expressed as a conjunction of polynomial re-
lations, including octagon or even general polyhedron forms.
Although disjunctive invariants can be simulated using poly-
nomials of higher order (e.g., a = 0V b = 0 is equivalent to
a X b = 0), this approach generates terms with impracti-
cally high degree and computational cost, especially when
there are more than two disjunctions. We thus require a
fundamentally different approach.

To model disjunctive invariants, we use formulas repre-
senting maz-plus polyhedra [1], i.e., nonconvex hulls that
are convex over a max-plus algebra. Max-plus formulas al-
low disjunctions of zone relations [10,30]: inequalities of the
forms +v > ¢ and v1 — v2 > c. Formally, max-plus relations
have the structure

max(co,c1 + v1, ..
max(do, d1 + v1, . .

yCn +Un) >
'7dn +vn)7

where v; are program variables, c;,d; are real numbers or
—o0, and max(to,...,tm) returns the largest t;. That is,
max(z,y) = if x > y then z else y. We note that max(vo,vi—
00, V2, ..., Un) = max(vo, V2, . .., vn) and thus we often drop
—00 max-arguments.

The max operator allows max-plus formulas to encode
certain disjunctions. For example, the max-plus relation
max(0, z—5, y—o0) = max(—o00, x—00,y—>), i.e., max(0, x—
5) = max(y — 5), encodes the disjunction (5 > z Ay =
5)V(b<zAx=gy),ory=5Ve=yt

Max-plus relations are analogous to polyhedra relations,
but use (max,+) instead of the (4, x) of standard arith-
metic. These operators allow max-plus relations to form
geometric shapes that are nonconvex in the classical sense.
For example, the max-plus relation z = y Vy = 5 represents

'For presentation purpose we abbreviate max-plus nota-
tions, e.g., max(z,y) > z for max(z,y,z — 00, —00) >
max(z — 00,y — 00, z,—00) and = > 9 for max(9,x — oo,y —
00) > max(—oo,z,y — 00). An equality is also used to ex-
press the conjunction of two inequalities, e.g. max(z,y) = 2z
for max(z,y) > z A z > max(z,y).
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Figure 3: (a) Three possible shapes of a max-plus line segment:
max(xz +a,b) > y (top), max(y + a,b) > z (right), max(z+a,y +
b) > 0 (left) and (b) a max-plus convex hull built over four points
using these line segments.

a nonconvex region consisting of two lines z = y and y = 5.
Moreover, the structure of max-plus relations produces a rel-
atively peculiar geometric shape. Figure 3a shows the three
possible shapes of a max-plus line segment in 2D. In general
dimensions, two points are always connected by lines that
run parallel, perpendicular, or at a 45 degree angle to all the
coordinate axes. A max-plus polyhedron consists of these
connections and the area surrounded by them. Figure 3b
depicts a max-plus polyhedron represented by a set of four
lines connecting the four marked points. Although a max-
plus polyhedron is not convex in the classical sense, but it is
convex in the max-plus sense using max-plus algebra. That
is, it contains any max-plus line segment between any pair
of its points. This allows us to generate max-plus polyhedra
over a finite set of traces, as shown in Figure 3b. Where
there is no confusion, we shorten max-plus (resp. min-plus)
to max (resp. min) when describing polyhedra, formula, or
relations.

A bounded max polyhedron can have finitely many facets
representing max relations, e.g., even a 2D complex polygon
may contain multiple edges. Thus, a disjunctive formula
representing a max polyhedron has no fixed bounds on the
number of disjuncts used. However, computing a max poly-
hedron over n points in d dimensions is computationally
expensive O(n) [1], similar to classical polyhedron com-
putations. Next, we propose heuristics to avoid generating
these high-dimensional polyhedra in Section 3.3. Section 3.4
then introduces a simpler form of max relations that strikes
a reasonable compromise between efficiency and precision.

3.3 Dynamically Inferring Max-Plus Invariants

input : set of variables V, set of traces X, max degree d
output: set S of polynomial inequalities

T < genTerms(V ,d)

P <+ genPoints (T, X)

H <+ createMaxPlusPolyhedron(P)
S < extractFacets(H)

return S

Figure 4: High-level algorithm for finding disjunctive polynomial

inequalities.

We infer max invariants dynamically using a procedure
similar to that used for classical polyhedra invariants. Fig-
ure 4 outlines the main steps of the algorithm: using terms to
represent program variables; instantiating points from terms
using input traces; creating a max polyhedron enclosing the
points; and extracting its facets to represent max relations
among terms.

Because program invariants often involve only a small sub-
set of all possible program variables, we employ heuristics to

search iteratively for invariants containing all possible com-
binations of a small, fixed number of variables. We propose
to consider max relations over triples of program variables,
i.e.,, max(co, c1 +v1, 2 +v2,c3+v3) > max(do, dr +v1+da+
v2, ds+v3) representing max polyhedra in three-dimensional
space.

Our algorithm also supports nonlinear max relations by
using terms to represent nonlinear polynomials over vari-
ables. However, the number of possible terms is exponen-
tial in the number of degrees [31] and thus we target linear
max relations by default for efficiency. The user of DIG
can change the parameter d in Figure 4 to generate higher
degree relations (e.g., d = 2 for quadratic relations) and
can also manually define terms to capture other desirable
properties. For example, a user with knowledge about the
shape of the desired invariants might hypothesize a spherical
shape max(co, c1 + x2, c2 + 9?) > max(do, d1 + 22, d2 + 9?).
With that as input, the algorithm searches for that exact
shape (i.e., computes the coefficients ¢;,d;) from the poly-
hedron built over the trace points of the terms representing
the nonlinear polynomials =2 and 3>

Example

We illustrate the algorithm by deriving the invariant (z <
5Ny =5)V (5 <z <10Az =y) at location L in program
ex1 in Figure 1. The trace values for x,y in Figure 1 form
a set of eleven points (e.g., the first is (—1,5)). We then
compute a max polyhedron over these points. The half-
space representation of that polyhedron consists of the max
relations:

11 > & 0> -1
11 > Y > 5
0 > x—y > —6
max(0,z —5) > y—5

The conjunction 0 > z—y A 11 > 2 A max(z—5,0) > y—5,
which forms the nonconvex region in Figure 1, is logically
equivalent to the invariant (z < 5A5 =y)V (5 <z <
11Az =y).

Note that x > —1 and x — y > —6 are spurious relations
because xz has no lower bound. Additional traces, such as
running ex1 on x = —5, would remove these spurious in-
variants. More generally, the static technique in Section 4
formally verifies candidate invariants and removes spurious
results.

3.4 Weak Max-Plus Invariants

We introduce and define a weaker form of max relations
that retains much expressive power but avoids the high com-
putational cost of computing a max polyhedron. Our ap-
proach is inspired by earlier methods for finding simpler
forms of inequalities (e.g., zone and octagon) to avoid the
cost of finding general polyhedra [30]. To the best of our
knowledge, this is the first attempt to consider a simpler
form of max inequalities for program analysis.

We define a weak max relation to be of the form:

max(co, €1 + v1,. ..,k + k) > v; +d,
v; +d > max(co,c1 + v1,. ..,k + V),

where v; are program variables, ¢; € {0,—o0}, d is a real
numbers or —oo, and k is a constant, e.g., k = 2. Unlike
general max relations, weak max relations have some conve-
nient properties:



1. They restrict the values of the coefficients ¢; to {0, —oco}.

The general form allows ¢; € RU {—o0}.

2. They fix the number of variables k to a small constant.
The general form allows n variables.

3. They allow only one unknown parameter d. The gen-
eral form allows dg ... dn.

Weak max relations are thus a strict subset of general max
relations. For example, the weak max form cannot represent
general max relations like max(z + 7,y) > z or max(z,y) >
max(z,w), but it does support zone relations like x — y >
10,z = y and disjunctive relations like max(z,y) > z and
max(x,0) >y + 7.

Geometrically, weak max relations are a restricted kind
of max polyhedra. While general max line segments have
the possible three shapes shown in Figure 3, weak max line
segments have only two shapes represented by the formulas
max(x,b) > y and max(y,b) > x. That is, weak max shapes
include only lines that run in parallel or at a 45 degree angle.
Lines with a perpendicular shape cannot occur because their
formula, max(z,y) > 0, is inexpressible using the weak max
form.

The advantage of these restrictions is that they admit
a straightforward algorithm to compute the bounded weak
max polyhedron over a set of finite points in & dimensions.
The algorithm first enumerates all possible weak relations
over k variables and then finds the unknown parameter d
in each relation from the given points. The resulting set of
relations is the half-space representation of the weak max
polyhedron enclosing the points.

Note that this algorithm does not apply to the general
max form because the coefficients c; are not enumerable over
the reals. Moreover, the problem becomes more complex
when more than one unknown is involved. For instance, it is
nontrivial to compute the unknowns c, d in the max relation
max(c, z) > y + d because the values of ¢ and d depend on
each other.

Example

We illustrate this algorithm by finding the weak max poly-
hedron enclosing the points {(z1,91),..., (Tn,yn)} in 2D.
First, we enumerate relations of the weak max form by in-
stantiating the coefficients ¢; over {0, —oo}. For the form
max(co, c1 +z,c2 +y) > x +d we obtain eight max relations
(two choices each for three coefficients):

—o>xz+d

The eight additional max relations for each of the other three
forms max(co,c1 + x,c2 +y) > y+d, x +d > max(co,c1 +
z,c2+Yy), y+d > max(co, c1+x, c2+y) are obtained similarly.
Redundant relations can be removed (e.g., max(y,0) > x
implies max(z,y,0) > x).

Next, we compute the parameter d in each of the 32 ob-

tained relations using the given points {(x1,y1),- .., (Zn,Yn)}-

For instance, max(y,0) > x+d has d = min(max(y;, 0) —z;)
and z+d > max(y, 0) has d = max(max(y;,0) —z;). The re-
sulting relations form an intersecting region that represents
a bounded weak max polygon over the given points.

In general, the number of weak max relations enumerated
over k variables is O(k2F2) and the time to find the single
parameter d in each relation is linear in the number of points.

Thus, the complexity for computing a weak max polyhedron
over n points in k dimensions is O(n2"). The complexity is
therefore polynomial in the number of points when k is a
constant and is exponential in the number of dimensions
when k is not fixed. Note that even this worst case is still
smaller than O(nd)7 the complexity of building a general
max polyhedron. Importantly, the number of facets of a
weak max polyhedron has a fixed upper bound for each k.
For example, £k = 2 has at most 32 facets. This is thus
more manageable than the number of facets of general max
polyhedron, which can be arbitrarily finitely many.

3.5 Min-Plus Invariants

We also consider min relations of the form

min(co,c1 4+ v1,...,Cn + Vn) >
min(do, d1 +v1,...,dn + Un),

where v; are program variables and ¢;,d; € RU {oo}. Sim-
ilar to its max dual, a min polyhedron is a formed by the
intersection of finite min lines. However, min and max re-
lations describe different forms of disjunction information
and have different geometric shapes. For instance, the rela-
tion min(x,y) = z encodes the disjunction (z < y = = =
z) A (x > y = y = z) that is not expressible as a max re-
lation. Figure 5 depicts the min version of the shapes in
Figure 3.

__
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Figure 5: (a) Three possible shapes of a min-plus line segment
and (b) a min-plus polyhedron built over four points.

int ex2(int x){

; z |y b
int y, b;
if (x>=0) {y=x+1;} -50]-51 0
else {y=x-1;} -331-34 0
b=(y>10); 9 10 O
[L] 10 | 11 1
return b; 12 13 1
} 40 | 41 1

Figure 6: Program ex2 and its trace data at location L for several
input values.

A conjunction of max and min invariants can describe
information that is inexpressible using either max or min
relations alone. Consider program ex2 in Figure 6, which
has the invariant y < 10 < b = 0 at location L. By building
max and min polyhedra over the traces given in Figure 6,
we obtain 1 > b > 0, max(y — 10,0) > b, and b+ 10 >
min(y,11). Given 1 > b > 0, the max relation implies b =
0 = y < 10 and the min relation implies b # 0 = y > 10.
These disjunctions are mathematically equivalent to the iff
condition y <10 < b= 0.

Dually, we also define weak min relations:

max(co,c1 + v1,...,Ck + Vi) > vj + di,
v; + di > max(co,c1 + v1,...,Ck + Vi),



where v; are program variables, k is a constant, ¢; € {0, —co},
and d; € RU{—o0}. The algorithm for computing weak min
polyhedra over finite points is similar to the one for weak
max polyhedra and has equivalent theoretical complexity as
given in Section 3.4.

3.6 Algorithmic Analysis

We analyze important properties associated with our al-
gorithm. There are two key concerns: the production of
spurious invariants that underapproximate general program
behavior (too strong relations that hold only for some in-
puts) and invariants that overapproximate® general program
behavior (weak invariants that may not be useful).

By building max or min polyhedra over trace points, which
are convex in the corresponding max or min algebra, our
algorithm guarantees that it produces candidate invariants
that always underapproximate, or are equivalent to, pro-
gram invariants expressible under the max or min-plus forms.
The proof of this claim follows from the facts that (1) the
given set of observed traces is a subset of all possible pro-
gram traces and (2) our constructed max polyhedron over
a set of points is the smallest max polyhedron represented
by those points. The proof details follow those of the un-
derapproximation argument for inferring classically convex
shapes [32]. Thus, if the program invariants are expressible
in our system, our algorithm never overapproximates.

This underapproximation property is important because
its violation—a candidate invariant strictly overapproximat-
ing the program invariant—indicates a bug in the subject
program. For example, if the expected invariant is t > 1 but
our algorithm discovers ¢ > 0, then the underapproximation
property guarantees the value t = 0 exists in the observed
traces. The trace with ¢ = 0 represents a counterexample
that violates the expected property of ¢ being positive.

Underapproximation properties also represent spurious in-
variants. One way of understanding why spurious results
occur is that (1) a max or min polyhedron has many facets
in high-dimensional space, and (2) inadequate traces may
result in a constructed polyhedra with facets representing
spurious relations. For instance, if x,y can take any value
over the reals, then an n-facet max polygon built over any
set of trace points for x,y produces n spurious invariants
because no bounded max-plus polygons can capture the un-
bounded ranges of z,y. Both filtering against additional
traces and restricting attention to the weaker forms of max
and min relations help reduce spurious invariants. In the
next section we describe a more general technique, based on
theorem proving, to distinguish between true and spurious
invariants.

4. VERIFYING CANDIDATE INVARIANTS

Our algorithm, and convex hull methods in general, can
generate many powerful but potentially incorrect relations
due to trace incompleteness. We augment dynamic invari-
ant generation with static theorem proving to produce sound
program invariants with respect to the program source code.
Specifically, we verify program invariants using k-induction.
In this approach, k base cases are specified, and the k pre-
vious instances are available for proving the inductive step

2For instance, if the true program behavior is < y — 5, the
weaker candidate invariant x < y is a strict overapproxima-
tion: it is always true (zx <y —5 = x < y — 0) but is not
the most precise answer.

(e.g., [17]). This additional power allows us to prove many
invariants relevant to program verification that do not admit
standard induction.

Our theorem prover design, called KIP, is based on it-
erative k-induction and uses SMT solving to verify candi-
date invariants. In addition, its architecture supports paral-
lel checking of invariants, dramatically improving efficiency.
Recent advances in SMT solving [14, 24, 35] allow for effi-
cient analysis over formulas encoding complex programs and
properties in powerful theories. This means that we can rea-
son about, and verify, invariants involving theories such as
nonlinear arithmetic and data structures such as arrays, bit
vectors, and pointers.

Consider the program sqrt
on the right, which com-
putes the square root of an
integer using only addition.

int sqrt(int x){
assert (x>=0);
int a=0,s=1,t=1;
while[L] (s<=x){

From observed traces at lo- a += 1;
. . t += 2;
cation L, our algorithm gen- s += t.

erates candidate loop invari-

ants such as t = 2a + 1,4s =

P 4+2t4+1,5=(a+1)% s>t }
and z < 9989. KIP successfully distinguishes true and
false invariants from these results. Specifically, we prove
t =2a+ 1 and 4s = t> + 2t + 1 are inductive invariants and
s = (a+1)? is a 1-inductive invariant (i.e., cannot be proved
using standard induction). By using proved results as lem-
mas, KIP is able to show the invariant s > ¢, which is not
k-inductive for £ < maxK, where maxK = 5 is the default set-
ting of KIP. The prover also rejects spurious relations such
as x < 9989 by producing counterexamples that invalidate
those relations in sqrt. The parallel implementation allows
the prover to check these candidate results simultaneously.

return a;

4.1 Analyzing programs using .-Induction

A program execution can be modeled as a state transition
system M = (I, T) with I representing the initial state of M,
and T specifying the transition relation of M from a state
n — 1 to a state n. To prove that p is a state invariant that
holds at every state of M, k-induction requires that p hold
for the first k + 1 states (base case) and that p hold for the
state n + k + 1 assuming that it holds for the k + 1 previous
states (induction step). Formally, k-induction proves the
state invariant p of M = (I,T) by checking the base case
and induction step formulas:

INTAAN---ANT = poA--- Api (1)
P ANTpg1 A APtk AT ntk+1 = Dntkt1 (2)

If both formulas hold then p is a k-inductive invariant. If
the base case (1) fails then p is disproved and thus is not an
invariant (assuming that M correctly models the program).
However, if the base case holds but the induction step (2)
fails, then p is not a k-inductive invariant, but it could still
be a program invariant. Thus, k-induction is a sound but
incomplete proof technique.

By considering multiple consecutive transitions, k-induction
can prove invariants that cannot be proved by standard in-
duction (0-induction in this formulation). For instance, the
invariant « # y of the machine M (I : (x = 0Ay = 1Az = 2)q,
Th: Tn = Yn—1 A Yn = Zn—1 A Zn = Tn—1) that rotates the
values 0, 1,2 through the variables z,y, z is not provable by
standard induction but is k-inductive with £ > 3. The no-



tation (P); denotes the formula P with all free variables
subscripted by i, e.g., (x +y = 1)o is o + yo = 1.

4.2 k-Induction and SMT solving

input : I, T,p
output: {proved, disproved, unproved}

for k = 0 to maxK do
// base case
if kK = 0 then Sy.assert(I) else Sy.assert(Ty)
if =Sy.entail(py) then return (disproved, Sy.cex)
// induction step
Ss.assert(pr, Tht1)
if —Ss.entail(pgy) then return proved

return unproved

Figure 7: Procedure kprove for incremental k-induction using
SMT solvers Sy and Ss.

Figure 7 outlines the procedure for verifying a property p
using inductive k-induction with SMT solving. The proce-
dure consists of a loop that performs incremental k-induction,
starting from k = 0. The loop terminates when either the
base case fails (P is not an invariant), both the base case
and the induction step hold (P is an invariant), or maxK is
reached (P is not a maxK-inductive invariant).

We use two independent SMT solvers S, and Ss to check
the two formulas corresponding to the base case (1) and
induction step (2).*> For a solver S and a formula f, we
append f to S through assertion and check if the assertions
in S imply f using entailment [14]. If S does not entail
f, then the solver returns a counterexample (cex) satisfying
ai N+ Aan but not f.

4.3 The Architecture of KIP

input : S,L,P
output: P;, Pr, Py, Py,

I, T < vegen(S, L)
Pp = 0;Pg + 0; Py < 0
repeat
New, + 0; New,, + 0
foreach p € P do

r <« kprove(I, T, p)

if r = proved then

| Pp.add(p); Newp.add(p)

else if r = unproved then New,.add(p)
else P,.add(p)

KIP.addLemmas(Newp)

P < New,

until New, =0 V New, =0
P, <+ P

P;, Pr = check_redundancy(Pp)
return P;, P, Py, P,

Figure 8: Procedure to verify candidate invariants. P; and P, are
proved results, however P, are redundant because P; = P,. P,
and P, are disproved and unknown results, respectively.

At a high level, verifying a candidate invariant against a
program requires two steps: (1) computing a formula that

3The two SMT solvers can share the same implementation:
“independent” merely indicates that they may hold different
assumptions at runtime.

encodes the program’s semantics; and (2) proving whether
the candidate invariant is consistent with that formula or
not. To increase expressive power in practice, we also (3)
incorporate knowledge of all invariants learned thus far.

Figure 8 outlines the architecture of KIP, our k-inductive
parallel theorem prover, to verify a set P of candidate ob-
tained at location L for program S. We first generate from
the program S and the location L the formulas I,T. These
formulas can be thought of as representing the state tran-
sition system M = (I,T) described above. Equivalently,
I, T can be thought of as verification conditions (vcs) based
on weakest preconditions (wps) from program analysis using
Hoare logic.

The backward analysis method [16] provides the necessary
rules to create I, T for imperative programming constructs
such as assignments, conditional branches, and loops. This
area is well-established—tools such as Microsoft Boogie [28]
and ESC [15] implement various methods based on backward
analysis to automatically generate vcs using wps.

Our algorithm progresses by trying to prove the invari-
ants in the context of the vcs. While unproved invariants
remain, the procedure attempts to re-prove them by adding
newly proved results as lemmas to KIP. In many cases, this
additional knowledge allows KIP to prove properties that
could not be proved previously (see Sections 2 and 5.2). A
disproved invariant is likely spurious (e.g., assuming I,7T
correctly models the program), a proved invariant is defi-
nitely correct, and an unproved invariant (e.g., one that is
not maxK-inductive) can be conservatively rejected.

The algorithm supports parallelism, which can check can-
didate invariants (the for loop in Figure 8) simultaneously
using multiple threads. In a post-processing step, KIP uses
implication to partition all proved invariants into two sets:
those that are independent (i.e., strongest) and those that
can be implied by the others (i.e., weaker). The implied
invariants are redundant and need not be presented to the
developer. This partitioning uses the backend SMT solver
to check if each invariant p € P, can be inferred by the
conjunction of other proved invariants P, \ {p}.

Overall, KIP’s design represents a novel combination of
established techniques and provides the five properties we
desire for the efficient verification of complex invariants: (1)
use of k-induction for expressive power; (2) use of SMT
solvers for reasoning about program-critical theories like non-
linear arithmetic; (3) learning of lemmas to prove otherwise
non-inductive properties; (4) explicit parallelism for perfor-
mance; and (5) removing weaker implied results for human
consumption.

5. EXPERIMENTAL EVALUATION

This section evaluates the efficiency and expressive power
of our methods. We consider the research questions:

e RQI1: Can the hybrid algorithm efficiently generate
powerful disjunctive invariants and prove them cor-
rect?

e RQ2: Is the hybrid algorithm effective on complex cor-
rectness properties, such as those that are not classi-
cally inductive or involve nonlinear arithmetic?

To investigate RQ1 we applied our algorithms to a Disjunc-
tive Invariant benchmark suite of kernels involving abstrac-
tions of string and array processing. To investigate RQ2 we



Table 1: Disjunctive Invariant experimental results.

Prog | Loc Var Gen Tgen | Val Tval | Hoare
ex1 1 2 15 0.2 4 1.5 v
strncpy 1 3 69 1.1 4 7.7 v
oddeven3 1 6 286 3.7 8 16.0 v
oddeven4 1 8 867  12.7 22 46.0 v
oddevend 1 10 2334 56.8 52 1319.4 v
bubble3 1 6 249 4.1 8 4.9 v
bubble4 1 8 832 11.7 22 47.6 v
bubbles 1 10 2198 539 52 938.2 v
partd3 4 5 479  10.5 10 50.8 v
partd4 5 6 1217  23.3 15 181.1 v
partdb 6 7 2943 53.3 21 418.1 v
parti3 4 5 464  10.3 10 45.5 v
parti4 5 6 1148 22.4 15 165.1 v
partib 6 7 2954  53.6 21 405.6 v
total | 16055 317.6 | 264 3647.5 | 14/14

used a Nonlinear Arithmetic benchmark suite. Each pro-
gram comes equipped with “gold standard” full-correctness
annotations (e.g., assertions, postconditions, or formalized
documented invariants).

Each program was run on 300 random inputs to provide
traces for invariant generation and 100 random inputs for
filtering, as described in [31]. For small kernels, this yields
sufficient traces to generate accurate invariants [34,39]. Our
test programs come with annotated invariants at various lo-
cations such as loop heads and function exits. For evaluation
purpose, we instrumented the values of variables at those lo-
cations and find invariants among the resulting traces. We
use only the weak max and min forms given in Section 3.4
unless the number of variables is three or less, in which case
it is also practical to use the general forms.

We implemented our algorithms in the dynamic analysis
framework DIG [31,32] using the Sage mathematical envi-
ronment [41]. Our prototype uses the Tropical Polyhedra
Library TPLib [2] to manipulate max and min polyhedra
and uses built-in Sage functions to solve equations and con-
struct convex hulls for classical polyhedra. The prototype
KIP prover uses Z3 [14] to check the satisfiability of SMT for-
mulas. As mentioned, we consider linear max-plus relations
and set maxK = 5 by default. The prototype constructs the
verification conditions corresponding to M = (I,T) (Sec-
tion 4.3) directly; a more efficient tool such as Microsoft
Boogie could also be used. The experiments were performed
on a 64-core 2.60GHz Intel Linux system with 128 GB of
RAM; KIP used 64 threads of parallelism.

5.1 RQI1: Disjunctive Invariants

We evaluate our approach on several benchmark kernels
for disjunctive invariant analysis [1], listed in Table 1. These
programs typically have many execution paths, e.g., oddeven5b
contains 12 serial “if” blocks and thus 2'2 paths. The doc-
umented correctness assertions for these programs require
reasoning about disjunctive invariants,* but do not involve
higher-order logic. For example, the sorting procedures are

“We note that this suite is not exhaustive. Max-plus algebra
is still relatively new, and while it has real-world applica-
tions such as network traffic shaping [12,21] and biological
sequence alignment [7], to our knowledge this is the first pa-
per on dynamic inference for max-plus invariants and thus
few benchmarks are yet available.

asserted to produce sorted output, but are not asserted to
produce a permutation of the input.

Table 1 report experimental results. The Loc column
lists the number of locations where invariants were gener-
ated. The Var column reports the number of distinct vari-
ables involved in the invariants. The Gen column counts
the number of unique candidate invariants generated by our
dynamic algorithm. The Tgen column reports the genera-
tion and filtering time, in seconds, averaged over five runs.
The number of generated invariants speaks to the expressive
power of the algorithm: higher is better, indicating that we
can reason about more disjunctive relationships over pro-
gram variables. Time indicates the efficiency of our algo-
rithm: lower is better. The Val column reports the number
of generated invariants that KIP proved correct and non-
redundant with respect to the program. The other gener-
ated invariants were disproved three times as often as they
were proved redundant. A few invariants, just under 2% on
average, could neither be proved nor disproved. The Tval
column counts the time, in seconds, to analyze all of the
generated invariants.

We desire validated invariants to statically prove each pro-
gram’s annotated correctness condition via Hoare logic. The
Hoare column indicates whether the validated invariants
were sufficient to prove program correctness. For all of these
programs, the invariants generated and validated by our hy-
brid approach—an average of 18 per programs—were suffi-
cient for a static proof of full correctness.

For example, for the C string function strncpy, which
copies the first n characters from a (null-terminated) source
s to a (unconstrained) destination d, we inferred the relation:

(n=s| A ldl=1s]) vV (n<[s| A |d] Zn)

This captures the desired semantics of the function: if n >
|s|, then the copy stops at the null terminator of s, which
is also copied to d, so d ends up with the same length as s.
However, if n < |s|, then the terminator is not copied to d,
so |d| > n.

As a second example, for bubbley and oddeveny, which
sort the input elements xo,...,xn and store the results in
Y0, - .-, YN, our inferred invariants prove the outputs yo and
y~ hold the smallest and largest elements of the input. How-
ever, we cannot show that y is a permutation of x because
that is expressible only under higher-order logics (our results
here are similar to those of purely static analyses [1]).

Table 1 shows that our method is efficient. We can infer
about 3000 disjunctive relations per minute, on average, and
validate about 300 per minute. The method is also effective.
We produced 264 non-redundant, proved-correct disjunctive
invariants, and those invariants were sufficient to statically
prove each program’s contract.

5.2 RQ2: Complex Invariants

We also evaluate our technique on more complex pro-
grams, such as those that are not classically inductive or use
nonlinear arithmetic, by studying the NLA (nonlinear arith-
metic) test suite [31]. The suite consists of 27 programs from
various sources collected by Rodriguez-Carbonell and Ka-
pur [5,6,37]. The programs are relatively small, on average
two loops of 20 lines of code each. However, they implement
nontrivial mathematical algorithms and are often used to
benchmark static analysis methods. For these programs, we
generate and check loop invariants of two polynomial forms:



Table 2: Nonlinear Arithmetic experimental results.

Prog | Loc Var Gen Tgen | Val kI Tya | Hoare

cohendv 2 6 152 26.2 7 14 8.2 v
divbin 2 5 96 37.7 8 15 8.7 -
manna 1 5 49  19.2 3 2 56 v
hard 2 6 107 14.2 11 4 9.2 —
sqrtl 1 4 27 25.3 3 1 43 v
dijkstra 2 5 61 30.7 8 6 10.9 -
freirel 1 3 25 225 2 0 22 v
freire2 1 4 35  26.0 3 1 5.1 v
cohencb 1 5 31 236 4 1 4.2 v
egedl 1 8 108  43.1 1 8 128 -
egcd2 2 10 209 60.8 8 12 14.6 v
egcd3 3 12 475 67.0 14 25 234 v
lem1 3 6 203 38.9 12 0 14.2 v
lem?2 1 6 52 149 1 10 0.9 v
prodbin 1 5 61 28.3 3 10 1.1 —
prod4br 1 6 42 9.6 4 7 86 v
fermatl 3 5 217 75.7 6 1 6.2 v
fermat2 1 5 70  25.8 2 0 5.2 v
knuth 1 8 113 57.1 4 6 24.6 v
geol 1 4 25 16.7 2 4 15 v
geo2 1 4 45  24.1 1 10 2.1 v
geo3 1 5 65 22.1 1 12 2.7 v
ps2 1 3 25 21.1 2 0 4.0 v
ps3 1 3 25 219 2 0 4.2 v
ps4 1 3 25 235 2 0 49 v
psd 1 3 24 24.9 2 0 74 v
ps6 1 3 25 25.0 2 0 69.5 v
total [ 2392 8259 | 118 149 266.3 | 22/27

nonlinear equations and linear max-plus inequalities among
program variables. We consider at most 200 generated terms
per polynomial equality, e.g., invariants up to degree five if
four variables are involved. The documented correctness as-
sertions for these 27 programs require nonlinear invariants,
mostly equalities among nonlinear polynomials.

Table 2 shows the results, in a format similar to that of Ta-
ble 1. The large number of candidate invariants generated—
over 80 per program, on average—highlights the expressive
power of our technique. The generation is slightly slower
than for the disjunctive benchmarks because these require
equation solving for large numbers of terms representing
nonlinear polynomials. However, our weak forms take an
order of magnitude less time than do the general equality
relations. The overall generation process remains efficient,
averaging thirty seconds per program.

Our hybrid approach is able to formally validate 118 of
those invariants, or 4.3 per program on average, proving
them correct and non-redundant. The validation is rapid
(0.1 seconds per candidate invariant, on average, compared
to 0.2 for the disjunctive benchmarks) but here shows its
reliance on the underlying SMT theorem prover. For 18
of these 27 programs, some of the theorem prover queries
issued caused the Z3 SMT solver to return an unknown error
or stop responding. This is likely due to the recent addition
of support for nonlinear arithmetic, and we reported these
errors to the Z3 developers. In the interim, however, such
candidate invariants must be rejected.

The kI column in Table 2 counts the number of invariants
that require k-induction to be proved or disproved. Sim-
ilarly, an additional 39 of the proved invariants required
considering discovered invariants as lemmas, and were not
otherwise maxK-inductive. The significant presence of in-

variants requiring k-induction or learned lemmas validates
the KIP architecture design choice.

Ultimately, the invariants generated and validated by our
technique can be used to statically prove the correctness of
22 of these 27 programs using Hoarse logic. Of the remain-
der, two require novel invariant forms, one requires invari-
ants that are not k-inductive, and two are correct but beyond
our current SMT solver. For the first type, divbin requires
the invariant k.2 = 2*, and our algorithm does not sup-
port exponential forms. The hard program also has similar
exponential invariants. For the second type, our dynamic al-
gorithm generates three non-linear equalities that precisely
capture egcdl’s semantics, and manual inspection verifies
that they are not k-inductive for any k, and thus KIP can-
not prove them. For the third type, our dynamic algorithm
generates invariants that precisely capture the semantics of
prodbin and dijkstra and KIP can process them, but the
backend SMT solver hangs instead of proving them (we have
manually verified that they are otherwise correct). Thus we
could prove two more programs with a better SMT solver,
two more programs with a better theorem prover architec-
ture, and could not prove the last without a new algorithm
for invariant generation.

6. RELATED WORK

Dynamic invariant analyses. Daikon [19] is a pop-
ular and influential dynamic invariant analysis that infers
candidate invariants using templates. Daikon comes with
a large list of invariant templates and returns those that
hold over a set of program traces. Daikon can use “split-
ting” conditions [18] to find disjunctive invariants such as
“if ¢ then a else b”. Our algorithm does not depend on split-
ting conditions and our max- and min-plus disjunctive in-
variants are more expressive than those currently supported
by Daikon.

Recently, Sharma et al. [39] proposed a machine-learning
based approach to find disjunctive invariants. Their method
operates on traces representing good and bad program states:
good traces are obtained by running the program on ran-
dom inputs and bad traces correspond to runs on which an
assertion or postcondition is violated. They use a proba-
bly approzimately correct machine learning model to find a
predicate, representing a candidate program invariant, that
separates the good and bad traces. For efficiency, they re-
strict attention to the octagon domain and search only for
predicates that are arbitrary boolean combinations of oc-
tagon inequalities. Finally, they use standard induction
technique to check the candidate invariants using Z3 [14].
While our method shares their focus on disjunctive invari-
ants, a key difference is that the strength of their results
depends strictly on existing annotated program assertions.
For example, in ex1, if the line assert(y==11) is not pro-
vided by the programmer then their method will only pro-
duce the trivial invariant True. By contrast, our approach
does not make such assumptions about the input program,
and in some sense the purpose of our approach is to generate
those assertions.

Hybrid approaches. Nimmer and Ernst integrated the
ESC/Java static checker framework [33] with Daikon, al-
lowing them to validate candidate invariants using a Hoare
logic verification approach. This work is very similar in mo-
tivation and architecture to ours. Key differences include
our detection of richer disjunctive invariants, our verification



with respect to full program correctness (“Rather than prov-
ing complete program correctness, ESC detects only certain
types of errors” [33, Sec. 2]), and our larger evaluation (our
system proves over four times as many non-redundant invari-
ants valid and considers over four times as many benchmark
kernels).

Static max-plus analyses. The static analysis work
of Allamigeon et al. [1] uses abstract interpretation to ap-
proximate program properties under the max- and min-plus
domains. In contrast to our work, which computes max-
plus formulas from dynamic traces, their method starts di-
rectly from a formula representing an initial approximation
of the program state space and gradually improves that ap-
proximation based on the program structure until a fixed
point is reached. As with other abstract interpretation ap-
proaches for inferring disjunctive invariants such as [36, 38],
their method uses an ad-hoc widening operator to ensure
termination.

The recent static analysis work of Kapur et al. [27] uses
quantifier elimination to find max invariants over pairs of
variables. Their method uses table look-ups to modify max
relations based on the program structures (e.g., to deter-
mine how the max relation is changed after an assignment
a = a+ 10). For scalability the approach restricts attention
to specific program constructs. For example, they only sup-
port analysis on assignments or guards that do not involve
multiplication.

A high-level difference between such techniques and our
work is that we focus on the efficient inference of invariants
from dynamic traces. More generally, we hypothesize that
the weak max and min forms introduced in this paper would
allow such static techniques to be practically applied to more
general classes of programs.

Uses of k-induction. The application of k-induction is
becoming increasingly popular for formulas that may not ad-
mit classic induction. Sheeran et al. applied k-induction to
verify hardware designs using SAT solvers [40]. The PKIND
model checker of Kahsai and Tinelli [25,26] uses k-induction
and SAT/SMT solvers to verify synchronous programs in the
Lustre language. Recently, Donaldson et al. [17] applied k-
induction to imperative programs with multiple loops. A
key distinction between our KIP architecture and these ap-
proaches is that none of them offer all four of the other
properties (SMT, lemma re-use, redundancy elimination and
parallelism) that we find critical for efficiently verifying large
numbers of candidate invariants over programs with complex
properties such as nonlinear arithmetic. However, we note
that the programs and candidate invariants learned in this
paper could serve as a benchmark suite for the evaluation
of such theorem provers (i.e., hundreds of valid and invalid
formulas involving nonlinear arithmetic, many of which are
k-inductive).

7. CONCLUSION

Program invariants are important for defect detection,
program verification, and automated repair. Existing ap-
proaches struggle with soundness and expressive power and
cannot learn disjunctive invariants. We propose a hybrid ap-
proach to invariant inference that finds complex invariants
dynamically and proves them statically.

We present the first dynamic algorithm to learn the max-
plus class of disjunctive invariants, allowing us to capture
conditional behavior. To do so, we reformulate the problem

of convex invariant detection in a non-standard max-plus
algebra. We gain expressive power with dual min-plus con-
straints, capturing if-and-only-if behavior.

Critically, we also define and infer a new class of weak
max- and min-plus invariants that retain useful expressive
power while requiring only polynomial complexity. To the
best of our knowledge, this is the first use of a restricted for
of max- or min-plus invariants.

These weak forms suggest new theoretical research direc-
tions for max- and min-plus algebras. Although we provide
the algorithm for computing weak relations given points, the
dual problem for computing extremal points given relations
remains open. The cost of computing general polyhedra in-
spired general research work on weaker abstract domains
(e.g., interval, box, zone and octagon) and formal logic [30].
We see the relationship between our weak max-plus form
and general max-plus as analogous to that between octagons
and general polyhedra (e.g., fixed coefficients, only one open
parameter, etc.), and hope that other max-plus researchers
may find our weak form somewhat as useful as polyhedra
practitioners have found octagon forms.

We also propose a static approach to invariant verifica-
tion based on iterative, parallel k-inductive SMT theorem
proving. Many program invariants are not classically induc-
tive, and k-induction allows us to prove them. Similarly, the
re-use of learned invariants as lemmas allows our system to
prove non-maxK-inductive invariants in practice. Our de-
sign’s explicit parallel structure is critical for performance.
By construction, our algorithm never overapproximates if
the real invariant is expressible in our system, and validating
each candidate against the program means that our system
never underapproximates: this approach helps address the
issue of spurious or incorrect invariants.

We evaluate our algorithm by extending the DIG frame-
work and considering difficult benchmark kernels involving
nonlinear arithmetic and abstract arrays. Our approach is
efficient and effective at finding and validating disjunctive,
non-linear and complex invariants. Ultimately we find and
verify invariants that are powerful enough to prove 36 of 41
programs correct using Hoare logic, taking two minutes per
program, on average, and producing no spurious answers.
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