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ABSTRACT

The immune system of vertebrates is generally viewed
as a prototype of a highly adaptive, distributed, detection
system, that identifies and neutralizes pathogenic intru-
sions. One of its puzzling features is that the immune
receptors (antibodies) are able to bind to pathogens that
they have not been “trained” to recognize. This anticipa-
tory capability is thought to be due to a broad coverage
of the pathogen space realized by the antibodies that the
immune system can produce [3]. What we would like to
understand is how this this coverage is achieved, given
that the immune system uses a relatively small number
of genes to construct its receptors. We use an evolution-
ary algorithm to explore the strategies that the antibody
libraries may evolve in order to encode pathogen sets of
various sizes. We derive a lower and an upper bound
on the performance of the evolved antibody libraries as
a function of their size and the length of the pathogen
string. We also provide some insights in the strategy of
the antibody libraries. We discuss the implications of our
results for biological evolution of antibody libraries.

I. INTRODUCTION

The recognition of pathogens by antibodies is done
in terms of intermolecular binding. Upon binding the
pathogen, the immune system cells (B cells) start pro-
ducing large amounts of antibodies that bind to the
pathogens and facilitate their elimination by cells that
can completely degrade them. The broad coverage of the
pathogen space is thought to be ensured by the produc-
tion of a large number of different antibodies that are as-
sembled in a combinatorial fashion from a number of frag-
ments [8]. The genes for these fragments reside in gene
libraries, and are pasted together by a process termed re-
arrangement (Fig. 1). If the usage of fragments from the
libraries was random, the number of different antibod-
ies that the organism can make would be obtained by a
simple multiplication of the sizes of the all the different
libraries that contribute to one receptor.

There are a number of problem with this simple calcu-
lation. The contribution of the different gene fragments
to the binding site of the antibody is different, with the V'
gene having the highest representation. Also, some anti-
bodies that are very similar to each other contribute less
to the diversity of the library. But the set of antibod-
ies that we possess seems sufficient for the organism to
withstand numerous infections over its life time. Thus,
we expect the antibody gene libraries to somehow encode
information about their pathogenic environment.

Hightower et al. [1] introduced an evolutionary algo-
rithm that was used to study the performance of antibody
libraries in a variety of circumstances, likely to be present
in the biological evolution of antibody libraries [1,7]. We
use a similar model, with the intent of evaluating the
strategy and performance of antibody libraries when con-
fronted with pathogen sets of different sizes. Our evolved
libraries use essentially two different strategies. When the
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pathogen set size is relatively small, it directly determines
the structure of the antibody libraries. On the contrary,
when the pathogen set is much larger than the number of
available antibodies, the antibody library evolves to en-
sure maximal coverage of the complete pathogen set. Its
structure becomes independent on the subset of pathogens
that it evolved to match. We show that the transition be-
tween these two regimes occurs faster when the pathogens
are allowed to mutate, and that in this case, the antibod-
ies do not get to the optimal distribution in the sequence
space.
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FIG. 1. The rearrangement process that leads to the
formation of a functional antibody: the gene fragments
(exactly one from each of the gene libraries) are concate-
nated in an orderly manner. The resulting product is
then translated into the functional antibody molecule. V,
D, and J are individual libraries that contribute to the

production of the immune receptors.

II. BASIC MODEL

Let us introduce the components of our model.

e Assuming that different libraries contribute to the
binding site of the antibody in an additive manner,
we focus on the evolution of only one such library.
We consider each individual having a genome of
length L x A bits, composed of A individual genes.
From this library, we assume that A antibodies are
made, and that all these antibodies are available for
binding any of the pathogens. Note that we do not
distinguish between the genotype (antibody gene)
and the phenotype (antibody molecule). We could
alternatively view the libraries as representing the
possible set of antibodies that an organism can pro-
duce. The genetic operators, to be discussed below,
such as mutation and recombination on these li-
braries would then have to be thought to represent
phenotypic changes to the antibody repertoire as a
result of implicit genetic operations on the level of
the genes.

e Pathogens are also represented as bit strings of
length L.

e The essence of the complicated antibody-pathogen
interaction in the real world, that we want to cap-
ture in our model, is that for each pathogen in the



environment of the organism there is at least one
antibody in the individual’s library that matches
that pathogen. We use this property as the basis
for our fitness function. To each individual library,
A, we assign a score in matching a pathogen p,
which we define as

o(p) = 7 (L — min[h(a,p))

where h(a,p) is the Hamming distance between an-
tibody a and pathogen p. In other words, for each
pathogen, we find the antibody with the minimal
Hamming distance to the pathogen. The score is a
number between 0 and 1, being maximal for a per-
fect match, at Hamming distance 0, and minimal
for the case of complementary bit strings. Note that
we used identical lengths for the antibody and the
pathogen strings and that we align the bit strings
to calculate the Hamming distance.

In Hightower et al.[1] the fitness f of an individual
was identified with the average score (o) with re-
spect to all pathogens that it encounters. In this
paper we will use the same fitness function. We be-
lieve that this choice can be most generally justified
in terms of survival probabilities of an individual
with respect to all pathogen challenges it encoun-
ters. For an organism to survive in a pathogenic
environment, it has to meet successively all the
pathogen challenges. Let us assume that the prob-
ability s, to survive the attack of pathogen p grows
exponentially with the score o(p). That is, for each
additional matching bit between the best antibody
and the pathogen, the probability s, that the or-
ganism survives goes up by a constant factor, k.
Thus,

sp oc k7@,

The probability to survive all pathogen attacks is
given by the product of the survival probabilities
sp for all pathogens p. Therefore, the total survival
probability s is given by

s oc kP

where P is the number of pathogens, and () is the
score of the library averaged over all pathogens.
Thus, we find that the survival probability s is a
monotonically increasing function of the average
score (o). For the evolutionary dynamics defined
on our antibody libraries, to be discussed later, only
the relative ranking of the fitnesses of different li-
braries is important. Therefore, under the assump-
tion that the fitness of an individual depends only
on its survival probability s, we can identify the fit-
ness with the average score (o), without affecting
the dynamics of the GA. Formally, if we denote the
pathogen set by P, the fitness f of an individual is

given by )
f= P Z o(p)

In this paper we evolve the antibody libraries on a
number of pathogen sets:

(o).

— On the complete set of 2" pathogens of length
L.

— On random subsets P of the complete

pathogen set of size 2L'. These sets are con-
structed by sampling P pathogens, with re-
placement, from the complete pathogen set.

— On pathogen sets that evolve independently
of the individuals.

e Our genetic algorithm has the following structure:

1. We choose a pathogen set P in one of the ways
that we described above. We construct the
initial population of M = 50 random libraries,
of identical size, A. We found that, in con-
junction with the parameters that we chose
for the genetic operators, this value of the
population size allowed convergence to a rela-
tively high fitness solution. Also note that we
start with a population of random libraries,
as opposed to libraries composed of identical
antibodies [2,7,1]. The motivation is that we
intend to characterize the solutions with max-
imal fitness that the GA can find, regardless
of the starting point.

2. We determine the fitness of all libraries in the
population with respect to the pathogen set,
and we rank order the libraries according to
fitness.

3. We assign a weight w, = % to each in-
dividual, where r is the rank of the individual.

Note that the weights sum to 1.

4. To create one library of the new generation,
we perform the following steps:

(a) We select, with replacement, two libraries
of the old population with probability
equal to their weights. This selection
scheme is called “rank selection” [6]

(b) We generate two new libraries by cross-
ing over the two chosen libraries. The
number of crossover points n is chosen
from a binomial distribution with mean
0.01A. The crossover points are chosen at
the boundary between antibodies, so in-
dividual antibodies are not disrupted by
Crossover.

(c) We choose one of the two new libraries
with equal probability.

(d) We mutate it, with a probability of 0.002
per bit, and we add it to the new popu-
lation.

5. M new libraries are created using the previ-
ously described algorithm. The new popula-
tion replaces the old population and we go to
step 2 again.

6. After a fixed number of generations, we de-
termine the highest fitness library in the pop-
ulation, and we use this library to calculate
various statistics.

ITII. RESULTS

A. The performance of a library of A antibodies
on the complete pathogen set

Given that we start with random libraries, their perfor-
mance gives us a lower bound on the fitness of evolved li-
braries. Let us determine the expected fitness of a random
library on the complete pathogen set of size 2%, where
L is the length of the string representing the pathogen.
Let o(p;) be the score of an individual with respect to
pathogen p; and m the number of matching bit positions
between a pathogen and an antibody. For a pathogen



binding to a single random antibody, the probability that
there are m or fewer matching bits, Pr{m < z}, is given
by the value of the cumulative binomial distribution at z.
If we have A antibodies, the probability that all of them
have z or fewer matching bit positions with the pathogen
is [Pr{m < x}]*. Then the probability that the score
o(pi) of the individual with respect to pathogen p; is z/L,
is thus given by the probability that at least one antibody
has z matching sites with the pathogen but none has more
than z, i.e.

Pr{o(p:) = z} = [Pr{m < &}]* — [Pr{m <z —1}]*.

The expected score for pathogen p; with a random anti-
body is then given by

Blo(p)] = 1 > aPrio(p) = a}.

The expected score of a random library on a random
pathogen p; also represents the expected score of a ran-
dom library over the complete set of 2 pathogens. We
then denote the expected fitness of a random library over
the complete pathogen set pathogens for a random library

by f-,
fr = E[o(p)].

The above equation for f, gives a lower bound on the
fitness of the evolved libraries as a function of L and A.
We can also calculate an upper bound for the fitness of
the evolved libraries by using a theorem from the theory of
error-correcting codes [4]. Assume that we distribute the

A antibodies over the space of 2L pathogen bit strings
in such a way that each antibody a; covers a set V; of
pathogens up to Hamming distance d. Assume that all
sets V; are disjoint and of equal size. In the best situation,
there exists a Hamming distance d such that the sets V;
together exactly cover the space of 2° pathogens. Since

this yields the inequality

d

L L

a3 (5) =2~
h=0

In the theory of error-correcting codes, this inequality is
known as the sphere-packing or Hamming bound. The
library is “perfect” if the equality holds. The fitness f,
of such a perfect library is given by

>R
Fe=tm s Ty

Note that, for instance, given L and d, we can uniquely
determine the library size A. Alternatively, given L and
A we can determine the maximal value of d for which the
inequality still holds.

How does the fitness of the evolved libraries compare to
the bounds that we calculated? We used a string length
L = 8 bits in order to test the scaling of the maximum
fitness that the GA evolved with respect to the number
of antibodies, A, in the library. A number of 10 GA runs
were used for each data point in the figure. To test the
dependence of the maximum fitness on the string length,
L, given libraries of A = 8 antibodies, we used a hill
climber approximation of the GA, since the runs of the

GA algorithm become too computationally demanding.
We previously tested the performance of the hill climber
on this problem and we found it to converge to relatively
good solutions, within less than 0.5% of the fitness value
that the GA evolved. One run of the hill climber consists
of the following steps:

1. start with a random antibody library of size A

2. calculate its fitness with respect to the complete
pathogen set of size 2F

3. mutate one bit of the antibody library

4. calculate the fitness of the new library

5. if this fitness is greater than or equal to the fitness

of the old library, make this new library the current
library, delete the old one, and go to step 2

6. if the fitness of the new library is smaller than that
of the old library, discard the new library and go to
step 3.

The total number of mutations that one library underwent

was (A x L)?, A being the number of antibodies in the
library and L the length of the antibody strings.
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FIG. 2. Scaling of the fitness f with respect to the
antibody set size A (panel A) and the string length L
(panel B).

Fig. 2 panel A shows the best fitness f averaged over 10
runs of the GA, as a function of the logarithm base 2 of the
number of antibodies A in the libraries as a solid line. The
strings were length L = 8 and the fitness of the libraries
was computed over the complete set of 27 pathogens at
each time step. The coarsely dashed line shows the lower
bound f, of the fitness of random libraries, while the
finely dashed line shows the upper bound f, obtained
from the sphere-packing bound. This upper bound curve
is obtained by plotting f.(d, L) against log, [A(d, L)] for



a range of values of the ball radii d, and L = 8. We
plotted both the fitness, f and the logarithm log,(A) on
logarithmic scales, to illustrate the scaling relation that
we inferred, namely that the the fitness of the libraries is
proportional to a power of the logarithm of the number
of antibodies A in the library,

f =clog®(A).
For the results of figure 2A, the exponent is roughly given
by a = 0.2. The ¢ values however differ between the
different curves, and the basis for this difference will be
explored in a later section. This scaling relation holds for
the evolved libraries as well as for the upper and lower
bounds f, and f.. However, the evolved libraries appar-
ently do not manage to reach the fitness f, as given by
the “perfect” libraries. It is not clear to us, however, if
this upper bound is realizable at all.

The dependency of the average best fitness on the
length of the antibody and pathogen strings, L, is shown
in Fig. 2 panel B. The y-axis shows (f — 0.5) on a loga-
rithmic scale, while the z-axis shows L on a logarithmic
scale as well. The solid line shows the best fitness f aver-
aged over 10 runs of the hill climber as a function of the
string length L for libraries of size A = 8. The fitness was
computed over the full set of 2” pathogens at each time
step. The coarsely dashed line shows the lower bound
fr for the random libraries, while the finely dashed line
shows the upper bound f, as given by the sphere-packing
bound. The upper bound is slightly more involved to de-
termine in this case. Given the values of L and A, we
can calculate the largest value of d for which the sphere-
packing inequality still holds. This means that A disjoint
spheres of radius d cover less than 2” antibodies, but that
A spheres of radius (d + 1) do not fit into the space of 2
strings. We assume that the upper bound is obtained by
distributing the A antibodies such that each of the an-

tibodies covers a number V(d) = ZZ:O (i) pathogens
at Hamming distance d or less, and that the remaining

2 — A x V(d) pathogens are partly shared between anti-
bodies and are matched at a distance (d + 1). This leads
to the upper bound

AL d+1 Ax V(d)
f“zl"§7<§:%(i)>" L (1_ 2L )‘

=0

The straight lines of figure 2B show that the evolved fit-

ness f as well as the upper and lower bounds f, and f.
obey the scaling relation

— <
f_05+vf

Again, the fitness values of the evolved libraries nicely lie
between our theoretical upper and lower bounds. Thus,
it seems that the scaling of f as a function of L and A
is similar to the scaling of the fitness of random libraries
as well as “perfect” libraries. This suggests that these
scaling relations are mostly a result of the geometry of the
bit string space and the additive nature of the matching
rule.

What implications do these scaling relations have? As
0.5 would be the fitness of the library in the limit of L —
o0, f — 0.5 represents the improvement in fitness that
we can obtain, given that the pathogen (and antibody)
strings have finite length. As the pathogen strings that
the antibodies have to match become shorter, the fitness
of a constant size library increases, but relatively slow, as
the inverse of the square of the string length. The slower
than logarithmic scaling of the fitness as a function of
the number of antibodies A, means that if doubling the

size of the library would lead to a fitness increase of J f,
than doubling the size of the library again would lead
to an increase of fitness smaller than éf. To obtain an
increase of f in fitness one would have to multiply the
size of the libraries by larger and larger factors. A similar
dependency was suggested, on experimental grounds, and
within a somewhat different model, by Minar [5].

B. Performance of a library of A antibody genes
as a function of the pathogen set size

Let us now turn to the case of the pathogen set being
itself a subset of the set of strings of length L.

=} [=}
¢ o ¢
0 : ©
a1 © (3]
T T

o
)
-
5
7

average best fitness

0.75 ~

0.7

2 4 5 6 32 64 18 2% 52 1024
pathogen set size

FIG. 3. Average fitness of the best individual evolved
in a number of runs with different pathogen set sizes. 100
runs were used for each data point of pathogen set size 2,
4, 8, 16, 32, 64; 50 runs were used for the pathogen set
size 128; 25 runs for pathogen set size 256, and 10 runs
for pathogen set sizes 512 and 1024. Antibody library
size A = 8. Length of antibody and pathogen strings,
L = 16 bits. The errorbars indicate one standard devia-
tion around the mean values.

Let us consider an antibody library of size A = 8 genes
and study its performance as a function of the pathogen
set size. In order to do this, we choose a pathogen string
length of L = 16 bits, and we sample pathogen sets of
sizes varying from P = 2 to P = 1024, with replacement,
from the complete pathogen set of size 2'¢. We perform
a number of GA experiments for each pathogen set size,
keeping the pathogen set constant during each run, and
we store the best library evolved in each of these runs.
Fig. 3 shows the results of these experiments. It is not
surprising that the fitness deteriorates as the size of the
pathogen set increases. The most dramatic effect is ob-
served when the pathogen set size becomes larger then
the size of the antibody library, as a perfect match can-
not be ensured anymore for all the pathogens in the set.
The strategy evolved by the libraries for covering a very
large pathogen set is the subject of the next section.

C. The strategy of antibody libraries

What strategy then do the immune receptor libraries
evolve in order to cover the pathogen set? We expect
that for small pathogen sets, the antibodies would tend



to match the pathogens perfectly. In this case the struc-
ture of the immune receptor library directly reflects the
structure of the pathogen set. What we do not know is
what strategies these libraries develop when they have to
cover a pathogen set that is much larger than the size of
the library. To address this question, we performed the
following GA experiment. We used the libraries that we
evolved previously on different pathogen set sizes. Con-
sider one of these libraries, evolved to match a subset of
P pathogens. We determine the mean, y, and standard
deviation, o, of the fitness of this library on the complete
set of 2'% pathogens. Then the average fitness of the li-
brary over a random pathogen set of size P is also y, and
the standard deviation on the set of P pathogens will be

o/VP. What we would like to know is whether the fit-
ness of the library on the pathogen set that was used to
evolve it is significantly different from the fitness of the
same library on a random pathogen set of the same size.
For this, we calculate the statistic

_f-n
o/VP’

where f is the fitness of the library on the pathogen set
that was used to evolve it. The results, for library size
A = 8, and string length L = 16, are plotted in Fig.
4. As we expect, when the pathogen set is of the same
size as the antibody library, the libraries focus on these
pathogens. Subsequently, if we are to test them on other
pathogen sets of similar size, their performance is sig-
nificantly lower. This behavior is maintained for a rel-
atively large range of pathogen set sizes. As we get to
large pathogen sets, the performance of the library on
the pathogen set that it evolved to match becomes less
and less distinguishable from the performance on a ran-
dom pathogen set of the same size. Thus, as we vary
the pathogen set size, the structure of antibody libraries
changes, from from being completely determined by the
pathogen set, to being independent of it. In this last
regime, the antibodies in the library ensure a maximal
coverage of the complete pathogen space.

Moreover, we can show that this transition occurs faster
when we let the pathogens evolve as well. Let us slightly
modify our genetic algorithm such that the pathogens also
mutate at each generation of hosts. In one set of exper-
iments we let each bit in each pathogen mutate with a
probability of 0.1 bits per generation of the hosts. The
actual number of mutations for each pathogen is chosen
as a random deviate from the Poisson distribution with
mean 0.1L. The results are shown in the middle curve of
Fig. 4. To test the effect of rapidly evolving pathogen
set, we replaced a proportion of 1/8 of the pathogens at
each host generation by random others. The results are
shown in the lower curve of Fig. 4.

Thus, if pathogens evolve rapidly, or if indeed their
number is much larger than the number of different anti-
bodies that the organism can make, the structure of the
pathogen set does not seem to get reflected in the anti-
body libraries. Can we say anything about the structure
of the antibody libraries in this situation?

Choosing a string length L = 9 bits for antibodies
and pathogens, we can test the libraries against the com-
plete set of pathogens of this length. We evolved anti-
body libraries of size A = 8 to cover the complete set of
pathogens of length L = 9, that is the pathogen set size
was P = 512. The fitness of the best library was not the
predicted value for a random library of size A = 8, but
higher (0.760417 as opposed to 0.755414). It was previ-
ously conjectured that the antibodies evolve such as to
maximize the average Hamming distance to the other an-
tibodies in the library [1]. Let us determine the average
pairwise Hamming distance between the antibodies in the
library, and compare with the average pairwise Hamming

distance in the libraries that we evolved.
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FIG. 4. Dependence of the Z statistic on the pathogen
set size P. The size of the antibody library was kept con-
stant, A = 8 genes. Length of antibody and pathogen
strings is L = 16 bits. The three data sets are, from top
to bottom, fixed pathogen set, slowly mutating pathogen
set, rapidly evolving pathogen set. When the pathogen
set that the library evolved to match was kept constant
(upper curve) 100 runs were used for pathogen set sizes
2, 4, 8, 16, 32, 64; 50 runs for pathogens set sizes 128
and 256; 25 runs for pathogen set size 512; 10 runs for
pathogen set size 1024, and 5 runs for pathogen set size
4096. For the evolving pathogen cases, 10 runs were per-
formed for each pathogen set size, with the exception of
the pathogen set size of 4096, for which 6 runs were used.

The expected pairwise Hamming distance within a li-
brary is given by

where A is the number of antibodies in the library, a; and
a; are individual antibodies, and h(a;, a;) is the Hamming
distance between them. This is given by

L
h(ai,a;) =y d(af,af)
k=1

where af and a;-“ denotes the k™ bit position of the two
strings, and

0 otherwise

: k k
§(af,af) ={ Lifai 7 a;

We may now switch the order of summations to obtain:

R . D) DI

k=1 i=1 j=i+1

and since the bits are independent, maximizing this quan-
tity means maximizing the pairwise Hamming distance at
each bit position. If for a bit position k we denote by no
the frequency of 0’s in the antibody population, then the
pairwise Hamming distance at that position is no(A—nop),
which is maximal for ng = A/2. Substituting in the above
equation, we obtain for the maximal Hamming distance
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Coming back to the libraries that we evolved previously,
with A = 8 genes, and string length L = 9 bits, the opti-
mal Hamming distance is 5.143 bits. This Hamming dis-
tance was indeed found in the libraries that evolved the
maximal fitness in this series of runs. This value is also
significantly different from the average pairwise Hamming
distance in random libraries. We tested this by generat-
ing a set of 10* random libraries, for which we determined
the average pairwise Hamming distance. The value of our
evolved library is different at a significance level a < 0.02.
Though having maximal average Hamming distance be-
tween the genes in the library seems to be a necessary
condition for maximal fitness, it is not sufficient. Clearly,
a library of size A = 8 composed of four copies of a string
and four copies of its complement has maximal average
pairwise Hamming distance, but it is far from being opti-
mal. It is so far unclear what other condition needs to be
fulfilled for a library to achieve maximal fitness. On the
other hand, libraries that evolve in a rapidly changing
pathogenic environment with a relatively small number
of pathogens that select them, cannot be distinguished,
by the average pairwise Hamming distance, from random
libraries of the same size.

IV. IMPLICATIONS FOR ANTIBODY
LIBRARIES ENCOUNTERED IN VARIOUS
SPECIES

Let us now put in perspective the assumptions behind
our model of antibody gene evolution, and summarize its
predictions.

We considered that all hosts have an identical num-
ber of antibody gene libraries of constant length. We
assumed that the strings representing the pathogens are
aligned with the antibodies, and the score of one antibody
with one pathogen is given by the proportion of positions
at which the two strings match. We assumed that all
the antibody types that an individual can make are avail-
able for interaction with every pathogen. The fitness of
an individual is the score averaged over the whole set of
pathogens.

The fitness that the evolved antibody libraries obey
the same scaling laws as the theoretical lower and upper
bounds that we derived. This suggests that the scaling
of the fitness with library size and string length is not a
function of the evolutionary dynamics, but is determined
by the geometry of the bit space and the matching rule
that we used. We can further analyze the implications of
these scaling laws for the selective pressures that might
operate in biological evolution of gene libraries.

The size of the binding site of antibodies is presumably
under evolutionary pressure as well. With a given number
of antibodies, the organism would achieve higher fitness
by using short antibodies, that would bind to limited re-
gions on the surface of the pathogens. The lower limit on
the size of the recognition site is probably set in nature by
the trade off between the quality of recognition and the
specificity of it. That is, the shortest length of a string
that allows differentiation between pathogenic motifs and
motifs that are present in the proteins of the host.

We also deduced that the fitness of the antibody li-
brary increases only logarithmically with its size. In all
the organisms in which extensive sequencing of the im-
mune receptor locus has been performed, the number of
genes that was found is of the order of a hundred. The
recognition of pathogens is essentially a two stepped pro-
cess. Somatic mutation, operating on the receptors that

already bound the pathogen once, can improve their affin-
ity by one to three orders of magnitude. The pathogen
initially gets recognized by on of the germline-encoded
receptors, after which the recognition of the pathogen is
improved by somatic mutation of the germline receptors.
It seems therefore, that there is an evolutionary trade off
between increasing the size of the antibody library, versus
improving the efficiency of the somatic mutation proces.
The extremely slow increase in fitness with the size of the
antibody libraries that we found in this study, raises the
question of what mechanism would keep evolution from
evolving smaller libraries of antibodies than the ones we
actually observe. One possible explanation is that there
is a recognition threshold in the matching between an-
tibodies and pathogens below which recognition is not
going to occur at all. In this case, some minimal num-
ber of antibodies would be required to ensure a complete
coverage of the pathogen space. Alternatively, one may
envisage the pathogen set structured as a distribution of
clusters such that different genes in the library would re-
flect different clusters of pathogens. Furthermore, certain
epidemies that have been caused in native populations
by the migration of people from other geographical areas,
suggest that individuals may indeed have different fitness
in different pathogen environments. This suggests that
pathogenic environments may indeed be relatively small
and structured.
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