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Abstract Infection with Mycobacterium tuberculosis (Mtb) is characterized by lo-
calized, roughly spherical lesions within which the pathogen interacts with host
cells. Containment of the infection or progression of disease depends on the behav-
ior of individual cells, which, in turn, depends on the local molecular environment
and on contact with neighboring cells. Modeling can help us understand the non-
linear interactions that drive the overall dynamics in this system. Early events in
infection are particularly important, as are spatial effects and inherently stochas-
tic processes. We describe a model of early Mycobacterium infection using the
CyCells simulator, which was designed to capture these effects. We relate CyCells
simulations of the model to several experimental observations of individual com-
ponents of the response to Mtb.

Keywords Tuberculosis · Stochastic simulation · Immunology

1. Introduction

Infectious agents enter the body through its most accessible tissues in the skin,
lungs, and gut. The development of disease or immunity often depends on the ini-
tial interactions between the pathogen and immune system cells in these periph-
eral tissues. The spatial arrangement of local tissue cells, immune system cells, and
pathogen may significantly affect the dynamics of these interactions. Highly orga-
nized local structures develop in some infections such as in tuberculosis. Stochastic
effects, ranging from random encounters between individual cells to factors affect-
ing gene expression within those cells, may also be important. Despite significant
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progress in understanding the individual components of these localized responses,
we still have a poor understanding of how those components interact to contain
infection and the conditions under which this containment fails.

Modeling such systems can help us understand the nonlinear interactions that
drive the overall dynamics. However, the complex spatiotemporal interactions
involved are difficult to capture adequately in a mathematical model. Cell in-
teractions are mediated by a large variety of molecular signals present on cell
surfaces or secreted into the extracellular environment. Cell behavior therefore
depends on exposure to neighboring cells, pathogens, and local concentrations of
molecules, particularly cytokines. Complex dynamics within individual cells may
affect how they respond to these external stimuli. It is therefore important that
models capture the spatial relationships of cells with their neighbors, the molecu-
lar environment of the cells, and their internal state. This is best done with models
that explicitly represent individual cells.

Multicellular models of this type are relatively new and becoming increasingly
important. There are some specific models of tuberculosis (Segovia-Juarez et al.,
2004) and other systems (see, for example, Dallon, 2000). However, there are few
tools available to support development of multicellular models. We developed a
multi-purpose simulator called CyCells that has the flexibility to accommodate
models of many different kinds of multicellular systems. It uses a hybrid modeling
approach; cells are represented explicitly, each with their own internal state, while
extracellular molecular species are represented by their concentration. We pre-
viously used CyCells to model homeostasis of alveolar macrophages (Warrender
et al., 2004); here, we describe a model of early Mycobacterium infection that illus-
trates CyCells’ ability to capture spatial interactions between cells.

In order to allow modeling of many different kinds of cell behaviors, CyCells
uses a computational abstraction known as Sense–Process–Act. Agent behaviors
are segregated into three categories – those that handle sensing of the external en-
vironment, those that update the internal state, and those that implement concrete
actions that affect the agent or its environment or both. Simulation models are de-
fined by describing the sense, process, and act functions appropriate for each cell
type in the model. Sensing includes both sensing the local molecular concentration
and sensing neighboring cells. Processing functions correspond to intracellular sig-
naling in real cells. However, for the purpose of modeling multicellular dynamics,
capturing the basic input–output behavior of the cells is sufficient, so we abstract
away many of the details of intracellular signaling pathways. Cell actions – death,
division, differentiation, movement, etc. – may occur constitutively or be triggered
by changes in cell state. A few specialized functions of each type serve to cover a
wide range of cell behaviors.

The choice of which cell behaviors and other components to include in a model
represents a hypothesis about which elements of the modeled system are most
important. The resulting model is necessarily a simplification of the real system,
but it can nevertheless be used to explore the relative contributions of these key
components. We illustrate this approach with our model of the early stages of in-
fection with Mycobacterium tuberculosis (Mtb), the pathogen that causes tubercu-
losis. Our model includes cytokines shown to be key players in Mtb infection that
have been studied in experimental systems. We relate CyCells simulations of this
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model to a wide variety of experimental observations of individual components of
the response to Mtb.

2. Tuberculosis

Approximately one-third of the world population is infected with Mtb but only 10–
20% develop clinical disease, usually after a latent period of many years (Corbett
et al., 2003; Stewart et al., 2003). Inhaled bacteria that reach the lower airways
are phagocytosed (ingested) by macrophages. In non-immune hosts Mtb adapts to
survive intracellularly and replicate. When the infected cells die, the bacilli spread
to uninfected macrophages recruited during the inflammatory response initiated
by the original infected cells (Dannenberg and Rook, 1994).

Experiments in mice and other animals show a common trend after aerosol in-
fection with Mtb; bacteria replicate in the lungs for approximately 3 weeks, then
the bacterial load stabilizes (North and Jung, 2004). Duration of the growth phase
and peak bacterial load may vary with the inbred mouse strain, the Mtb strain,
and initial dose size; Rhoades et al. (1997) show bacterial loads of 100–2000 times
the initial dose approximately 3 weeks after infection. Stabilization of the bac-
terial load is thought to coincide with the expression of T cell immunity in the
lungs (North and Jung, 2004). T cells are also thought to be important in con-
trol of human tuberculosis because depletion of T cells is associated with acceler-
ated disease (Kaufmann, 2001). However, the exact mechanisms and dynamics of
pathogen control are not completely understood.

Bacterial control is thought to depend on the formation and maintenance of
granulomas in the lungs. These are roughly spherical lesions in which bacilli
are contained by immune system cells. Although there may be multiple infected
sites, lesions develop independently of each other (Dannenberg and Rook, 1994).
Granulomas are complex structures that develop over time, but they begin as local-
ized aggregations of macrophages in which bacteria replicate. This initial growth
is thought to be slowed or halted by T cell activation of macrophages. In response,
Mtb may use multiple evasion strategies to persist in a state that is less detectable
by the immune system (Wayne and Sohaskey, 2001; Shi et al., 2003). Although the
total bacterial load is fairly stable after this point, lesions in mice show continued
pathological progression (Rhoades et al., 1997).

2.1. T cells and macrophage activation

Under appropriate conditions, macrophages are activated to increase their ability
to kill recently ingested pathogens. However, chronically infected macrophages
lose their ability to become activated (Janeway et al., 1999). Without continued
stimulation, activated macrophages may become deactivated. In vitro, murine
macrophages can be activated to kill Mtb by adding the appropriate cytokines,
but human macrophages seem also to require the presence of T cells (Bonecini-
Almeida et al., 1998). Brookes et al. (2003) suggest that contact between T cells
and macrophages is required for full macrophage activation. Some contact is



2236 Bulletin of Mathematical Biology (2006) 68: 223–2261

certainly required in vivo because recruited T cells do not produce cytokines until
they recognize antigen presented by macrophages in the infected tissue (Janeway
et al., 1999).

Before T cells are recruited to the lungs, they must be sensitized in the lymphoid
organs to initiate expansion of the Mtb-specific T cell pool (Jenkins et al., 2001).
In mice, Mtb-specific T cells are first detected in the lungs about 2 weeks after in-
fection (Chackerian et al., 2002). The recruited T cells recognize a wide variety
of antigens, including some that may not be specific to Mtb. Such heterogeneity
is characteristic of many immune responses but is not required for effective gran-
uloma formation (Hogan et al., 2001). As there is insufficient data to quantitate
the contributions of different T cell subpopulations, we include only a single T cell
population in our model.

2.2. Cytokines in tuberculosis infection

Macrophages and T cells produce many cytokines that promote or inhibit
macrophage activation. A few of the cytokines thought to be most important in
control of intracellular infections in general and tuberculosis in particular are tu-
mor necrosis factor-α (TNF), interleukin-10 (IL-10), and interferon-γ (IFN-γ ).
Protective roles for IFN-γ and TNF have been demonstrated in Mtb infection; the
role of IL-10, which downregulates many immune system functions, is more con-
troversial (Kaufmann, 1999). IFN-γ is produced primarily by T cells and NK cells
and appears to be the most important cytokine for macrophage activation (Ma
et al., 2003).

Phagocytosis of many pathogens, including Mtb, induces macrophages to pro-
duce TNF (Kaufmann, 1999). Macrophage production of TNF begins soon after
infection but is transient (Thomson, 1994). T cells may also be induced to produce
TNF; the amount of TNF produced by T cells is generally much greater than that
from macrophages (Barnes et al., 1993; Engele et al., 2002). TNF is a pleiotropic
cytokine; it has been observed to have many different effects on a variety of cell
types, some of which are contradictory and many of which are not completely un-
derstood. One of the better-known effects, however, is to induce production of
chemokines and expression of adhesion molecules on endothelial cells to facilitate
migration of immune system cells from circulation into infected tissues (Thomson,
1994). TNF also synergizes with IFN-γ to activate macrophages, although it is ap-
parently incapable of activating macrophages alone (Ding et al., 1988; Flesch and
Kaufmann, 1990).

IL-10 is an anti-inflammatory cytokine produced by both macrophages and
T cells in response to inflammatory signals. It inhibits macrophage activation and
production of cytokines. IL-10 is thought to be important in keeping immune re-
sponses in check, but it may also permit pathogen growth when responses are
damped excessively (Moore et al., 2001).

3. CyCells

To help understand localized immune responses such as the early response to
Mtb, we need modeling approaches that can relate population-level dynamics
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to individual cell interactions and responses to cytokines. CyCells is a three-
dimensional, discrete-time simulator for studying intercellular interactions like
those described in the previous section. Many features are designed for model-
ing intracellular infections. The code is written in C++, has been tested under
Linux, and is available under the GNU General Public License. The basic simu-
lation algorithm was published without a description of the spatial representation
(Warrender et al., 2004). We briefly describe CyCells here, emphasizing the spatial
components of the system. More detail is given in the user manual, which can be
found with the code at https://sourceforge.net/projects/cycells/.

CyCells is a hybrid simulator in which models can include discrete and contin-
uous components, and deterministic and stochastic dynamics. Individual cells are
represented explicitly, but molecules are represented by their concentration. It is
convenient to represent large numbers of nearly identical molecules by their over-
all concentration. However, the numbers of cells involved in the earliest stages
of infection are relatively small, making continuous representations inappropri-
ate for cell populations. There is also a great deal more variation between cells
than between molecules. Even when larger cell populations are involved, modeling
individual cells can help clarify the effects of cellular heterogeneity and differing
spatial environments. CyCells models can also mix discrete and continuous rep-
resentations within each cell. Because the extracellular molecular environment
is represented continuously, it is often easiest to describe a cell’s perception
of that environment as a continuous value. However, for convenience, we dis-
cretize cell states. An example is macrophage activation, discussed in Section 2.1.
Macrophages demonstrate a wide range in production rates of various antimicro-
bial molecules and cytokines associated with activation, so that each macrophage
can differ in the degree to which each function is expressed, but we refer to cells
as either activated or not activated. Other complex changes in cell state, for ex-
ample, during death, division, and differentiation, are similarly treated as discrete
events.

Individual components of internal cell state, whether continuous or discrete,
can change deterministically or stochastically. Sensing of the extracellular molec-
ular environment is governed by deterministic receptor kinetics; changing ac-
tivation status is stochastic. Some of the heterogeneity between cells of the
same type is due to inherently stochastic processes, which can be represented
in individual-based models by stochastic interaction rules. At the start of an
immune response, when small numbers of cells are involved, random events
may have a significant effect on the eventual outcome. Incorporating stochas-
tic dynamics also allows models to explore a distribution of system behaviors
rather than just the average behavior that would be described by a deterministic
model.

Our simulator implements a general framework for modeling multicellular sys-
tems. Different systems can be simulated by using different model definitions. The
general process of model definition was explained in our earlier paper (Warrender
et al., 2004). Here, we focus on the representation of space in CyCells and how it
affects cell behavior. CyCells is designed to simulate spatially explicit models (al-
though it is also possible to ignore spatial effects, as was done in Warrender et al.
(2004)).
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3.1. The tissue compartment

Cell behavior depends on local concentrations of cytokines and on interactions
with neighboring cells. In CyCells, a volume of tissue is represented as a cubical
compartment containing molecules and cells. This compartment can be subdivided
into cubical patches to represent the spatial variance of molecular concentrations.
Cells have explicit positions within the compartment. Molecular concentrations
and cell positions change over time through molecular diffusion and cell move-
ment. Periodic boundary conditions are used for changes in both molecular con-
centrations and cell positions to avoid edge effects. In other words, the simulated
space “wraps around”; opposing boundaries are topologically connected so that
cells or molecules that would exit one boundary re-enter from the opposite side.

The simulated volume is divided into regular cubes, or three-dimensional
patches, where the patch size (set at run time) determines the spatial resolution of
molecular concentrations. Molecular diffusion is implemented on this grid, as ex-
plained in the appendix. Concentrations decay uniformly at a fixed rate, or change
through the actions of cells in specific patches.

3.1.1. Cell positions
A tissue-level model may include multiple cell types of varying sizes in nonuni-
form spatial distributions. Inflammation, in particular, may cause localized re-
gions of high densities. A lattice scheme for cell positions does not adequately
capture these spatial irregularities. In CyCells, cell positions are represented by
continuous-valued coordinates to allow greater flexibility in spatial distributions.
These coordinates specify the position of the center of a cell, which is represented
as a sphere for simplicity. Cells adjust their positions to balance pressure from
other cells and their own motive forces (explained in Section 3.1.3). To account for
the fact that real cells can change shape to pack tightly, the spheres representing
simulated cells may overlap when cell densities are high. However, the repulsive
force between cells increases with increasing overlap.

3.1.2. Cell influx
In our model of the peripheral immune response in the lung, new cells arrive from
the circulation, but blood vessels are not explicitly simulated. Some models as-
sume that new cells enter only at the boundaries of the simulated compartment.
Since any reasonably sized tissue has numerous blood vessels running through it
that allow circulatory cells easy access to all parts of the tissue, CyCells allows ad-
dition of new cells anywhere in the simulated volume. Although the exact layout
of the vasculature is not of interest here, the possibility of influx rates varying in
different parts of the tissue due to local expression of cytokines and chemokines is
important.

In CyCells, influx of new cells is controlled by cells already in the simulated
tissue. One of the actions that can be defined for a cell type is the ability to admit
new cells into the simulation. This allows cells to mimic the action of endothelial or
epithelial cells in controlling cell migration. The probability with which a simulated
endothelial cell admits a new cell may depend on the local cytokine environment.
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For example, if a simulation has endothelial cells distributed throughout the tissue
but the concentration of an inflammatory cytokine is high only in a small region,
the rate of new cell entry will be increased there.

3.1.3. Cell movement
Cell movement in isotropic environments can be modeled as a persistent random
walk (Lauffenburger and Linderman, 1993). Cells move at a nearly constant veloc-
ity over a short period of time, then change direction. The average time between
direction changes is known as the persistence time. In the presence of chemokines,
cell orientation is no longer random, but the general movement pattern is similar.

CyCells’ movement actions govern how and when simulated cells choose their
orientation. A simulated cell may move randomly or by chemotaxis. In chemo-
tactic movement, the cell’s orientation is chosen to match the direction of a local
molecular gradient. If there is no detectable gradient, the cell chooses a direction
at random. Unimpeded cell speed is assumed to be constant in these simulations,
and it is the same for all cells of the same type. A cell’s current orientation and the
speed for its type determine its velocity vector in the absence of collisions.

Collisions in CyCells are inelastic. Simulated cells are represented as spheres for
convenience, but those spheres are allowed to overlap to account for the fact that
real cells are deformable. There is an ad hoc repulsive force when cells overlap that
tends to move them apart, space permitting, and that prevents cells from moving
directly through each other. This is implemented by adding a velocity component
from an overlapping neighbor to a moving cell’s unimpeded velocity vector. The
magnitude increases linearly with the amount of overlap; the direction is from the
neighbor cell center to the moving cell center. On each time step, the net veloc-
ity for each moving cell is calculated by summing its unimpeded velocity and the
contributions from any overlapping neighbors, and is multiplied by the time step
to get the cell’s displacement. Final positions are corrected to account for periodic
boundary conditions if necessary.

3.2. Individual cell behavior

This section describes aspects of internal cell state that were not addressed in
Warrender et al. (2004). Some of these are due to the explicit representation of
the spatial environment, while others are due to the interactions of macrophages
with bacteria.

3.2.1. Sensitivity to the local environment
Cells can sense extracellular molecules or other cells. In simulation, the key point
is to make appropriate changes to a cell’s internal state in response to the local
molecular environment or contact with neighboring cells. These changes may be
described deterministically, especially in the case of continuously valued variables.
Cell perception of the local molecular environment is often modeled deterministi-
cally. However, discrete changes in cell state may be triggered either by a continu-
ous variable passing a threshold or by a stochastic event.
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A cell’s position is used to determine which three-dimensional patch represents
the local molecular environment for that cell. A cell is sensitive to molecular con-
centrations only in the patch that it occupies. Similarly, any changes made to the
concentration by the cell are applied only to the same patch.

Cell position determines which cells can interact. Cells are made sensitive to
other cells by adding a sensing function to their model definitions. This function
specifies the type of cell that can be detected and a distance limit on detection.
The distance limit can exceed the sensing cell’s radius because cells can extend
pseudopods to increase their detection range.

3.2.2. Phagocytosis
In order for a macrophage to ingest a target cell, such as a bacterium, the cells must
bind. The distance between cells and the number of target-specific receptors on
the macrophage’s surface both affect binding probability. There is a large variety
of receptor types that mediate phagocytosis in real cells, and they vary in affinity
for pathogen surface molecules and efficiency of inducing phagocytosis (Aderem,
2003). Macrophages vary in their levels of receptor expression and therefore in
their ability to phagocytose pathogens.

In CyCells, this heterogeneity is represented by giving each simulated
macrophage an attribute representing its phagocytic capability for a particular tar-
get type, expressed as a random value between 0 and 1. A cell with phagocytic
capability greater than a threshold value φ will phagocytose a target cell within
distance h. The target cell is removed from the extracellular environment and the
macrophage’s internal state is updated to reflect the number of targets ingested.

The fraction of the cell population that can phagocytose a given target is 1 − φ;
if φ = 0, all cells can phagocytose that target. Increasing values of φ represent in-
creasing difficulty of phagocytosing the target or decreasing phagocytic compe-
tence of the macrophage population.

3.2.3. Intracellular infection
Macrophages destroy many things that they phagocytose, but some pathogens such
as Mtb are able to establish an infection inside macrophages. Pathogens that have
infected a cell are not represented as encapsulated objects but rather as one vari-
able of the host cell’s internal state. This variable represents the number of intra-
cellular pathogens, which is a small integer value. If the host cell dies in a way that
can release these pathogens, this number is used to create the appropriate num-
ber of new pathogen cells. (Unlike intracellular bacteria, extracellular bacteria are
represented as distinct objects.)

The number of intracellular pathogens can change due to division or death of
pathogens within the cell. The rate at which pathogens divide or die intracellu-
larly depends on genetic factors (not modeled here) of both the bacteria and the
host cells, and the degree to which the host cell has been activated to kill intra-
cellular bacteria. We assume an intracellular division rate g and a death rate q
that may vary over time but are constant during any given time step �t . For the
time step size and rates used in our simulations, there is likely no more than one
birth or death event in a given time step. Therefore, the simulator increments
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the intracellular population m by 1 with probability gm�t or decrements it with
probability qm�t .

4. TB model

We model the development of a single nascent granuloma in a small volume of
tissue. Our model does not attempt a structurally correct representation of the
lung and its airspaces, but we use data on recruitment to the lung in response to
Mtb to refine the model. The most important characteristics to capture in this first
model are the interactions between key cell and cytokine types; more anatomic
detail could be incorporated later.

The TB model components are the three cytokines TNF, IL-10, and IFN-γ ;
uninfected, newly infected, and chronically infected macrophages; and T cells.
The three cytokines represent the influence of many types of cytokines involved
in the real system; in particular, TNF in the model is a surrogate for an ar-
ray of chemokines as well as TNF itself. We also simulate endothelial cells that
represent entry points for recruited cells but not cytokines produced by these
cells.

Changes in cell state representing infection, activation, and changes in cytokine
production are illustrated schematically in Fig. 1. Detailed descriptions of the tran-
sitions shown in Fig. 1 are given in the appendix; the parameters are summarized
in Table 1. Briefly, macrophages become infected by phagocytosing Mtb. Infected
macrophages may become capable of producing cytokines and/or killing intra-
cellular Mtb, depending on the local cytokine environment. Both macrophages
and T cells contribute to this cytokine environment. Eventually, infected
macrophages lose the ability to acquire these functions and become chronically
infected.

Our model of cytokine production and regulatory effects is based largely on in
vitro studies of cell cultures. These include some rather complicated feedback in-
teractions, but the model is still vastly simpler than the real system. In general, the
effect of these feedback loops is to regulate cell recruitment and macrophage ac-
tivation. This includes indirect effects, as some of the cytokines regulate cytokine
production. The simulations are used to determine how well these feedback inter-
actions, operating between individual neighboring cells, can capture key aspects
of the infection dynamics in tissue. Most model parameters were chosen to try
to match data from human cells, partly because most culture studies of alveolar
macrophage responses to Mtb use human cells. However, early infection dynamics
in humans are not observable, so simulation results are compared to observations
in mice.

The simulations represent the developing infection in a 1 mm3 volume. One
thousand simulated endothelial cells are randomly distributed throughout this vol-
ume, allowing influx rates to vary according to local cytokine concentrations. Each
simulation represents the development of a single nascent granuloma, and is there-
fore initialized with a single Mtb-infected macrophage in the center of the volume.
One thousand uninfected macrophages are also present initially, but no T cells.
We used a time step of 20 s and a molecular grid size of 50 µm.
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Fig. 1 Schematic of TB model showing macrophage and T cell behaviors. Labels inside the boxes
represent cell states, arrows represent transitions between states, and labels on the arrows repre-
sent enabling conditions for transitions to take place. Most cytokine production is inducible rather
than constitutive; this is indicated by the transitions from “off” to “on” or “ready.” T cell secretion
is marked as “ready” rather than on because T cells only secrete these cytokines when in contact
with a newly infected macrophage. Only newly infected macrophages can become activated; this
is indicated by the transition between (bacterial) “killing off” and “killing on.” T cell contact and
detectable IFN-γ are required for macrophage activation. IL-10+ indicates that presence of IL-10
increases the transition probability; IFN-γ− indicates a negative effect of IFN-γ on the transition
probability.

5. Simulation results

As mentioned in Section 4, our model simplifies the regulatory feedback loops
present in real tissues. The simulations were designed to test how well the model
captures dynamics observed in tuberculosis infection despite the simplifications.
In the following first two sections, we explore system dynamics with the base
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parameter values chosen from in vitro studies. The remaining sections study per-
turbations to the model corresponding to experimental model systems.

5.1. Outcome variability with base parameter set

There is considerable variation in simulation results for a single parameter set
(Table 1) due to the stochastic properties of the model. This is illustrated for Mtb
and macrophage counts in Fig. 2. Mtb were eliminated in 1 of the 30 simulations for
this parameter set. However, bacterial growth in some simulations was very high,
with a range over 3 logs growth in 3 weeks. There is similar variability in nature; le-
sions with different characteristics have been observed in different locations within
the same animal (Rhoades et al., 1997; Davis et al., 2002).

The total bacterial burden in mouse lungs is the net result of growth within
many independent lesions. In order to compare simulation results to those from

Fig. 2 Outcome variability for TB model with base parameter set. Total numbers of macrophages
(a) and Mtb (b) over time for 30 simulations of the base parameter set. qmax = 2 per day; other
parameter values are same as shown in Table 1. T cell influx began 2 weeks after the start of
infection.
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Fig. 3 Average simulated Mtb growth with base parameter set. qmax = 2 per day; other parame-
ter values are same as shown in Table 1.

experiments, we use the average simulated Mtb growth. This is shown in Fig. 3 for
the simulations plotted in Fig. 2. For comparison, Fig. 3 also shows results from a
set of simulations in which there were no T cells. The general trend matches that
seen in experiments (North and Jung, 2004) where initial exponential growth is ar-
rested shortly after the arrival of T cells. Cytokine concentrations are also within
physiologic ranges (not shown).

5.2. Lesion structure

Spatial distributions of cells have a significant effect on infection outcome. Figure 4
shows a graphical illustration of the 3-week lesion from the worst-case simula-
tion in Fig. 2 (the topmost line in the second panel). The figure shows an aggre-
gation of uninfected and infected macrophages and T cells. T cells tend to clus-
ter, presumably in areas of high TNF concentration. These clusters include many
newly infected cells, which can produce TNF and induce T cell production of TNF.
Macrophages within these clusters can become activated to kill Mtb. However,
T cells may also linger in areas where infected cells have died or cleared their
pathogens but the TNF concentration is still high. T cells not in contact with a
newly infected macrophage do not produce cytokines. Infected cells on the fringes
of these clusters may receive inadequate T cell and cytokine stimulation, partic-
ularly once they stop secreting TNF. These are the cells most likely to become
chronically infected and allow continued bacterial growth.

There are no extracellular Mtb in Fig. 4, and the infection is contained. In con-
trast, simulations without T cells produced lesions like that shown in Fig. 5, con-
taining larger numbers of infected cells and significant numbers of extracellular
Mtb. (Despite the spread of infection, there are still large numbers of uninfected
cells because a large percentage of the macrophages are unable to phagocytose
Mtb.)



2246 Bulletin of Mathematical Biology (2006) 68: 223–2261

Fig. 4 Simulated lesion with base parameter set. Left panel: screenshot of the entire simulated
volume. Right panel: thin slice through the center of the lesion. The green tissue cells were re-
moved from the figure on the right to make it easier to distinguish the remaining cell types. Large
dark blue cells are uninfected macrophages, large yellow cells are newly infected macrophages,
large magenta cells are chronically infected macrophages, and smaller cyan cells are T cells. There
are no extracellular Mtb in this image. qmax = 2 per day; other parameter values are same as shown
in Table 1.

Figure 4 shows a tight cluster of T cells in the center of the simulated lesion.
Rhoades et al. (1997) describe T cells and B cells in early lesions as being clus-
tered around blood vessels or around activated macrophages, but apparently this
does not result in a large clump of T cells like that seen in Fig. 4. The tight
cluster in the simulation is due in part to the lack of real tissue structure, which

Fig. 5 Simulated lesion without T cells. Left panel: screenshot of the entire simulated volume.
Right panel: thin slice through the center of the lesion. The green tissue cells were removed from
the figure on the right to make it easier to distinguish the remaining cell types. Large dark blue
cells are uninfected macrophages, large yellow cells are newly infected macrophages, large ma-
genta cells are chronically infected macrophages, and the very small red cells and arcs are extra-
cellular Mtb. Parameter values shown in Table 1.
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allows cells to pack densely and also allows the lesion to grow around simu-
lated blood vessels (endothelial cells). In tissue, clusters may also be generated
by local T cell proliferation (Ulrichs et al., 2004), which is not included in our
model.

The total number of simulated T cells may be greater than it should be due to
excessive influx or insufficient T cell death rates. Excessive T cell numbers or den-
sities in the simulations may explain why there is little delay between the initial
arrival of T cells and the decline in the Mtb population shown in Fig. 3; experi-
ments in mice show a later peak in the bacterial load. There are no estimates of
the numbers of different cell types in early lesions for comparison to the simu-
lated lesion cell composition. In patients with latent infection, T cell:macrophage
ratios in 5 cm3 of lung tissue containing mature lesions were approximately 1:3 or
1:2 (Ulrichs et al., 2005). In our simulated 1 mm3 lesion, this ratio is approximately
3:5.

The ability to make visual comparisons between simulated and actual lesion ap-
pearances is a valuable addition to the standard comparisons of population and
concentration time courses. Since macrophage activation and T cell cytokine pro-
duction depend on contact between macrophages and T cells, the spatial relation-
ships between cells are important. A better understanding of the spatial structure
within these lesions is needed. It will require both more experimental work at the
level of individual lesions and further refinements to spatial models such as ours.

5.3. Timing of T cell influx

In the simulations discussed thus far, T cell influx began 2 weeks after infection, as
observed in mice (Chackerian et al., 2002). The time required for expansion of an
antigen-specific population of T cells is thought to be less than 1 week (Janeway
et al., 1999). However, antigen must reach the lymphoid organs in large enough
quantities before this expansion can begin. It is thought that slow bacterial dis-
semination in tuberculosis infection is responsible for the delayed appearance of
Mtb-specific T cells (Chackerian et al., 2002). The slow progression observed early
in our simulations, due both to slow bacterial growth and slow recruitment of im-
mune system cells, supports the notion that transport of antigen to lymphoid or-
gans would also be slow.

The goal of tuberculosis vaccination is to increase the population of Mtb-specific
T cells available early in infection in the hopes of preventing disease. However,
experiments in mice show that although vaccination reduces the bacterial load, it
does not clear the infection (North and Jung, 2004). Simulations in which T cell in-
flux begins 1 week after infection reproduce these experimental models. Figure 6
shows simulated Mtb growth curves for T cell delays of 1 and 2 weeks; runs with
no T cells are shown for comparison. Earlier T cell arrival allows earlier inhibition
of Mtb growth and a significant reduction in the bacterial load. However, there
is still significant growth within unactivated macrophages in both sets of simula-
tions. Only 2 of 30 simulations with a 1-week delay in T cell influx cleared their
pathogens. These results suggest that factors other than the availability of T cells
limit the immune system’s ability to control the pathogen.
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Fig. 6 Effect of earlier T cell influx on simulated Mtb growth. qmax = 2 per day; other parameter
values are same as shown in Table 1.

5.4. IFN-γ receptor deficiency

A genetic susceptibility to mycobacterial infection has been linked to near absence
of the primary receptor for IFN-γ , IFN-γ R1 (Newport et al., 1996). Experiments
with IFN-γ R1-deficient mice show that loss of this receptor impairs the ability to
control Mtb growth (MacMicking et al., 2003). This deficiency is represented in
our model by raising the value of mIFN to 2 pg/ml, making macrophages much less
sensitive to IFN-γ . This affects both macrophage activation and IFN-γ inhibition
of IL-10 production.

The average Mtb growth in the IFN-γ receptor deficiency simulations is com-
pared to the earlier simulations in Fig. 7. Although bacterial load is increased
compared to the simulation of a normal response, there is still more control of the
pathogen than seen in murine experiments (MacMicking et al., 2003). This could
be an artifact of the model, or it could represent an actual difference between hu-
man and mouse parameter values.

However, the difference in bacterial load between the models of normal re-
sponse and IFN-γ receptor deficiency is significant. Figure 8 compares the dis-
tributions of the two sets of simulation results at day 23. Although there is some
overlap, the IFN-γ receptor deficiency model has many simulations for which Mtb
loads are much higher. The means of these two distributions are significantly dif-
ferent (two-sample t-test, P = 0.005). Assuming that disease is associated with Mtb
burdens above a threshold, our results agree with observations that the chances of
developing active disease are increased in the IFN-γ receptor deficiency model.

5.5. IL-10 knockout

IL-10, in both in vitro experimental cellular models and in our model (Fig. 1), in-
hibits inflammation and macrophage activation, with the logical expectation that
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Fig. 7 Average simulated Mtb growth with IFN-γ receptor deficiency (solid line); results from
Fig. 3 included for comparison (dotted and dashed lines). For solid line, mIFN = 2 pg/ml; other
parameter values are same as shown in Table 1.

the inhibition of IL-10 would result in increased bacterial killing. When we sim-
ulated the absence of IL-10, however, bacterial replication was paradoxically en-
hanced initially, followed by a marked increase in bacterial killing at 2 weeks when
specific T cells were recruited (Fig. 9). These results likely derived from multiple
inputs such as longer activation periods and more persistent TNF (chemokine)
secretion, and each hypothesis can be tested alone and in combination.

Two animal model studies utilizing IL-10 knockout mice arrived at differ-
ent endpoints. One study showed an early transient reduction in bacterial loads
(Roach, 2001), while the other showed no change in Mtb loads in spite of in-
creased IFN-γ production (Jung, 2003). Neither study showed an increase in initial
bacterial growth or inflammation. Many possible explanations for the differences

Fig. 8 Effect of IFN-γ receptor deficiency. Distributions of Mtb numbers after 23 days for
base parameter set and IFN-γ receptor deficiency. The box-and-whisker plot shows median (line
through the box), first and third quartiles (ends of the box), and minimum and maximum values
(lines at the ends of the ‘whiskers’) for each set of simulations.
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Fig. 9 Average simulated Mtb growth with IL-10 knockout (solid line); results from Fig. 3 in-
cluded for comparison (dotted and dashed lines). For solid line, pMIL10 = pTIL10 = 0; other pa-
rameter values are same as shown in Table 1.

between in silico and in vivo models may pertain. Our model ignored IL-10 inhibi-
tion of CD4+ T cell proliferation and cytokine secretion. It also did not distinguish
between T cell subsets, and regulatory T cells secreting IL-10 may exhibit different
dynamics than that modeled here. The phenotype of IL-10 knockout mice suggests
that IL-10 is a key regulator of the balance between pathology and protection, and
the current lack of understanding of the complexity of regulatory inputs suggests
that it will be difficult to capture this delicate balance faithfully.

5.6. Increased TNF production

Genetic variation in TNF genes is associated with increased levels of TNF and
may be associated with increased susceptibility to a number of diseases includ-
ing some in which pathogens infect macrophages (Hill, 1998). The cause of in-
creased susceptibility and/or pathology in these diseases is not understood. There
are no documented associations between increased TNF levels and tuberculosis
outcome, but neutralization of TNF secretion by monoclonal anti-TNF antibodies
increases susceptibility to clinical tuberculosis (Dinarello, 2005). TNF appears to
be an important cytokine in tuberculosis, and variation in TNF production could
conceivably be important. We simulated increased TNF production by increasing
the model secretion rates pMTNF and pTTNF fivefold.

Figure 10 shows that this change does not significantly affect the Mtb growth
curve. Increased TNF concentrations lead to increased cell recruitment, more in-
fected cells and small increases in the other cytokines; the increases appear to
counteract each other and produce little net change to the bacterial dynamics.

Figure 11 also shows that distributions of bacterial loads are similar (P > 0.5),
but that lesion sizes are significantly larger (P = 2.5 × 10−7) with increased TNF
production. Increased lesion size may be a correlate of increased pathology. On
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Fig. 10 Average simulated Mtb growth with increased TNF secretion (solid line); results from
Fig. 3 included for comparison (dotted and dashed lines). For solid line, pMTNF = 3000, pTTNF =
10,000; other parameter values are same as shown in Table 1.

the other hand, Chackerian et al. (2002) observed that mice that are able to survive
Mtb infection longer had faster initial lesion growth than more susceptible mice.
As in the simulations, bacterial load for the first few weeks was the same in both
strains. Chackerian et al. (2002) hypothesized that faster initial growth enhanced
development of the T cell response, with beneficial effects later in the infection.
This is an example of ways in which individual aspects of the immune response can
be either detrimental or beneficial, or perhaps both.

6. Discussion

A key distinction of our model is the focus on early infection dynamics. The typical
approach is to characterize the steady-state behavior of the system over weeks to
months. We believe that early events are crucial in shaping the eventual outcome

Fig. 11 Effect of increased TNF production. Distributions of Mtb load (left) and total number of
macrophages (right) after 23 days for base parameter set and TNF hypersecretion.
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of the response. As we observed in Section 5.1, there can be considerable varia-
tion in the dynamics over the first few weeks. The fact that there is similar vari-
ation in infection outcome in humans and mice illustrates the importance of ex-
plicitly representing the heterogeneity that occurs in real cell populations and the
effects of stochastic processes. Similarly, Section 5.2 illustrated that the spatial
structure of the developing lesion may also be significant. Successfully capturing
the spatial interactions between cells may be as important as including greater
molecular detail. The biological rationale for modeling spatial interactions is the
autocrine/paracrine nature of cell signaling. Our spatiotemporal model of Mtb in-
fection has simplified many molecular, cellular, and structural features of the acute
immune response in the lung. Despite these limitations, it has produced simula-
tions mimicking several different outcomes repeatedly observed in in vivo models
of tuberculosis. Our goal is to capture what is known about TB infection in an
executable model that allows us to explore various hypotheses about what is not
known.

Our model predicts unrestricted growth of mycobacteria in the presence of
macrophages alone, and restricted replication following the influx of immune
T cells. Earlier influx of T cells causes lower average mycobacterial numbers
by 3 weeks. These qualitative results are observed in mice in vivo (North and
Jung, 2004). Clearance of bacteria is rarely demonstrated in animal models. Al-
though T cells activate macrophages, T cells also increase macrophage recruit-
ment contributing to microbial persistence and spread in the model. In the simula-
tions, increased numbers of T cells tended to clump, compromising the efficiency
of macrophage activation. Microbial persistence may involve spatial isolation of
macrophages from activated T cells. However, our model does not account for
other factors such as inherent deficiencies in macrophage mycobacteriocidal ca-
pacities or changes in the microbial transcriptome governing evasion mechanisms
and reduced intracellular replication (North and Jung, 2004). These are areas for
future work.

Our model captures some interesting cytokine effects in early Mtb infection.
Reduced signaling due to IFN-γ receptor deficiency results in enhanced my-
cobacterial growth in both murine and human infections (Newport et al., 1996;
MacMicking et al., 2003). Our model qualitatively reproduces these observations;
the available literature does not permit quantitative comparisons. TNF may acti-
vate macrophages and synergize with interferons in this function. In the model,
a five-fold increase in TNF secretion had no net effect on mycobacterial replica-
tion in the model but caused significant increases in macrophage influx. TNF reg-
ulates chemokine induction essential for cell recruitment, granuloma formation,
and clearance of mycobacterial infection (Roach et al., 2002; Botha and Ryffel,
2003; Algood et al., 2004). The model set TNF to represent chemokine activity,
and therefore TNF was directly responsible for macrophage recruitment. The lack
of effect on mycobacterial numbers was not unexpected, since the primary effect
of TNF is to aid containment of Mtb later in infection (Mohan et al., 2001). The
simulation results highlight the contradictory effects of IL-10, which both inhibits
inflammation (reducing macrophage influx) and inhibits macrophage activation.
They illustrate a two-phase effect, perhaps first expressing the effect of inhibiting
macrophage activation, followed by inhibiting inflammation. A more sophisticated
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treatment of the complex regulatory interactions mediated by IL-10 will be a fruit-
ful target for future simulations.

Like any model, ours has limitations imposed by the selection of certain features
and exclusion of others, by conflicting data in the literature, and by the incom-
plete knowledge of molecular complexes and signaling pathways of the immune
response. Our model did not incorporate the immense diversity of T cell pheno-
type and regulatory function, nor did it provide a role for NK cells, features that
will be incorporated in future models. Cytokines such as TNF and IL-10 modulate
effects on apoptosis of infected cells (Oddo et al., 1998; Rojas et al., 1999; Keane
et al., 2000) as well as activation. Moreover, the model does not incorporate a sig-
nal threshold for activation; the cumulative probability of activation in response
to low levels of IFN over time may be overestimated. In the model, local cy-
tokine concentrations are primarily a function of cell density, limited by packing of
cells by chemotaxis and repulsion of adjacent cells counteracting chemotaxis. The
model does not incorporate receptor-mediated uptake and removal and other neg-
ative feedback mechanisms to modulate local cytokine concentrations, nor does it
include the effects of cytokine production by local tissue cells. There are also a
number of ways in which more anatomic realism could be incorporated. For ex-
ample, we include necrosis operationally in that infected macrophages die, but we
do not include the resulting tissue changes that affect cytokine diffusion and cell
movement. The net result of these simplifications is that diffusion is more rapid
and cell movement less hindered than in real tissues. As more quantitative experi-
mental data on these local effects become available, we will be able to extend the
model accordingly.

Most recent publications on modeling pulmonary tuberculosis and similar dis-
eases use differential equations to describe the persistence of mycobacteria. A
simple differential equation model predicted long-term persistence of organisms
if non-replicating dormancy was a feature (Antia et al., 1996). The interaction
between pathogen clearance and persistence caused oscillations of mycobacterial
numbers, a feature not yet demonstrated in in vivo models. A more sophisticated
differential equation model incorporating detailed dynamics of cytokine produc-
tion and immune cell function focused on long-term persistence of mycobacteria in
the lung (Wigginton and Kirschner, 2001). This model also predicted oscillations
in bacterial numbers over time, arriving at an equilibrium level of persistence. A
more recent model by the same group uses an agent-based approach (Segovia-
Juarez et al., 2004). Their model is two-dimensional and restricts cells to a fixed
lattice, but they conclude as we do that modeling cells in a spatially explicit man-
ner is most appropriate for representing granuloma formation. The contributions
of these models and others to understanding tuberculosis has been recently re-
viewed (Kirschner and Marino, 2005).

CyCells is a multipurpose simulator designed to incorporate spatial and stochas-
tic effects. Two other multipurpose simulators have been developed specifically for
multicellular systems and molecular interactions. The biological toolbox (Vawer
and Rashbass, 1997) used a mix of unrestricted cell movement and continuous
molecular concentrations similar to that in Dallon (2000). SIMMUNE used a reg-
ular lattice to define cell positions and discretization of molecular concentrations
(Meier-Schellersheim, 2001). However, these programs are not publicly available.
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CyCells in its current form can be used to model a wide variety of multicellular
systems, and the source code is available for those who wish to extend or modify
the simulator implementation (https://sourceforge.net/projects/cycells/).

In our simulations, we qualitatively replicated several outcomes observed in
murine models of tuberculosis altered by increase or decrease or removal of key
cytokines or their receptors. These replicated features were unexpected because
the model represents a marked simplification of the known immune response com-
ponents. The reasons for our successful replications are not completely under-
stood, but may in part be due to the robust network of host defense components
permitting survival in spite of removal of putatively critical molecular components.
Further model development will incorporate greater cellular and molecular detail.
Ideally, model development will be facilitated by in vivo experiments designed to
provide the quantitative details necessary to ultimately arrive at successful pre-
dictive models. We believe that these models will incorporate the stochastic and
spatiotemporal determinants exemplified in CyCells.

Acknowledgement

This publication was made possible by NSF (grants ANIR-9986555, CCR-0331580
CCR-0311686, and DBI-0309147), DARPA (grants F30602-02-1-0146), NIH
Grant Number RR-1P20RR18754 from the Institutional Development Award
(IDeA) Program of the National Center for Research Resources, P20 GM066283
and NIAID U54 AI057156 subaward 05-082. Its contents are solely the responsi-
bility of the authors and do not necessarily represent the official views of NSF,
DARPA, or NIH.

Appendix

A.1. Uninfected state

In the absence of infection, macrophages are assumed to enter the local tissue
from circulation at a fixed rate i. They have a fixed death rate lM, which balances
the influx rate to maintain a constant population. Uninfected macrophages do not
produce any cytokines.

Although influx and death are described in terms of the population rate, sim-
ulated cell arrivals and deaths occur with probability p = r�t , where r is the
population rate and �t is the time step. Other stochastic events are modeled
similarly.

A.2. Phagocytosis and infection

As explained in Section 3.2.2, each simulated macrophage has an attribute repre-
senting its phagocytic ability, with values ranging from 0 to 1. Those macrophages
with a phagocytic ability greater than φ are able to phagocytose Mtb that are close
enough. Our value for φ comes from in vitro data (Engele et al., 2002).
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When an uninfected macrophage phagocytoses a bacterium, it becomes infected.
Infected macrophages may continue to phagocytose bacteria. Mtb replicate inside
infected macrophages at a fixed rate in our model. The possible Mtb switch into
a nonreplicating state (Shi et al., 2003) is assumed to occur after the time period
covered by these simulations. Other factors affecting intracellular dynamics are
discussed in Section A.4. Some infected macrophages die due to excessive bacterial
load, assumed to occur when the number of intracellular bacteria reaches N. When
infected cells die, whether due to excessive bacterial load or not, their Mtb are
released into the extracellular environment.

There is no provision for extracellular Mtb growth or death in this model; the
bacterial population changes only through ingestion and release by macrophages
and intracellular growth and death. Dannenberg and Rook (1994) claim that ex-
tracellular growth is not significant in the early stages of infection. There is also
evidence that Mtb persist within tissues for years without replicating (Manabe and
Bishai, 2000; Wayne and Sohaskey, 2001), indicating negligible extracellular death.

A.3. Inflammation

We assume that the macrophage influx rate increases as a saturating function of
the local TNF concentration CTNF:

iCTNF = imaxCTNF

ihalf + CTNF
(A.1)

where imax is the maximum influx rate and ihalf is the TNF concentration at which
the actual rate is half-maximal. (Production of TNF is described in Section A.5.)
The saturating form reflects the assumption that there is a physical limit on the
number of cells that can migrate at once, due either to availability of the cells in
circulation or to limits on their passage through the endothelium and epithelium.

The form of Eq. (1) describes T cell recruitment as well, except there is a de-
lay before T cell influx begins, to represent the time required to mount a T cell
response. The model ignores possible depletion of cells in circulation; this effect
should not be significant for the short-term responses considered here. T cells have
a fixed death rate lT.

Parameters describing cell movement and interaction distances are given in
Table 2. The speed and persistence times shown are based on studies of
macrophages; for simulation purposes, T cells are assumed to move the same way
that macrophages do.

A.4. Macrophage activation

Intracellular bacterial replication occurs with probability g�t and death of in-
tracellular bacteria occurs with probability q�t for each bacillus. In unactivated
macrophages, q = 0. Macrophages are activated by changing the value of q to qmax

(referred to in the diagram (Fig. 1) as turning killing on) with probability a�t.
Kaufmann (2001) notes that even highly activated macrophages may fail to fully
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Table 2 Parameters for cell movement and contact.

Parameter Meaning Value Source

S Cell speed 2 µm/min Lauffenburger and Linderman (1993)
P Cell persistence time 30 min Lauffenburger and Linderman (1993)
RM Macrophage radius 5 µm Estimate
RT T cell radius 3 µm Estimate
RP Pathogen radius 1 µm Estimate
H Contact distance 10 µm Estimate
Lmin Minimum chemokine 1 pM Thomson (1998)

concentration

Note. Cells and pathogens are represented as spheres with the specified radii for collision resolu-
tion purposes. However, since real cells are not spheres and macrophages can extend pseudopods
to sense their surroundings, simulated cells respond to neighbors within 10 µm. For chemotactic
movement, the chemokine concentration must be greater than Lmin. Chemokine sensitivities vary,
but the value listed is close to 1 molecule per cell volume and therefore represents a reasonable
lower bound below which gradients will not be detectable.

eradicate their intracellular pathogens. In the model, the likelihood of this hap-
pening depends on the relative values of g and q. If a cell manages to kill all of its
intracellular bacilli, it reverts to the uninfected state.

Macrophage activation requires contact between the infected cell and a T cell,
and a nonzero IFN-γ concentration. It is probabilistic, with the chances of activa-
tion increasing with increasing concentrations of IFN-γ and TNF. The activation
probability is assumed to be of the form:

a�t = amax
CIFN(1 + aTNFCTNF)

CIFN(1 + aTNFCTNF) + mIFN
�t (A.2)

where CIFN and CTNF are the concentrations of IFN-γ and TNF, respectively. amax

is the maximum rate at which cells become activated. The estimate for amax of
1 per day comes from the observation that it takes roughly 1 day to start pro-
duction of reactive nitrogen intermediates (RNI) thought to be important in con-
trol of Mtb (Schroder et al., 2004). mIFN represents the concentration of IFN-γ at
which the activation rate is half of its maximum value. aTNF represents the syn-
ergistic effect of TNF on macrophage activation. Macrophages in the simulation
can be activated by IFN-γ alone or in combination with TNF but not by TNF
alone.

The probability u�t that a newly infected cell becomes chronically infected (and
therefore unable to produce TNF or kill bacteria) increases with increasing con-
centrations of IL-10:

u = umax
CIL−10

CIL−10 + mIL−10
(A.3)

where CIL−10 is the concentration of IL-10, umax the maximum transition rate, and
mIL−10 the IL-10 concentration at which the rate is half-maximal.
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A.5. Cytokine production

Differences in cytokine concentrations in culture reflect differences in the num-
ber of cytokine-producing cells and in production rates for each cell. Cytokine
production depends on transcriptional regulation within individual cells; Hume
(2000) suggests that it is more appropriate to think of this regulation in terms of
probabilities of transcription rather than rates.

Accordingly, inducible cytokine production in the simulated cells is modeled by
giving them a probability of starting or stopping cytokine secretion at a fixed rate.
At this time, there is insufficient published data for modeling continuously varying
secretion rates.

A.5.1. Macrophage cytokine secretion
Mtb can induce newly infected macrophages to produce TNF and/or IL-10. There
are separate probabilities controlling whether or not each cell starts producing
each cytokine. The probability of starting TNF secretion is fixed, given by von�t.
We chose a value for von that allows the average infected cell to start producing
TNF about 1 day after infection. The probability w�t of starting IL-10 secretion
depends on IFN-γ :

w = wmax
mIFN

CIFN + mIFN
(A.4)

In this case, the maximal rate wmax occurs when there is no IFN-γ ; increasing con-
centrations of IFN-γ decrease the probability that a cell will start secreting IL-10.
mIFN represents the IFN-γ concentration at which the rate is half-maximal; the
same value was used here as in Eq. (2).

Once secretion is “turned on,” a cell continues to secrete at a fixed rate until
secretion is turned off. The rates are pMTNF and pMIL−10 for TNF and IL-10, re-
spectively. Macrophage IL-10 production is turned off only if the macrophage be-
comes uninfected. TNF production is turned off when a cell becomes chronically
infected, and it may be turned off earlier with probability v�t that increases with
IL-10:

v = voff
CIL−10

CIL−10 + mIL−10
(A.5)

Parameters for macrophage cytokine secretion were chosen so that the resulting
concentrations were in rough agreement with those observed in culture experi-
ments (Engele et al., 2002).

A.5.2. T Cell cytokine secretion
T cell cytokine production requires contact between the T cell and a newly in-
fected macrophage; chronically infected cells lose their ability to stimulate T cell
cytokine production. All T cells are assumed to be capable of producing IFN-γ
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and TNF when they enter infected tissue. IL-10 production, however, is delayed
as reported in Yssel et al. (1992). “Turning on” T cell IL-10 production is mod-
eled similarly to macrophage IL-10 production, using Eq. (4). Cytokine secretion
rates are fixed, as for macrophages; the rates are pTTNF, pTIL−10 and pTIFN for TNF,
IL-10 and IFN-γ , respectively. T cell secretion parameters were chosen so that the
resulting concentrations were in rough agreement with those observed in in vitro
experiments (Barnes et al., 1993; Tsukaguchi et al., 1999).

A.6. Cytokine decay and diffusion

All cytokines are assumed to decay and diffuse at fixed rates. The rates used
are the same for all cytokines, which have roughly similar molecular weights. In
vivo, cells also remove cytokine molecules from the extracellular environment;
cytokine concentrations therefore depend on cell density. However, there is in-
sufficient information on binding and internalization rates of the cytokines used
in this model to include this effect. Implications of this limitation are discussed in
Section 6.

Changes in molecular concentration due to diffusion are calculated using an ex-
plicit method based on concentrations from the previous time step. The change in
one time step of the concentration u in a particular grid cell with indices i, j, k is
given by:

�ui, j,k

�t
= D

[
ui+1, j,k + ui−1, j,k + ui, j+1,k + ui, j−1,k + ui, j,k+1 + ui, j,k−1 − 6ui, j,k

(�x)2

]

(A.6)

where D is the diffusion coefficient and �x is the width of each (cubical) grid cell.
For this method to give reasonable results, the time step must meet the following
constraint (Press et al., 1998):

�t ≤ (�x)2

6D
(A.7)

If the global simulation time step is larger than this limit, the diffusion rou-
tine takes multiple substeps using a smaller time step that meets the constr-
aint.

Our implementation of molecular diffusion does not take the local cell density
into account. This is a common simplification, but one that could affect molecular
concentrations and gradients in regions of high cell density.
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