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John H. Holland’s general theories of adaptive 
processes apply across biological, cognitive, 
social, and computational systems. 

BY STEPHANIE FORREST AND MELANIE MITCHELL 

IN AUGUST 2015,  Professor John H. Holland passed away 
in Ann Arbor, MI, where he had served on the University 
of Michigan faculty for more than 50 years. John, as he 
was known universally to his colleagues and students, 
leaves behind a long legacy of intellectual achievements. 

As a descendant of the cybernetics era, he was 
influenced by the work of John von Neumann, Norbert 
Wiener, W. Ross Ashby, and Alan Turing, all of whom 
viewed computation as a broad, interdisciplinary 
enterprise. Holland thus became an early proponent 
of interdisciplinary approaches to computer science 
and an active evangelist of what is now called 
computational thinking, reaching out enthusiastically 
to psychologists, economists, physicists, linguists, 
philosophers, and pretty much anyone he came in 
contact with. As a result, even though he received what 
was arguably one of the world’s first computer science 
Ph.D. degrees in 1959,23 his contributions are 

sometimes better known outside com-
puter science than within. 

Holland is best known for his inven-
tion of genetic algorithms (GAs), a fam-
ily of search and optimization methods 
inspired by biological evolution. Since 
their invention in the 1960s, GAs have 
inspired many related methods and 
led to the thriving field of evolutionary 
computation, with widespread scien-
tific and commercial applications. Al-
though the mechanisms and applica-
tions of GAs are well known, they were 
only one offshoot of Holland’s broader 
motivation—to develop a general the-
ory of adaptation in complex systems. 

Here, we consider this larger frame-
work, sketching the recurring themes 
that were central to Holland’s theory 
of adaptive systems: discovery and dy-
namics in adaptive search; internal 
models and prediction; exploratory 
modeling; and universal properties of 
complex adaptive systems. 

Discovery and Dynamics 
in Adaptive Search 
Holland’s goal of developing a general 
theory of adaptation was spurred by 
both his early work on computer mod-
els of Hebbian learning25 and his read-
ing of Ronald Fisher’s classic book, The 
Genetical Theory of Natural Selection, 
which integrated genetics with Dar-
winian selection.8 As he read further in 
evolutionary biology, economics, game 
theory, and control theory, Holland 
recognized that adaptation is central to 

Adaptive 
Computation: 
The Multidisciplinary 
Legacy of  
John H. Holland 

 key insights
 ! Adaptation is an open-ended dynamic 

process involving populations of 
agents operating in perpetually novel 
environments, continually changing  
their behavior to improve performance 
and enhance their chance of survival. 

 ! Adaptive systems create, update,  
and use internal models of their 
environment to make predictions; 
successful models create valid 
homomorphisms of their environment. 

 ! Exploratory models of complex adaptive 
systems lead to insights about essential 
mechanisms and principles, a use of 
modeling that is different from simply 
making accurate predictions. 
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all of these fields; they all concern pop-
ulations of agents that must continual-
ly obtain information from uncertain, 
changing environments and use it to 
improve performance and enhance the 
chance of survival. 

Holland also recognized that ad-
aptation must be continual and open 
ended. In his view, adaptive systems 
never achieve a state of equilibrium or 
final “optimum” configuration. This 
emphasis on open-ended, non-equi-
librium dynamics was in stark contrast 
with the mainstream approach (at the 
time) in all these fields—the belief that 
solving for stable equilibrium dynam-
ics was the scientific goal. Holland’s 
contrary view was that a system in sta-
ble equilibrium is essentially dead. 

Underlying Holland’s theory of ad-
aptation are the following core ideas: 

Populations, sampling, and implicit 
parallelism. Evolution is a form of 
search that leverages statistics to di-
rect population dynamics. Initially, the 
population is an independent sample 
of many individuals (from the space 
of all possible individuals) and over 
time the sample is increasingly biased 
toward the high-fitness regions of the 
search space. In addition, the popula-
tion can be viewed as an implicit sam-
ple of the much larger space of traits 
exhibited by those individuals. Hol-
land termed this implicit large-scale 
sampling of traits “implicit parallel-
ism.” Evolutionary dynamics biases 
these samples over time toward high-
fitness regions of the search space.

Building blocks and recombination. 
In a population undergoing adapta-
tion, individuals can be decomposed 
into building blocks—sets of traits that 
are the evolutionary “atoms” of an indi-
vidual’s fitness or performance. (As an 
example from biology, Holland often 
mentioned the Krebs cycle, a core cel-
lular metabolic pathway that is highly 
conserved across living systems.) Suc-
cessful individuals are discovered in 
stages, first by finding useful building 
blocks through stochastic sampling, 
and over time recombining them to 
create higher-fitness individuals out of 

more complex building blocks. 
Exploitation vs. exploration. Success-

ful adaptation requires maintaining a 
balance between exploitation, in which 
successful building blocks propagate 
in a population, and exploration, in 
which existing building blocks are re-
combined or mutated in new ways. 

Inspired by Bellman3 and others, 
Holland formalized the exploitation-
vs.-exploration trade-off as an ideal-
ized “two-armed bandit” problem. 
Given a slot machine with two arms, 
each of which has an unknown payoff 
probability, how should you allocate 
trials (pulls) between the arms so as to 
maximize your total payoff? Holland 
argued that the optimal strategy allo-
cates trials to the observed best arm at 

a slightly higher rate than an exponen-
tial function of the trials allocated to 
the observed worse arm.11,12 

Further, Holland showed that in 
populations undergoing adaptation, 
building blocks are analogous to arms 
on a multi-armed bandit. Evaluating 
an individual in an environment is 
analogous to pulling selected arms on 
a multi-armed bandit, where the arms 
correspond to each of the building 
blocks making up that individual. 

The question of balancing exploi-
tation and exploration—how to opti-
mally allocate trials to different arms 
based on their observed payoffs—now 
becomes the question of how to sam-
ple optimally in the vast space of pos-
sible building blocks, based on their 
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environment to enhance survival. The 
key learning elements of this method, 
the “bucket-brigade” algorithm, com-
bined with a genetic algorithm, pre-
saged many of the ideas in modern 
reinforcement learning, notably the 
temporal-difference methods intro-
duced by Sutton and Barto.28 

Holland’s inspiration for classifier 
systems came from several different 
disciplines, including Hebbian learn-
ing, artificial intelligence, evolution-
ary biology, economics, psychology, 
and control theory. Knowledge rep-
resentation in the form of a popula-
tion of “if-then” rules was a natural 
choice due to its popularity in AI at 
the time, as well as Holland’s early 
work on modeling Hebbian cell as-
semblies: “In Hebb’s view, a cell as-
sembly makes a simple statement: If 
such and such an event occurs, then 
I will fire for a while at a high rate.”29 
The if-then rules, when activated, 
compete to post their results on a 
shared “message list,” serving as the 
system’s short-term memory, again 
inspired by Hebb’s work, as well as 
by AI blackboard systems of the day. 
Unlike blackboard systems, however, 
new rules are generated automatically 
in a trial-and-error fashion, and can 
be selected and recombined by a ge-
netic algorithm. 

Successful rules are strengthened 
over time if their predictions lead to 
positive rewards from the environment 
(and weakened otherwise) through a 
credit-assignment method called the 
bucket-brigade algorithm, in which 
rules gaining rewards from the envi-
ronment or from other rules, transfer 
some of their gains to earlier-firing 
“stage-setting” rules that set up the 
conditions for the eventual reward. 
Holland credited Arthur Samuel’s pio-
neering work on machine learning ap-
plied to checkers26 as a key inspiration 
for these ideas. 

Holland was primarily interested in 
how the two learning mechanisms—
discovery of new rules and apportion-
ing credit to existing rules—could work 
together to create useful default hierar-
chies of rules. He emphasized that the 
competition inherent in the learning 
and action mechanisms would allow 
the system to adapt to a continually 
changing environment without los-
ing what it had learned in the past. 

estimated contribution to fitness. 
Evolution deals in populations of indi-
viduals, of course, not building blocks. 
There is no explicit mechanism that 
keeps statistics on how building blocks 
contribute to fitness. Holland’s central 
idea here is that nearly optimal build-
ing-block sampling occurs implicitly, 
as an emergent property of evolution-
ary population dynamics. 

Holland’s early papers10,11 and his 
influential 1975 book Adaptation in 
Natural and Artificial Systems12 devel-
oped a general, formal setting in which 
these ideas could be expressed mathe-
matically. It was this formalization that 
led to the invention of genetic algo-
rithms that featured stochastic popula-
tion-based search, as well as crossover 
between individuals as a critical op-
eration that allows successful building 
blocks to be recombined and tested in 
new contexts. 

However, Holland’s aim was more 
general than a new class of algorithms. 
He aspired to develop an interdisci-
plinary theory of adaptation, one that 
would inform, say, biology as much as 
computer science.5 The later, success-
ful application of genetic algorithms 
to real-world optimization and learn-
ing tasks was, for Holland, just icing 
on the cake. His broader view of adap-
tation has inspired many and engen-
dered criticism from others, leading to 
spirited intellectual debates and con-
troversies. Most controversial is the ex-
tent to which it can be demonstrated, 
either empirically or mathematically, 
that the behavior of adaptive systems 
is actually governed by Holland’s pro-
posed principles. Regardless of one’s 
position on this question, the ideas 
are compelling and provide a set of 
unifying concepts for thinking about 
adaptation. 

Internal Models and Prediction 
Internal models are central to Hol-
land’s theory of adaptive systems. He 
posited that all adaptive systems create 
and use internal models to prosper in 
the face of “perpetual novelty.” 

Models can be tacit and learned 
over evolutionary time, as in the case of 
bacteria swimming up a chemical gra-
dient, or explicit and learned over a sin-
gle lifespan, as in the case of cognitive 
systems that incorporate experience 
into internal representations through 

learning. In Holland’s view, the key 
activity of an adaptive agent involves 
building and refining these data-driv-
en models of the environment. 

In his second book, Induction,14 
Holland and his co-authors proposed 
inductive methods by which cogni-
tive agents can construct—and profit 
from—internal models by combining 
environmental inputs and rewards 
with stored knowledge. In their frame-
work, an internal model defines a set 
of equivalence classes over states of the 
world, together with a set of transition 
rules between the equivalence class-
es, all of which are learned over time 
based on environmental rewards (or 
punishments). The many-to-one map-
ping from states of the world to states 
of the model (the equivalence classes) 
is called a homomorphism. Models 
that form valid homomorphisms with 
the part of the world being modeled 
allow the system to make accurate pre-
dictions. In Holland’s conception, the 
equivalence classes are initially very 
general, as with, say, “moving object” 
and “stationary object.” Through expe-
rience and learning, these classes can 
be specialized into more useful and 
precise subclasses, as in, say, “insect” 
and “nest.” Over time, the adaptive 
system builds up a default hierarchy of 
rules covering general cases and refine-
ments for specific classes. 

At the time of Holland’s work, the 
idea of default hierarchies was preva-
lent in knowledge representation sys-
tems. Holland made two key contribu-
tions to this literature. The first was his 
emphasis on homomorphisms as a for-
mal way to evaluate model validity, an 
idea that dates back to W. Ross Ashby’s 
An Introduction to Cybernetics.2 Hol-
land’s student Bernard Ziegler devel-
oped this idea into a formal theory of 
computer modeling and simulation.30 
Even today, these early homomorphic 
theories of modeling stand as the most 
elegant approach we know of to char-
acterize how consistent a model is with 
its environment and how an intelligent 
agent, human or artificial, can update a 
model to better reflect reality. 

Holland’s second key contribu-
tion was describing a computational 
mechanism, the “learning classifier 
system,”13,21 to illustrate how a cogni-
tive system could iteratively build up a 
detailed and hierarchical model of its 
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Holland put it this way: “Competition 
among rules provides the system with 
a graceful way of handling perpetual 
novelty. When a system has strong 
rules that respond to a particular situa-
tion, it is the equivalent of saying that it 
has certain well-validated hypotheses 
... New rules do not interfere with the 
system’s action in well-practiced situ-
ations but wait gracefully in the wings 
as hypotheses about what to do under 
novel circumstances.”15 

Although Holland proposed clas-
sifier systems as an executable theory 
of inductive processes in cognition, 
other researchers took them further, 
developing applications to areas as di-
verse as poker playing,27 control of gas 
pipeline transmission,9 and modeling 
the stock market.24 (See Booker et al.4 
for more on practical applications of 
classifier systems.) Today, other rein-
forcement learning methods are more 
popular for real-world decision and 
control problems, but classifier sys-
tems can perhaps be viewed as an early 
stage-setting method that foreshad-
owed these later approaches. 

Exploratory Modeling 
Given that Holland believed the abil-
ity to learn and manipulate internal 
models was essential for any adaptive 
system, it is no surprise that he viewed 
modeling as essential for scientific in-
quiry.

Today, we use computational mod-
els both for prediction—by analyzing 
data via statistical models—and for 
understanding how systems work—by 
probing the effects of hypothesized 
underlying mechanisms. This latter 
use of models for enhancing under-
standing was dear to Holland’s heart. 
In his view, the key to science is to un-
derstand the mechanisms that cause a 
system to behave in a certain way, an 
aspiration that goes well beyond data-
fitting methods, which typically focus 
on the aggregate behavior of a system. 

For example, a purely statistical 
model that describes the boom-and-
bust pattern of the stock market does 
not address the underlying mecha-
nisms that lead to these cycles through 
the collective actions of myriad indi-
vidual buy/sell decisions. In contrast, 
the genetic algorithms for which 
Holland is so famous are exploratory 
models of mechanism; they provide 

a simple computational framework 
in which to explore the dynamics of 
Darwinian evolution and whether the 
basic mechanisms of variation, differ-
ential reproduction, and heredity are 
sufficient to account for the richness 
of the natural world. 

Holland’s work focused on explor-
atory models—those that explore basic 
principles and mechanisms, even if 
they do not make specific or detailed 
predictions.16 Such models can show 
generically how certain behaviors 
could be produced. Holland pioneered 
a style of modeling that has come to be 
known as “individual-based” or “agent-
based,” in which every component of a 
system is represented explicitly (such 
as every trader in a stock market sys-
tem or every cell in an immune system 
model) and has a dynamic internal 
state. In such models, each agent has 
its own behavior rules it can modify 
over time, through learning. In order to 
capture the behavior of systems under 
spatial constraints, these models are 
often defined over spatial structures 
(such as networks or simple grids). 

The exploratory models champi-
oned by Holland were not intended to 
provide detailed, domain-specific pre-
dictions. They were meant instead to 
explore general mechanisms of com-
plex systems and thus provide insights 
that might lead to more specific, de-
tailed models. Such idealized models 
are akin to what philosopher Daniel 
Dennett has called “intuition pumps.”6 

The emphasis on exploratory mod-
els to build intuitions was an impor-
tant theme of Holland’s work, and he 
often quoted Sir Arthur Eddington’s re-
mark on the occasion of the first exper-
imental test of Albert Einstein’s theory 
of relativity: “The contemplation in 
natural science of a wider domain than 
the actual leads to a far better under-
standing of the actual.”7 This view of 
modeling is not typical. For many sci-
entists, models are useful only to the 
extent they generate accurate predic-
tions, a perspective that rules out the 
very kind of exploratory modeling that 
interested Holland the most. 

Universal Properties of 
Complex Adaptive Systems 
Holland was interested in a broad ar-
ray of adaptive systems, including im-
mune systems, ecologies, financial 

Holland is  
best known for  
his invention  
of genetic 
algorithms,  
a family of  
search and 
optimization 
methods  
inspired by 
biological  
evolution.
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Holland’s view  
was that a  
system in stable 
equilibrium  
is essentially  
dead.

markets, cities, and the brain. In the 
early 1980s, he teamed up with a small 
group of scientists, primarily physi-
cists, with a sprinkling of economists 
and biologists, to discuss what proper-
ties this wide swath of “complex adap-
tive systems” have in common. The dis-
cussions helped define the intellectual 
mission of the Santa Fe Institute, the 
first institution dedicated to develop-
ing a science of complexity, as well as 
the other complexity institutes that 
followed. Holland brought to these 
discussions his lifelong study of ad-
aptation and a reminder that serious 
theories about complexity would need 
to look deeper than phenomenological 
descriptions but also account for the 
“how” and “why” of these systems. 

As the discussions about complex 
adaptive systems matured, a consensus 
developed about their basic properties. 
Such systems are composed of many 
components with nonlinear interac-
tions; are characterized by complex 
emergent behavior; exhibit higher-or-
der patterns; operate at multiple (and 
often nested) spatial and temporal 
scales, with some behavior conserved 
across all scales and other behaviors 
changing at different scales; and are 
adaptive, with behavioral rules contin-
ually adjusted through evolution and 
learning. Although this list is far from 
a formal characterization of complex 
adaptive systems, most people work-
ing in the field today are interested in 
systems that have these properties. 

In the early 1990s, Holland teamed 
up with other Santa Fe Institute re-
searchers, including several econo-
mists, to tackle the mismatch between 
the predictions of rational expecta-
tions theory—the dominant theory in 
economics at the time—and empiri-
cally observed stock-market behaviors. 
In brief, most economic theory of the 
day assumed that all participants in an 
economy or financial market are fully 
rational, acting to maximize their indi-
vidual gain. In real life, however, actors 
in economies and markets are rarely 
wholly rational, and financial markets 
often deviate from rationality, as in, 
say, speculative bubbles and crashes. 

The Santa Fe Institute Artificial 
Stock Market project1,24 developed an 
exploratory model in which rational 
traders were replaced by adaptive trad-
ers—those who learn to forecast stock 

prices over time. The model tested for 
the emergence of three different trad-
ing strategies: fundamental, techni-
cal, and uninformed. The simulated 
market with adaptive trading agents 
was run many times, and the dynam-
ics of price and trading volumes were 
compared to observed patterns in real 
markets. Holland and his collabora-
tors found that the model’s dynamics 
replicated several otherwise puzzling 
features of real-life markets. 

Although the Santa Fe Institute 
Stock Market model was highly sim-
plified, it was very influential and led 
to many follow-on projects. It demon-
strated clearly the essential role that 
adaptation plays in complex systems 
and illustrated how Holland’s theories 
of continual learning in response to in-
termittent feedback from the environ-
ment could be integrated into domain-
specific settings. 

Echo17,22 was an even more ambi-
tious exploratory model Holland and 
his collaborators developed during the 
1990s. Echo formalized Holland’s ide-
alization of complex adaptive systems 
into a runnable computational system 
where agents evolved external markers 
(called tags) and internal preferences, 
then used them to acquire resources 
and form higher-level aggregate struc-
tures (such as trading relationships, 
symbiotic groups, trophic cascades, 
and interdependent organizations). 
Echo agents sometimes discovered 
mimicry and used it to deceive com-
petitors. These complex interacting 
patterns arose throughout the mod-
el’s execution, which started with a 
single minimal agent. When the runs 
stabilized, the resulting population 
of agents was found to reproduce sev-
eral well-known patterns observed in 
nature, most famously the rank-fre-
quency distribution of species diversity 
known as the Preston curve in ecology. 
In lay terms, Echo evolved populations 
where “most species are rare.” 

The broad scope of the model, to-
gether with its ability to produce easily 
identifiable and well-known patterns 
from nature, was appealing to immu-
nologists, economists, and evolution-
ary biologists alike. Many of the in-
sights behind the project are described 
in Holland’s third book, Hidden Order.16 

Holland’s later books, Emergence,18 
Signals and Boundaries,19 and Complex-
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ity: A Very Short Introduction20 show 
how the theories of adaptation Hol-
land developed during the earlier part 
of his career fit into the larger land-
scape of complex systems research. In 
these works, he especially emphasized 
the open-ended nature of complex sys-
tems, where change and adaptation are 
continual, systems co-evolve with each 
other, and ecological niches arise and 
decay spontaneously depending on re-
source availability and competition. 

Holland’s focus on understanding 
the mechanisms by which complex 
patterns emerge and change, rather 
than simply characterizing the pat-
terns themselves (such as describing 
chaotic attractors or power laws), re-
flected his determination to get to the 
heart of complex adaptive systems. 
This determination represents the 
best of science. Holland’s willingness 
to tackle the most difficult questions, 
develop his own formalisms, and use 
mathematics and simulation to pro-
vide insight sets a high bar for scien-
tists in all disciplines. 

Conclusion 
John Holland was unusual in his abil-
ity to absorb the essence of other dis-
ciplines, articulate grand overarching 
principles, and then back them up 
with computational mechanisms and 
mathematics. Unlike most research-
ers, Holland moved seamlessly among 
these three modes of thinking, devel-
oping models that were years ahead of 
their time. A close reading of his work 
reveals the antecedents of many ideas 
prevalent in machine learning today 
(such as reinforcement learning in 
non-Markovian environments and 
active learning). His seminal genetic 
algorithm spawned the field of evolu-
tionary computation, and his insights 
and wisdom helped define what are 
today referred to as the “sciences of 
complexity.” 

Holland’s many books and papers 
have influenced scientists around the 
world and across many disciplines. 
Closer to home, he introduced several 
generations of students at the Universi-
ty of Michigan to computation in natu-
ral systems, an idea that even today re-
mains somewhat controversial, despite 
successes in genetic algorithms for en-
gineering design, biomimicry for robot-
ics, abstractions of pheromone trails in 

ant colonies for optimization methods, 
and mechanisms from immunology to 
improve computer security. 

Behind the ideas is the man himself. 
Everyone who knew John personally 
remembers the gleam in his eye when 
encountering a new idea; his willing-
ness to talk to anyone, no matter how 
famous or obscure; and his incredible 
generosity and patience. His person-
ality and humanity were somehow 
inextricably entangled with his intel-
lectual contributions. Since his death 
in 2015, many of Holland’s former stu-
dents and colleagues have movingly 
described their desire to emulate his 
personal qualities as much as his sci-
entific excellence. His ideas, intellectu-
al passion, and personal approach will 
serve as beacons for research in intel-
ligent and complex systems for many 
years to come. 
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