
Inferring Java Security Policies through
Dynamic Sandboxing

Hajime Inoue
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131

hinoue@cs.unm.edu

Stephanie Forrest
Department of Computer Science

University of New Mexico
Albuquerque, NM 87131

forrest@cs.unm.edu

Abstract— Complex enterprise and server-level applica-
tions are often written in Java because of its reputation
for security. The Java policy language allows users to
specify very fine-grained and complex security policies.
However, this expressiveness makes it difficult to determine
the correct policy with respect to the principle of least
privilege. We describe a method for automatically learning
the minimum security policy called dynamic sandboxing. A
minimal sandbox (security policy) is inferred by observing
program execution and expressed in the standard Java
policy language. The minimum policy stops Java exploits
and learning the policy does not cripple performance,
allowing applications to run normally during training.

Keywords

Computer security, security policy, policy inference, Java,
policy language, principle of least privilege.

I. I NTRODUCTION

Java has become the platform of choice for enterprise
and server level applications, in part because of its
security features. Java provides robust security mecha-
nisms for cryptography, verification, and access control.
In early Java versions, security policies were specified
by implementing the Java security classes themselves.
Since Java 1.2, however, Java has supported a special-
purpose language for specifying security policies. This
paper describes a technique for automatically inferring
the policy for an application, simply by observing its
behavior during execution. The minimal sandbox (most
restrictive security policy that allows the application
to run) is learned by our method and expressed in
the standard human readable Java policy language. We
call the general approach of inferring sandbox policy
through learningdynamic sandboxing. The paper de-
scribes dynamic sandboxing, discusses its advantages,
and compares its strengths and weaknesses with other
related approaches.

The Principle of Least Privilege (or Least Authority)
was first described by Saltzer and Schroeder in “The

Protection of Information in Computer Systems” [21]
and continues to be a prominent principle of computer
security. It states that “programs should operate using the
least set of privileges necessary to complete the job.”
This is useful because it limits the amount of damage
that can occur due to malicious subversion or through
simple bugs.

There is a tradeoff, however, between the ease of
stating a policy and its granularity. A binary policy (all-
or-nothing access) is easy to state but is not a good
representation of the security requirements of most appli-
cations. A more precise description would necessarily be
more complex, following the evolution of the Java stan-
dard. Its original security model divided programs into
applets and applications. Applets had a highly restrictive
policy, while applications had no restrictions at all.
Later versions of Java introduced finer grained security
models to allow a closer fit between requirements and
privileges. Predictably, the expressiveness of the current
policy language makes it difficult to understand the exact
privileges an application requires.

Indeed, Java’s current security mechanism supports
highly precise policies [12]. The sandbox supports al-
most any imaginable policy if one reimplements the
security classes, while the policy language is very ex-
pressive in terms of the granularity of resources it can
represent, although it does not support arbitrary algo-
rithms. The policy language is essentially a mapping of
resources to code. A sandbox is configured by granting
specific Permissions to code. The ability to execute
a protected operation depends on the set of granted
Permissions and other details such as the origin of the
code and the identity, if any, of its digital signers.1

A collection of classes, signed or not, constitutes a
“protection domain,” the basic unit of Java security.

1“Permission” is capitalized when we refer to subclasses of the Java
class java.security.Permission.



The Protection Domain itself can be viewed as a
sandbox, since each Domain has an attached set of
Permissions, which constitutes its policy. Domains can
interact, but protected actions are allowed if all Domains
include the relevant Permission. A common case of this
occurs when application code calls standard library code,
for example, when manipulating files. In this case, there
are two domains: the system domain, which includes all
the standard libraries, and the application domain. The
application domain can open a file if it is given that
permission—the system domain is given all permissions.
Thus Java platform security can be viewed as a set of
interacting sandboxes.

There are several different subclasses of Permission.
Each can be constructed with a number of names denot-
ing a specific operation. For some the name indicates the
permission, others are annotated with a set of allowed
actions. For example. The permission specified by

permission java.io.FilePermission
"/etc/passwd", "read";

denotes the ability to read the password file. Clearly,
a Protection Domain’s policy can be fine-grained. The
default Java security policy file is 48 lines long including
comments.

Java’s security rests on its ability to verify bytecode.
Java bytecode is a typed assembly language that allows
the Virtual Machine (VM) to determine the types of all
operands. That, combined with runtime checks, allows
the VM to prevent bad casts and buffer overflows (see
ref. [12] for a detailed description of Java’s security
mechanisms.). However, even with this infrastructure,
many vulnerabilities have been reported, including those
found by the Princeton Secure Internet Programming
Team [5] and by individual vendors [2], [1]. Java’s se-
curity faults can be classified into three main categories:

• VM Bugs Early Java VMs had several verifier
errors, which allowed bad casts, leading to potential
subversion of the VM. This class of bugs has
declined in recent VMs, because Java bytecode
verification is now well understood and the imple-
mentations are mature.

• Errors in the Standard Libraries Sensitive opera-
tions need to be protected by checking Permissions.
If these checks are omitted, then applications can
potentially access resources that are denied by their
policy. These are a growing problem because the
size of the Java libraries is increasing quickly (See
Figure 1).

• Policy Misconfiguration Reports of incorrect poli-
cies are infrequent due to their site specific nature.
Security policies are necessarily tailored to the

0

10

20

30

40

50

60

1.0.2 1.1.1 1.2.2 1.3.1 1.4.2 1.5.0

Java Version

S
iz

e
 i

n
 M

B

Fig. 1. The Java standard libraries are growing with each release. Each
resource within the library must be properly protected or a malicious
program may exploit it.

individual application and host. However, there have
been some reports of sandbox misconfiguration for
applets [3]. Policy misconfiguration is likely to be a
continuing problem, as long as they are configured
manually. Like configuring network firewalls, Java
security policy specification requires the ability
to integrate knowledge of the host, network, and
application.

We believe that specifying a policy in accordance
with the principle of least privilege is difficult for even
moderately complicated Java programs and will become
more difficult as additional Permissions are added. To-
day, even specifying a reasonably common policy seems
too complicated. For example, Sun’s VMs by default do
not initialize the Security Manager [12].

Inferring the minimum security policy is useful. In
earlier work, we showed that a minimal sandbox was
effective when Java method signatures were treated as
the resource to be controlled [16]. The system learned
which methods were needed for an application to run
under normal conditions. It then restricted the application
program to using only those methods and was able
to prevent security violations, even when the faults
were present but unexercised during training. This paper
extends that work beyond method signatures by treating
Domains and Permissions as features.

In the remainder of the paper, we first describe our
method for learning minimal policies and evaluate its
efficacy and performance. We then discuss the results,
comparing them with our previous results and other
related work.

II. POLICY INFERENCE

Our goal is to automatically infer (learn) the minimum
required permissions for each required domain in a given



public void checkPermission(Permission p)
{

if (recursive()) return;
if (training)

foreach(ProtectionDomain d)
if (!Policy.getPolicy().implies(d, p))
{

writePolicy(d, p);
Policy.getPolicy.refresh();

}
super.checkPermission(perm);

}

Fig. 2. Pseudocode for thecheckPermission() method of
SecurityManager . If the check call is initiated within this method,
return. Otherwise, if training is activated, then add the policy to each
protection domain, rewrite the policy file, and refresh the policy. Then
check the Permission.

application program. We do this empirically during a
training phase in which we run the program and record
all Permissions that are not implied by the current policy.
We start with a policy that grants no permissions. We
then add those Permissions to the current policy in the
policy language provided by Java.2 The policy file at the
end of the run is the record of all Permissions required
for that run. In subsequent runs, the policy file is used
to enforce the inferred sandbox.

We implemented Dynamic Sandboxing
using a custom Security Manager to log
all calls to checkPermission() . Within
checkPermission() , we wrote a private method to
determine if the required Permission is implied by the
current policy. The individualcheck methods that do
not take Permission arguments construct Permissions
internally with the appropriate arguments and then
call checkPermission() directly. Recursive calls,
required for determining whether a Permission is
implied by a domain, are recognized by walking
the execution stack and then suppressed. Calls to
checkPermission() use the appropriate execution
context if it is provided.If it is not provided, we add
the Permission to each Protection Domain in the
current execution context, rewrite the policy file, and
refresh the policy. Figure 2 presents the pseudocode for
checkPermission() .

The implementation required two new classes for
training: the custom Security Manager and an application
launcher to install the Security Manager. Subsequent
runs require no special code. Training runs are initiated
with the command:

java
-Djava.security.policy= <application> .policy

2We ignore the differences between signed and unsigned code for
these experiments. For signed code, we could simply recognize the
signatories and output them with the policy.

DSLauncher <application>

and runs with the inferred policy are invoked the usual
way:

java -Djava.security.manager
-Djava.security.policy= <application> .policy

<application>

where<application> is the name of the class to be
executed. Arguments to the class are appended to the end
in the usual way. The policy file need not exist because
all necessary Permissions are inferred automatically and
added to the policy file. If the policy file exists, the
system policy is initialized with that policy. This is
helpful in tuning existing policies.

A. Experiments

To be practical, the implementation needs to be effec-
tive at stopping attacks, experience few false positives,
and be efficient to run. First, we explore its effectiveness
at stopping attacks, describing experiments against four
exploits. Next we discuss false positives, and finally we
report timing runs against the SPEC Java benchmark
suite to assess efficiency.

1) Exploits: We tested the Dynamic Sandbox against
four exploits: a modified form ofStrangeBrew [18],
[25], BeanHive [26], Port25 [29], and HttpTrojan ,
which we developed ourselves. The original exploit for
StrangeBrew does not function for Java versions later
than 1.0, and we do not have source copies of BeanHive
and Port25. We implemented our own versions of these
three exploits based on their published descriptions.

StrangeBrew was the first virus targetting Java appli-
cations and is still the only effective one released into the
wild. When invoked, StrangeBrew searches its current
directory for uninfected class files. For each uninfected
class, it adds a copy of itself to the class and modifies
the parameter-less constructor to call itself. It then pads
the length of the file by inserting null operations until it
is a multiple of 101 so it can identify a class’s infection
status without opening it.

BeanHive was the second virus found for Java. It is
interesting because most of its code is not stored in
the infected.class files. Instead, a small amount of
virus code downloads helper classes that enable the virus
to search through the current directory, infecting any
uninfected class files. It adds the infection stub to the
end of all constructors. We wrote a reliable version of
BeanHive using the Apache BCEL libraries [4].

Port25 and HttpTrojan are not viruses. Port25 is a
short class file that tests whether it can connect to an
outside server. In effect, it probes the current policy to
determine if it is constrained by the applet sandbox. Its



most likely role would be as part of a trojan because
it performs no function other than the probe. The Http-
Trojan is an exploit we developed. It is a simple HTTP
server that has an undocumented backdoor, which allows
the user to execute arbitrary commands on the remote
machine.

We tested the first three exploits with a small host
program that either reads or writes to a specified file.
A sample workload was generated that reads and writes
several files in the current directory, reads /etc/passwd,
and reads and writes some files to /tmp. We generated a
policy file for the workload and confirmed that no policy
violations occur when running identical workloads. Then
an infected version of the host program was run using
the same inputs used during training. All experiments
used Sun’s Java 1.4.2.

The Dynamic Sandbox detected and stopped policy
violations of three out of the four exploits. StrangeBrew
was the only failure, and it failed because StrangeBrew’s
behavior is so unambitious—it runs and modifies code
only in the current directory. If the virus were more
comprehensive (e.g., by ensuring that its code is called in
other functions or by recursively searching the directory
structure for Java code) then the dynamic sandbox would
detect a policy violation.

In BeanHive, the Dynamic Sandbox identified the
creation of the URLClassLoader as a policy violation.
Because it could not download its infection code, Bean-
Hive failed. Similarly, Port25 failed because the inferred
policy does not include the permission to resolve the
www.netscape.com address.

HttpTrojan is perhaps the most interesting of the
exploits, because it is a fully functional server appli-
cation that includes a large amount of network and file
manipulation. We trained it by browsing a series of pages
from the authors’ web sites, making sure that we hit all
usual error states (pages not found, etc.). When tested,
the backdoor code failed to execute because the inferred
policy denied all files permission to execute.

2) False Positives and Generalization:False positives
are an important issue for any scheme that is trained
on finite samples of behavior. A false positive in this
context would correspond to a legitimate behavior of
the program that violates the minimal security policy.
In particular, we are concerned about false positives
that arise from insufficient training examples or from
configuration changes that necessitate revising the policy.
The host application used for the first three test exploits
required no tuning (zero false positives) because it only
manipulated files in a small number of directories.

The more realistic exploit, HttpTrojan, did require
tuning for false positives. In its current implementation,

the Dynamic Sandbox grants file permissions by file-
name and action. Thus, the training runs must browse all
files that will be available during testing. For websites
containing many files this could become cumbersome,
so we manually edited the policy file to permit access to
any file or directory within a specified base directory.
Because the sandbox is expressed in the Java policy
language, it is straightforward to make these changes.
Similarly, the sandbox assigns network permissions by
IP address and port. We relaxed the permissions to
include all ports above 1024 and all IP addresses within
our university. We foresee that similar tuning would
likely be required for many large applications.

Tuning the policy to remove false positives is often a
matter of generalization. In the HttpTrojan, we noticed
that Permissions to most of the files used the same
base directory so we generalized the permission to
allow reads to all files in that directory. We similarly
generalized the ports and IP addresses. Although we did
this manually, it would be easy to automate the process.
In the future, simple heuristics for each type could be
defined to determine if sets of Permissions should be
coalesced into more general ones. To date, we have
implemented generalization heuristics for Socket and
File permissions and verified that they work. In addition
to reducing training times, generalization could also be
used to minimize the size of policy files. A network
application that explicitly listed every port and incoming
IP address would incur significant performance penalties.
Thus, generalization can be used to prevent the size of
the policy file from exploding during training.

Unfortunately, it is difficult to generalize the general-
ization. Heuristics must be tailored for each Permission
type and even then there is no guarantee that the heuristic
is sound. The policy languages we discuss in Section III
were designed so that the policy could be mechanically
analyzed, but Java’s policy language does not allow that.
The advantage of writing a human-readable policy comes
from the necessity of occasionally manually editing
policy code.

False positives arise in part from the Principle of
Least Privilege and are not specific to our system (overly
restrictive firewalls are a common example). Anytime a
policy creates restrictions, especially one that is learned
empirically, there is a risk of false positives. They will
be rare when the policy is much less restrictive than the
needs of the application. We believe that the convenience
and protection of Dynamic Sandboxing is a reasonable
tradeoff for false positives that can be repaired through
generalization or other heuristics.



0

5

10

15

20

25

30

35

40

45

50

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
13

_j
av

ac

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

Benchmark

R
u

n
n

in
g

 t
im

e
 (

se
cs

)

No Security
Testing
Training

Fig. 3. The performance of the SPEC JVM98 benchmarks under
no SecurityManager, while generating a policy (training), and running
with that policy (testing).

3) Performance: We ran three sets of experiments
using the SPEC JVM98 benchmark suite [24]. We report
three sets of numbers for reach benchmark in the suite:
no security, training, and testing. No security times the
application running without a Security Manager (the Java
default). Training measures the total application time
when runs are inferring a policy (without generalization
heuristics). Testing measures the total application time
during runs in which the policy is enforced. Experiments
were conducted on a PC running Linux 2.4.21 with a
1.7Ghz Xeon processor and 1 GB of memory.

Figure 3 shows the running times of each benchmark
under the thee different conditions. The performance
penalty for running with our the sandbox in place is
modest, averaging about 2%. This is notable because
our inferred policies are typically much longer than the
standard Java policy. The penalty for training is greater,
although this is a one-time cost. It ranges from 4% for
db to 267% for javac and averages 34% (this shrinks
to 24% if javac is excluded.) The training time arises
from computations to keep the profile parsimonious
and by writing and then reading the file whenever a
Permission is added. More efficient training regimes
may be possible, although writing out the policy as it
changes could benefit the administrator; he or she could
decide what tuning or generalization is necessary as the
application is running.

We conclude that performance is not a major issue.
Training security policies for applications can be viewed
as part of the installation and configuration process.
Running with security enabled produces few perfor-
mance penalties at runtime. The training cost, while
significant, would likely be reasonable for most of the
applications we envision, which are often I/O bound. In

future work, we plan to investigate optimizations to the
training procedure.

B. Comparison to the Original Dynamic Sandbox

In previous work we used Dynamic Sandboxing to
study other features of execution [16], [17]. For example,
we studied methods, method sequences, object types, and
object lifetimes. These features are collected by most
modern VM’s, for example, to control the level of opti-
mization or the type of garbage collection algorithm. In
the context of security, Dynamic Sandboxing by methods
performs similarly to using Permissions. However, if
methods are included as a sandbox resource, then the
StrangeBrew virus is blocked as well as the other three
exploits.

There are other differences in the two systems’ be-
havior, however. First, our earlier system only sand-
boxed one resource, methods, while our current work
includes all the resources that are explicitly Permission
checked. Second, our previous system required VM
modifications; it could not be implemented in pure
Java without significant performance penalties. Those
modifications provided benefits, however. Our current
system is vulnerable to VM bugs and some library
bugs. Dynamic Sandboxing by methods is orthogonal
to the standard security apparatus and prevents many of
those faults.3 Finally, our current system produces short,
human readable profiles of normal behavior. The older
system used large files of method signatures placement
in the profile had a large impact on performance.

We believe that the two systems are complimentary.
Each is able to prevent security faults the other would
tolerate. Together, they cover the entire space of security
faults: VM bugs, library bugs, and policy bugs.

III. R ELATED WORK

Much of the previous research on Java security has
matured and been incorporated into the Java platform.
The integration of type safety research with the stack
introspection work of Wallach [30] developed into the
current scheme of interacting protection domains [13].
These improvements make Java highly resistant to the
types of security vulnerabilities, like buffer overflows,
that are seen in other software. However, Java still suffers
from vulnerabilities outlined in Section I.

Two active areas of computer security are directly rel-
evant to this paper: languages and reasoning for policies
and anomaly detection.

3Dynamic Sandboxing by methods ensures that methods not listed in
the normal profile are never compiled and thus can never be executed.
This is “policy as mechanism” [6]. A set of mechanisms that allows a
flexible policy, like Java provides, is more likely to be subverted.



There are several general policy languages that have
been proposed and several that are in use. Some ex-
amples are KAoS [7], Ponder [11], Rei [19], and
Condell’s SPSL [10]. In a paper comparing some of
these languages, Tonti and his coauthors describe five
features of policy languages: expressiveness, simplicity,
enforceability, scalability, and analyzability [27]. Using
these criteria, the Java policy language is not a general
language, and thus succeeds brilliantly in expressiveness,
simplicity, enforceability and scalability, because it is
tailored directly to the Java platform.4 Java’s language
fails in analyzability because Permissions are not distinct
sets, making it difficult to reason about; some Permis-
sions imply others and this information is available only
within the bytecode itself.

There are other tools that learn policies. Configuring
firewalls is in many ways analogous to configuring Java
security policy and there are several tools available.
A good example is a system by Burns [8]. There is
at least one other tool, SPECTRE, for dynamically
inferring security policies and specifying that policy in a
standard language [22]. Its inference policies are specific
to web services, however. Lam and Chiueh describe a
system calledPaid which limits application behavior to
a statically calculated system call sequences [9]. They
refer to this as “Automatic Extraction” of sandboxing
policy. Its approach is more similar to other host-based
anomaly detection systems than to our approach. Their
system protects a new resource, system call-order, and
then infers a policy. Our system outputs a standard policy
file for resources that are already protected. More similar
to our system is Naumovich’s work on consistency in
J2EE security policies [20]. They statically analyze the
methods invoked by different roles (groups of users) to
suggest inconsistencies in policy. J2EE policies are in a
different policy language (XML) and are converted to
Java policies automatically. Their approach addresses a
different level of security and is based on source analysis
rather than on observed behavior.

Although it is not usually associated with security
policy research, anomaly detection is in fact a way to
learn or infer policies. In anomaly detection, a set of
specified features of execution are examined during a
program’s run. The values of these features are stored
as a profile of normal behavior. This is called training.
If these values are different during subsequent runs, the
run is deemed anomalous. The profile of normal behavior
embodies the inferred security policy. Anomaly detection

4The performance of Java’s security is debatable. Applications pay a
measurable performance cost for security. Improving the performance
of the security mechanisms has been an active research area but is
outside the scope of this paper [13], [28].

is rarely perfect, and false positives can be an issue.
These are actions that should be allowed but were not
learned during training. Thus, it is usually the case that
inferred policies are too restrictive, although in a security
setting this is generally preferable to policies that are too
loose.

There are several anomaly detection systems written
in Java, but few are aimed at detecting anomalies within
Java itself. The most interesting one is DIDUCE, a
debugging aid [14]. It is useful strictly for development
since performance is very poor. Our group has studied
anomaly detection systems in a variety of setting, in-
cluding operating systems[23], TCP networks [15], and
the Java VM [16]. As we described above, our first
Dynamic Sandboxing system inferred a security policy
for a single resource: methods. The work presented here
can be viewed as a way for our algorithm to view several
different resources.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we described the first practical system to
infer minimum security policies for Java applications.
We showed that it is both effective and efficient at
deriving and enforcing policies. These policies, while
not perfect, form a useful basis for hand-tuning. Editing
policies is familar to administrators because the policy
format is the Java standard. Our implementation of
Dynamic Sandboxing uses Permissions as the feature
from which to construct the sandbox. The work is part
of a larger, ongoing exploration of execution features
available within virtual machines. We believe that more
research will reveal some of these features, like methods
were, to be useful in novel applications for optimization
or security.

Our implementation is still at the prototype stage, and
we think the performance of the custom security man-
ager can be improved significantly. Generalizations in
our system could also be improved and better integrated
into the policy inference mechanism.

Beyond these incremental improvements, we see two
interesting additions. First, we are interested in adding
the ability to explicitly state Permissions that cannot be
granted. This could be stated in ananti-policy that uses
the usual policy syntax. The Dynamic Sandbox Security
Manager would refuse to add these Permissions during
training and inform the operator of a fault. Sun has
contemplated adding such a mechanism but has thus far
refused due to its greater complexity [12]. Second, we
would like to extend this work beyond Java. Microsoft’s
.NET virtual machine includes a security infrastructure
similar to Java’s. Should .NET become ubiquitous, as it



should with the release of Longhorn, a similar system to
the one developed here would be useful.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support of the Na-
tional Science Foundation (grant ANIR-9986555, CCR-
0219587, CCR-0085792, and EIA-0218262), the De-
fense Advanced Research Projects Agency (grant AGR
F30602-00-2-0584), the Intel Corporation, and the Santa
Fe Institute.

We thank the Adaptive Computation and OAL groups
at the University of New Mexico for help in developing
and refining these ideas.

REFERENCES

[1] Chronology of security-related bugs and issues.
http://java.sun.com/sfaq/chronology.html.

[2] Microsoft security home. http://www.microsoft.com/security/.

[3] Ms02-069: Flaw in microsoft vm may compromise windows.
http://support.microsoft.com/kb/810030/EN-US/, 2002.

[4] Apache. Bcel - byte code engineering library.
http://jakarta.apache.org/bcel/manual.html.

[5] Andrew Appel and Edward Felton. Princeton secure internet
programming. http://www.cs.princeton.edu/sip/history.

[6] Gabriela Barrantes.Automated Methods for Creating Diversity
in Computer Systems. PhD thesis, University of New Mexico,
2005.

[7] J.M. Bradshaw, S. Dutfield, P. Benoit, and J.D. Woolley.Software
Agents, chapter KAoS: Towards an Industrial Strength Generic
Agent Architecture, pages 375–418. AAAI Press/MIT Press,
1997.

[8] J. Burns, A. Cheng, P. Gurung, S. Rajagopalan, P. Rao, D. Rosen-
bluth, A. V. Surendran, and D. M. Martin Jr. Automatic
management of network security policy. InDARPA Informa-
tion Survivability Conference and Exposition (DISCEX II ’01),
volume 2, June 2001.

[9] Lap chung Lam and Tzi cker Chiueh. Automatic extraction of
accurate application-specific sandboxing policy. InProceedings
of the Seventh International Symposium on Recent Advances in
Intrusion Detection, September 2004.

[10] M. Condell, C. Lynn, and J. K. Zhao. Security policy specifica-
tion language (spsl). Internet Draft.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder
policy specification language. InProceedings of the Workshop on
Policies for Distributed Systems and Networks (POLICY 2001),
Bristol, UK, 2001. Springer-Verlag.

[12] Li Gong, Gary Ellison, and Mary Dageforde.Inside Java 2 Plat-
form Security: Architecture, API Design, and Implementation.
Addison-Wesley, 2 edition, 1993.

[13] Li Gong and Roland Schemers. Implementing protection domains
in java development kit 1.2. InProceedings of the Internet Society
Symposium on Network and Distributed System Security, San
Diego, California, March 1998. Internet Society.

[14] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. InProceedings of the 24th
International Conference on Software Engineering, May 2002.

[15] Steve Hofmeyr. An Immunological Model of Distributed De-
tection and its Application to Computer Security. PhD thesis,
University of New Mexico, 1999.

[16] Hajime Inoue and Stephanie Forrest. Anomaly intrusion detection
in dynamic execution environments. InProceedings of the New
Security Paradigms Workshop 2002. ACM Press, 2002.

[17] Hajime Inoue, Darko Stefanovic, and Stephanie Forrest. On
the prediction of java object lifetimes. Submitted to IEEE
Transactions on Computers, 2004.

[18] Landing Camel Intl. Codebreakers-4.
http://www.codebreakers.org, 1998.

[19] L. Kagal. Rei: A policy language for the me-centric project (hpl-
2002-070). Technical report, HP Labs, 2002.

[20] Gleb Naumovich and Paolina Centonze. Static analysis of role-
based access control in j2ee applications.SIGSOFT Softw. Eng.
Notes, 29(5):1–10, 2004.

[21] Jerome H. Saltzer and Michael D. Schroeder. The protection of
information in computer systems. InProceedings of the IEEE,
volume 63(9), pages 1278–1308, September 1975.

[22] D. Scott and R. Sharp. Spectre: A tool for inferring, specify-
ing, and enforcing web-security. Technical report, Cambridge
University, 2002.

[23] Anil Somayaji. Operating System Stability and Security through
Process Homeostasis. PhD thesis, University of New Mexico,
2002.

[24] Standard Performance Evaluation Corporation.SPECjvm98 Doc-
umentation, release 1.03 edition, March 1999.

[25] Symantec. Security response: Javaapp.strangebrew.
http://securityresponse.symantec.com/avcenter/
venc/data/javaapp.strangebrew.html.

[26] Symantec. Security response: Java.beanhive.
http://securityresponse.symantec.com/avcenter/
venc/data/java.beanhive.html.

[27] G. Tonti, J. M. Bradshaw, R. Jeffers, R. Montanari, N. Suri, and
A Uszok. Semantic web languages for policy representation and
reasoning: A comparison of kaos, rei, and ponder. InProceedings
of the International Semantic Web Conference (ISWC 03), Sanibel
Island, Florida, 2003.

[28] Dana Triplett. Spotlight on java performance:
Distinguished engineer robert berry highlights key areas
of research and development at ibm. http://www-
106.ibm.com/developerworks/java/library/j-berry/, 2001.

[29] VirusList.com. not-a-virus: Javaclass.port25.
http://www.viruslist.com/en/viruses/encyclopedia?
virusid=62347.

[30] D. Wallach, D. Bafanz, D. Dean, and E. Felten. Extensible
Security Architecture for Java. InProc. 16th ACM SIGOPS Symp.
on Operating Systems Principles, volume 31:5, pages 116–128,
Saint Malo, France, 1997.


