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Abstract

Set-Sharing analysis, the classic Jacobs and Langen’s domain, has been widely used to infer several inter-
esting properties of programs at compile-time such as occurs-check reduction, automatic parallelization,
finite-tree analysis, etc. However, performing abstract unification over this domain implies the use of a
closure operation which makes the number of sharing groups grow exponentially. Much attention has been
given in the literature to mitigate this key inefficiency in this otherwise very useful domain. In this paper
we present two novel alternative representations for the traditional set-sharing domain, tSH and tNSH,
which compress efficiently the number of elements into fewer elements enabling more efficient abstract oper-
ations, including abstract unification, without any loss of accuracy. Our experimental evaluation supports
that both representations can reduce dramatically the number of sharing groups showing they can be more
practical solutions towards scalable set-sharing.

1 Introduction

In abstract interpretation [11] of logic programs sharing analysis has received con-

siderable attention. Two or more variables in a logic program are said to share if in

some execution of the program they are bound to terms which contain a common

variable. A variable in a logic program is said to be ground if it is bound to a

ground term in all possible executions of the program. A type of sharing analysis

that has received significant attention is set-sharing analysis. Set-sharing analysis

was originally introduced by Jacobs and Langen [16,18] and its abstract values are

sets of sets of variables that keep track in a compact way of the sharing patterns

among variables.

Example 1.1 (Set-sharing using set of sets of variables). Let V =

{X1, X2, X3, X4} be a set of variables of interest. The abstraction in set-sharing of
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a substitution such as θ = {X1 7→ f(U1, U2, V1, V2, W1), X2 7→ g(V1, V2, W1), X3 7→
g(W1, W1), X4 7→ a} will be {{X1}, {X1, X2}, {X1, X2, X3}}. Sharing group {X1}
in the abstraction represents the occurrence of run-time variables U1 and U2 in

the concrete substitution, {X1, X2} represents V1 and V2, and {X1, X2, X3} rep-

resents W1. Note that X4 does not appear in the sharing groups because X4 is

ground. Note also that the number of (occurrences of) run-time variables shared is

abstracted away.

Sharing and groundness have been used to infer several interesting properties

of programs at compile-time; most notably but not limited to: occurs-check re-

duction (e.g., [27]), automatic parallelization (e.g., [25,24]), and finite-tree analysis

(e.g., [2]). The accuracy of set-sharing has been improved by extending it with

other kinds of information, the most relevant being freeness and linearity infor-

mation [16,24,9,15], and also information about term structure [17,4,23]. Sharing

in combination with other abstract domains has also been studied [8,14,10]. The

significance of set-sharing is that it keeps track of sharing among sets of variables

more accurately than other abstract domains such as pair-sharing [27] due to better

groundness propagation and other factors that are relevant in some of its applica-

tions [6]. In addition, set-sharing has attracted much attention [7,10,3,6] because

its algebraic properties allow elegant encodings into other efficient implementations

(e.g., ROBDDs [5]). In [25,24], the first comparatively efficient algorithms were

presented for performing the basic operations needed for implementing set sharing-

based analyses.

However, set-sharing has intrinsically a key computational disadvantage: the

abstract unification (amgu, for short) implies a potentially exponential growth in the

number of sharing groups due to the up-closure (also called star-union) operation

which is the heart of that operation. Considerable attention has been given in

the literature to reducing the impact of the complexity of this operation. In [28],

Zaffanella et al. extend the set-sharing domain for inferring pair-sharing from a

set of sets of variables to a pair of sets of sets of variables in order to support

widening. The key concept is that the set of sets in the first component (called

clique) is reinterpreted as representing all sharing groups that are contained within

it. Although significant efficiency gains are achieved, this approach loses precision

with respect to the original set-sharing. A similar approach is followed in [26]

but for inferring set-sharing in a top-down framework. Other relevant work was

presented in [20] in which the up-closure operation was delayed and full sharing

information was recovered lazily. However, this interesting approach shares some

of the disadvantages of Zaffanella’s widening. Therefore, the authors refined the

idea in [19] reformulating the amgu in terms of the closure under union operation,

collapsing those closures to reduce the total number of closures and applying them

to smaller descriptions without loss of accuracy. In [10] the authors show that

Jacobs and Langen’s sharing domain is isomorphic to the dual negative of Pos [1],

denoted by coPos. This insight improved the understanding of sharing analysis,

and led to an elegant expression of the combination with groundness dependency

analysis based on the reduced product of Sharing and Pos. In addition, this work

pointed out the possible implementation of coPos through ROBDDs leading to more

efficient implementations of set-sharing analyses.
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In this paper, we present a different approach in order to mitigate the computa-

tional inefficiencies of the set-sharing domain. We propose two novel representations

that compress efficiently the number of elements into fewer elements enabling more

efficient abstract operations without any loss of accuracy. The first representation,

tSH, compacts the sharing relationships by eliminating redundancies among them.

The second, tNSH, leverages the complement (or negative) sharing relationships of

the original sharing set. Intuitively, let shV be a sharing set over the set of variables

of interest V, then tNSH keeps track of ℘(V) \ shV . This new capability of tNSH

dramatically reduces the number of elements to represent as the cardinality of the

original set grows toward 2|V|. It is important to notice that our work is not based

on [10]. Although they define the dual negated positive Boolean functions, coPos

does not represent the entire complement of the positive set. Moreover, they do

not use coPos as a means of compacting relationships but as a way of representing

Sharing through Boolean functions. We also represent Sharing through Boolean

functions, but that is where the similarity ends.

In the remainder of the paper we first describe Jacobs and Langen’s set-sharing

domain, bSH, adapted for handling binary strings in Section 2 and we extend it

in Section 3 presenting tSH, a more compact representation. In Section 4, we

introduce our next novel representation, tNSH, the complement (or negative) of

the original set-sharing. Finally, we show our experimental evaluation of these

representations in Section 5 and conclude in Section 6.

2 Set-Sharing Abstract Domain

The set-sharing domain was first presented by Jacobs and Langen in [16]. The

presentation here follows that of [28,10], since the notation used and the abstract

unification operation obtained are rather intuitive. Unless otherwise stated here

and in the rest of paper we will represent the set-sharing domain using a set of

strings rather than a set of sets of variables.

Definition 2.1 (Binary Sharing Domain, bSH). Let alphabet Σ = {0, 1}, V
be a fixed and finite set of variables of interest in an arbitrary order, and Σl the

finite set of all strings over Σ with length l, 0 ≤ l ≤ |V|. Let bSH l = ℘0(Σl) be the

proper powerset (i.e., ℘(Σl) \ {∅} ) that contains all possible combinations over Σ

with length l. Then, the binary sharing domain is defined as bSH =
⋃

0≤l≤|V|

bSH l.

Let F and P be sets of ranked (i.e., with a given arity) functors of interest;

e.g., the function symbols and the predicate symbols of a program. We will use

Term to denote the set of terms constructed from V and F ∪P. Although somehow

unorthodox, this will allow us to simply write g ∈ Term whether g is a term

or a predicate atom, since all our operations apply equally well to both classes

of syntactic objects. We will denote t̂ by the binary representation of the set of

variables of t ∈ Term according to a particular order among variables. Since t̂ will

be always used through a bitwise operation with some string of length l, the length

of t̂ must be l. If not, t̂ is adjusted with 0’s in those positions associated with

variables represented in the string but not in t.
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The following definitions are an adaptation for the binary representation of the

standard definitions for the sharing domain [16]:

Definition 2.2 (Binary relevant sharing rel(bsh, t) and irrelevant sharing

irrel(bsh, t)). Given t ∈ Term, the set of binary strings in bsh ∈ bSH l of length

l that are relevant with respect to t is obtained by a function rel(bsh, t) : bSH l ×
Term → bSH l defined as:

rel(bsh, t) = {s | s ∈ bsh, (s
∧

t̂) 6= 0l}

where
∧

represents the bitwise AND operation and 0l is the all-zeros string of length

l. Consequently, the set of binary strings in bsh ∈ bSH l that are irrelevant with

respect to t is a function irrel(bsh, t) : bSH l × Term → bSH l where irrel(bsh, t) is

the complement of rel(bsh, t), i.e., bsh \ rel(bsh, t).

Definition 2.3 (Binary cross-union, ×∪ ). Given bsh1, bsh2 ∈ bSH l, their cross-

union is a function ×∪ : bSH l × bSH l → bSH l defined as

bsh1 ×∪ bsh2 = {s | s = s1
∨

s2, s1 ∈ bsh1, s2 ∈ bsh2}

where
∨

represents the bitwise OR operation.

Definition 2.4 (Binary up-closure, (.)∗). Let l be the length of strings in bsh ∈
bSH l, then the up-closure of bsh, denoted bsh∗ is a function (.)∗ : bSH l → bSH l

that represents the smallest superset of bsh such that s1
∨

s2 ∈ bsh∗ whenever

s1, s2 ∈ bsh∗:

bsh∗ = {s | ∃n ≥ 1 ∃t1, . . . , tn ∈ bsh, s = t1
∨

. . .
∨

tn}

Definition 2.5 (Binary abstract unification, amgu). The abstract unification

is a function amgu : V × Term × bSH l → bSH l defined as

amgu(x, t, bsh) = irrel(bsh, x = t) ∪ (rel(bsh, x)×∪ rel(bsh, t))∗

Example 2.6 (Binary abstract unification). Let V = {X1, X2, X3, X4} be the

set of variables of interest and let sh = {{X1}, {X2}, {X3}, {X4}} be a sharing set.

Assume the following order among variables: X1 ≺ X2 ≺ X3 ≺ X4. Then, we can

easily encode each sharing group sg ∈ sh into a binary string s such that s[i] = 1,

(1 ≤ i ≤ |sg|) if and only if the i-th variable of V appears in sg. In this example,

sh is encoded as the following set of binary strings bsh = {1000, 0100, 0010, 0001}.
Consider the analysis of X1 = f(X2, X3), the result is:

(i) A = rel(bsh, X1) = {1000} and

B = rel(bsh, f(X2, X3)) = {0100, 0010}

(ii) A×∪B = {1100, 1010}

(iii) (A×∪B)∗ = {1100, 1010, 1110}

(iv) C = irrel(bsh, X1 = f(X2, X3)) = {0001}

(v) amgu(X1, f(X2, X3), bsh) = C ∪ (A×∪B)∗ ={0001, 1100, 1010, 1110}

The design of the analysis must be completed by defining the following abstract

operations that are required by an analysis engine: init (initial abstract state),

equivalence (between two abstract substitutions), join (defined as the union), and
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project. In the interest of brevity, we define only the project operation since the

other three operations are trivial.

Definition 2.7 (Binary projection, bsh|t). The binary projection is a function

bsh|t: bSH l × Term → bSHk (k ≤ l) that removes the i-th positions from all

strings (of length l) in bsh ∈ bSH l, if and only if the i-th positions of t̂ (denoted by

t̂[i]) is 0, and it is defined as

bsh|t = {s′ | s ∈ bsh, s′ = π(s, t)}

where π(s, t) is the binary string projection defined as

π(s, t) =



















ǫ, if s = ǫ, the empty string

π(s′, t), if s = s′ai and t̂[i] = 0

π(s′, t)ai, if s = s′ai and t̂[i] = 1

and s′ai is the concatenation of character a to string s′ at position i.

3 Ternary Set-Sharing Abstract Domain

In this section, we introduce a more efficient representation for the set-sharing do-

main defined in Sec. 2 to accommodate a larger number of variables for analysis.

We extend the binary string representation discussed above to use a ternary al-

phabet Σ∗ = {0, 1, ∗}, where the ∗ symbol denotes both 0 and 1 bit values. This

representation effectively compresses the number of elements in the set into fewer

strings without changing what is being represented (i.e., without loss of accuracy).

To handle the ternary alphabet, we redefine the binary operations covered in Sec. 2.

Definition 3.1 (Ternary Sharing Domain, tSH). Let alphabet Σ∗ = {0, 1, ∗},
V be a fixed and finite set of variables of interest in an arbitrary order as in Def. 2.1,

and Σl
∗ the finite set of all strings over Σ∗ with length l, 0 ≤ l ≤ |V|. Then, tSH l =

℘0(Σl
∗) and hence, the ternary sharing domain is defined as tSH =

⋃

0≤l≤|V|

tSH l.

Prior to defining how to transform the binary string representation into the cor-

responding ternary string representation, we introduce two core definitions, Def. 3.2

and Def. 3.3, for comparing ternary strings. These operations are essential for the

conversion and set operations. In addition, they are used to eliminate redundant

strings within a set and to check for equivalence of two ternary sets containing

different strings.

Definition 3.2 (Match, M). Given two ternary strings, x, y ∈ Σl
∗, of length l,

match is a function M : Σl
∗ × Σl

∗ → B, such that ∀i 1 ≤ i ≤ l,

xMy =







true, if (x[i] = y[i]) ∨ (x[i] = ∗) ∨ (y[i] = ∗)

false, otherwise

Definition 3.3 (Subsumed By ×⊆ and Subsumed In ×j ). Given two ternary

strings s1, s2 ∈ Σl
∗, ×⊆ : Σl

∗ × Σl
∗ → B is a function such that s1

×⊆s2 if and only

if every string matched by s1 is also matched by s2. More formally, s1
×⊆ s2 ⇐⇒
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0 Convert(bsh, k)
1 tsh ← ∅
2 foreach s ∈ bsh
3 y ← PatternGenerate(tsh, s, k)
4 tsh ← ManagedGrowth(tsh, y)
5 return tsh

10 PatternGenerate(tsh, x, k)
11 m ← Specified(x)
12 i ← 0
13 x′ ← x
14 l ← length(x)
15 while m > k and i < l
16 Let bi be the value of x′ at position i
17 if bi = 0 or bi = 1 then
18 x′ ← x′ · bi
19 if x′ ×j tsh then
20 x′ ← x′ · ∗i
21 else
22 x′ ← x′ · bi
23 m ← Specified(x′)
24 i ← i + 1
25 return x′

30 ManagedGrowth(tsh, y)
31 Sy = {s | s ∈ tsh, s ×⊆y}
32 if Sy = ∅ then
33 if y ×/j tsh then
34 append y to tsh
35 else
36 remove Sy from tsh
37 append y to tsh
38 return tsh

Fig. 1. A deterministic algorithm for converting a set of binary strings bsh into a set of ternary strings tsh,
where k is the desired minimum number of specified bits (non-∗) to remain.

∀s ∈ tSH l, if s1Ms then s2Ms. For convenience, we augment this definition to

deal with sets of strings. Given a ternary string s ∈ Σl
∗ and a ternary sharing set,

tsh ∈ tSH l, ×j : Σl
∗ × tSH l → B is a function such that s ×jtsh if and only if there

exists some element s′ ∈ tsh such that s ×⊆s′.

Figure 1 details the pseudo code for converting a set of binary strings into a

set of ternary strings. The function Convert evaluates each string of the input

and attempts to introduce ∗ symbols using PatternGenerate, while eliminating

redundant strings using ManagedGrowth.

PatternGenerate evaluates the input string bit-by-bit to determine where the

∗ symbol can be introduced. The number of ∗ symbols introduced depends on the

sharing set represented and k, the desired minimum number of specified bits, where

1 ≤ k ≤ l (the string length). For a given set of strings of length l, parameter

k controls the compression of the set. For k = l (all bits specified), there is no

compression and tsh = bsh. For k = 1, the maximum number of ∗ symbols are

introduced. For now, we will assume that k = 1, and some experimental results in

Section 5 will show the best overall k value for a given l. The Specified function

returns the number of specified bits (0 or 1) in x.

ManagedGrowth checks if the input string y subsumes other strings from tsh. If

no redundant string exists, then y is appended to tsh only if y itself is not redundant

to an existing string in tsh. Otherwise, all such redundant strings are removed from

the set and replaced by y.

Example 3.4 (Conversion from bSH to tSH). Let V be the set of variables of

interest with the same order as Example 2.6. Assume the following sharing set of

binary strings bsh = {1000, 1001, 0100, 0101, 0010, 0001}. Then, a ternary string

representation produced by applying Convert is tsh ={100*, 0010, 010*, *001}.

The example above begins with Convert(bsh,k = 1). Since tsh = ∅ initially

(line 1), the first string 1000 is appended to tsh, so tsh = {1000}. Next, 1001

from bsh is evaluated. In PatternGenerate, with x′ at iteration i (denoted as

x′
i), i = 3 and b3 = 1, we test x′

3 = 1000 if the ith position of x can be replaced

with a ∗ (line 15-24). In this case, since x′
3

×j tsh (line 19), x′
3 = 100* is returned
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(line 25). Next, ManagedGrowth evaluates 100* and since it subsumes 1000 (Sy =

{1000}), 100* replaces 1000 leaving tsh = {100*} (line 38). The process continues

with PatternGenerate({100*},0100) (line 3). In PatternGenerate, since x′
0

×/j tsh,

x′
1

×/jtsh, x′
2

×/jtsh, and x′
3

×/jtsh, we reset each ith bit to its original value (line 22) and

x′ = x = 0100 is returned. Next, ManagedGrowth({100*},0100) is called and since

0100 is not redundant to any string in tsh, it is appended to tsh resulting in tsh =

{100*,0100}. The process continues with PatternGenerate({100*,0100},0101). In

PatternGenerate, when x′
3 = 0100 and since x′

3
×jtsh, then x′

3 = 010* is returned.

ManagedGrowth( {100*, 0100}, 010*) is called next and since 010* subsumes 0100

in tsh, it is replaced leaving tsh ={100*,010*} (line 38). The process continues

similarly, for the remaining input strings in bsh obtaining the final result of tsh =

{100*, 0010, 010*, *001}.

Next, we redefine the binary string operations to account for the ∗ symbol in

a ternary string. Note that since the ternary representation extends the binary

alphabet (i.e., binary is a subset of the ternary alphabet), ternary operations can

also operate over strictly binary strings. For sake of simplicity, we will overload

certain operators to denote operations involving both binary and ternary strings.

Definition 3.5 (Ternary-or
∨

and Ternary-and
∧

). Given two ternary

strings, x, y ∈ Σl
∗ of length l, ternary-or and ternary-and are two bitwise-or functions

defined as
∨

,
∧

: Σl
∗ × Σl

∗ → Σl
∗ such that z = x

∨

y and w = x
∧

y, ∀i 1 ≤ i ≤ l,

where:

z[i] =



















∗ if (x[i] = ∗ ∧ y[i] = ∗)

0 if (x[i] = 0 ∧ y[i] = 0)

1 otherwise w[i] =











































∗ if (x[i] = ∗ ∧ y[i] = ∗)

1 if (x[i] = 1 ∧ y[i] = 1)

∨ (x[i] = 1 ∧ y[i] = ∗)

∨ (x[i] = ∗ ∧ y[i] = 1)

0 otherwise

Definition 3.6 (Ternary set intersection, ∩). Given tsh1, tsh2 ∈ tSH l, ∩ :

tSH l × tSH l → tSH l is defined as
tsh1 ∩ tsh2 = {r | r = s1

∧

s2, s1Ms2, s1 ∈ tsh1, s2 ∈ tsh2}

For convenience, we define two binary patterns, 0-mask and 1-mask, in order to

simplify further operations. The former takes an l-length binary string s and returns

a set with a single string having a 0 where s[i] = 1 and ∗’s elsewhere, ∀i 1 ≤ i ≤ l.

The latter takes also an l-length binary string s, but returns a set of strings with a

1 where s[i] = 1 and ∗’s elsewhere, ∀i 1 ≤ i ≤ l. For instance, 0-mask(0110) and

1-mask(0110) return {∗00∗} and {∗1 ∗ ∗, ∗ ∗ 1∗}, respectively.

Definition 3.7 (Ternary relevant sharing rel(tsh, t) and irrelevant sharing

irrel(tsh, t)). Given t ∈ Term with length l and tsh ∈ tSH l with strings of length l,

the set of strings in tsh that are relevant with respect to t is obtained by a function

rel(tsh, t) : tSH l × Term → tSH l defined as
rel(tsh, t) = tsh ∩ 1-mask(t̂)

In addition, irrel(tsh, t) is defined as
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irrel(tsh, t) = (tsh ∩ 1-mask(t̂)) ∩ 0-mask(t̂)

Ternary cross-union,×∪ , and ternary up-closure, (.)∗, operations are as defined

in Def. 2.3 and in Def. 2.4, respectively, except the binary version of the bitwise

OR operator is replaced with its ternary counterpart defined in Def. 3.5 in order

to account for the ∗ symbol. In addition, the ternary abstract unification (amgu)

is defined exactly as the binary version, Def.2.5, using the corresponding ternary

definitions.

Example 3.8 (Ternary abstract unification). Let tsh = {100*, 010*, 0010,

*001} as in Example 3.4. Consider again the analysis of X1 = f(X2, X3), the result

is:

(i) A = rel(tsh, X1) = {100*} and

B = rel(tsh, f(X2, X3)) = {010*,0010}

(ii) A×∪B = {110*,101*}

(iii) (A×∪B)∗ = {110*, 101*, 111*}

(iv) C = irrel(tsh, X1 = f(X2, X3)) = {0001}

(v) amgu(X1, f(X2, X3), tsh) = C ∪ (A×∪B)∗ = {0001, 110*, 101*, 111*}

Ternary projection, tsh|t, is defined similarly as binary projection, see Def. 2.7.

However, the projection domain and range is extended to accommodate the ∗ sym-

bol. So, the function definition remains the same except that ternary string projec-

tion is now defined as a function π(s, t): Σl
∗×Term → Σk

∗, k ≤ l. For example, let

tsh = {100*, 010*, 0010, *001} as in Example 3.4. Then, the projection of tsh over

the term t = f(X1, X2, X3) is tsh|t = {100, 010, 001}. Note that since a string of

all 0’s is meaningless in a set-sharing representation, it is not included here.

Definition 3.9 (Ternary initial state, init). The initial state init : V × I+ →
tSH |V| describes an empty substitution given a set of variables of interest. Assuming

the binary initial state operation defined as initbSH : V → bSH |V|, the ternary initial

state can be defined using the Convert algorithm in Fig. 1 as:

init(V, k) = Convert(initbSH(V), k)

Definition 3.10 (Ternary equivalence, ≡). Given tsh1, tsh2 ∈ tSH l, the sets

are equivalent if and only (∀t1 ∈ tsh1, ∀s1
×⊆t1, s1

×jtsh2) ∧ (∀t2 ∈ tsh2, ∀s2
×⊆t2,

s2
×jtsh1).

Finally, the ternary join is defined as its binary counterpart, i.e., union.

4 Negative Ternary Set-Sharing Abstract Domain

In this section, we describe a further step using the ternary representation discussed

in the previous section. In certain cases, a more compact representation of sharing

relationships among variables can be captured equivalently by working with the

complement (or negative) set of the original sharing set. A ternary string t can

either be in or not in the set tsh ∈ tSH. This mutual exclusivity together with the

finiteness of V allows for checking t’s membership in tsh by asking if t is in tsh, or,
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equivalently, if t is not in its complement, tsh. Given a set of l-bit binary strings, its

complement or negative set contains all the l-bit ternary strings not in the original

set. Therefore, if the cardinality of a set is greater than half of the maximum size

(i.e., 2|V|−1), then the size of its complement will not be greater than 2|V|−1. It

is this size differential that we leverage to our advantage. In set-sharing analysis,

as we consider programs with larger numbers of variables of interest, the potential

number of sharing groups grows exponentially, toward 2|V|, and the number of

sharing groups not in the sharing set decreases toward 0.

The idea of a negative set representation and its associated algorithms extends

the work by Esponda et al. in [12,13]. In that work, a negative set is generated

from the original set in a similar manner as the conversion algorithms shown in Fig.

1 and 2. However, they produce a negative set with unspecified bits in random

positions and with less integrated emphasis in managing the growth of the result-

ing set. The technique was originally introduced as a means to generate Boolean

satisfiability (SAT) formulas. By leveraging the difficulty of finding solutions to

hard SAT instances, they essentially are able to secure the contents of the original

set, without the use of encryption [12]. In addition, these hard-to-reverse negative

sets are still able to answer membership queries efficiently but remain intractable

to reverse (to obtain the contents of the original set). In this paper, we disregard

this security property, and use the negative approach to address the efficiency issues

faced by the traditional set-sharing domain.

The conversion to the negative set can be accomplished using the two algo-

rithms shown in pseudo code in Figure 2. NegConvert uses the Delete operation

to remove input strings of the set sh from U , the set of all l-bit strings U = {∗l},
and then, the Insert operation to return U \ sh which represents all strings not in

the original input. Alternatively, NegConvertMissing uses the Insert operation

directly to append each string missing from the input set to an empty set resulting

in a representation of all strings not in the original input. Although as shown in

Table 1 both algorithms have similar time complexities, depending on the size of the

original input, it may be more efficient to find all the strings missing from the input

and transform them with NegConvertMissing, rather than applying NegConvert

to the input directly. Note that the resulting negative set will use the same ternary

alphabet described in Def. 3.1. For clarity, we will denote it by tNSH such that

tNSH ≡ tSH.

For simplicity, we only describe NegConvert since NegConvertMissing uses the

same machinery. Assume a transformation from bsh to tnsh calling to NegConvert

with k = 1. We begin with tnsh = U = {∗∗∗∗} (line 1), then incrementally Delete

each element of bsh from tnsh (line 2-3). Delete removes all strings matched by

x from tnsh (line 11-12). If the set of matched strings, Dx, contains unspecified

bit values (* symbol), then all string combinations not matching x must be re-

inserted back into tnsh (line 13-17). Each string y′ not matching x is found by

setting the unspecified bit to the opposite bit value found in x[i] (line 16). Then,

Insert ensures string y′ has at least k specified bits (line 22-26). This is done

by specifying k − m unspecified bits (line 23) and appending each to the result

using ManagedGrowth (line 24-26). If string x already has at least k specified bits,

then the algorithm attempts to introduce more ∗ symbols using PatternGenerate

9



0 NegConvert(sh, k)
1 tnsh ← U
2 foreach t ∈ sh
3 tnsh ← Delete(tnsh, t, k)
4 return tnsh

0 NegConvertMissing(bsh, k)
1 tnsh ← ∅
2 bnsh ← U \ bsh
3 foreach t ∈ bnsh
4 tnsh ← Insert(tnsh, t, k)
5 return tnsh

10 Delete(tnsh, x, k)
11 Dx ← ∀t ∈ tnsh, xMt
12 tnsh′ ← tnsh with Dx removed
13 foreach y ∈ Dx
14 foreach unspecified bit position qi of y
15 if bi (the ith bit of x) is specified, then
16 y′ ← y · (qi = bi)
17 tnsh′ ← Insert(tnsh′, y′, k)
18 return tnsh′

20 Insert(tnsh, x, k)
21 m ← Specified(x)
22 if m < k then
23 P ← select (k − m) unspecified bit positions in x
24 foreach possible bit assignment VP of the selected positions
25 y ← x · VP
26 tnsh′ ← ManagedGrowth(tnsh, y)
27 else
28 y ← PatternGenerate(tnsh, x, k)
29 tnsh′ ← ManagedGrowth(tnsh, y)
30 return tnsh′

Fig. 2. NegConvert, NegConvertMissing, Delete and Insert algorithms used to transform positive to
negative representation; k is the desired number of specified bits (non-*’s) to remain.

(line 28) and appends it while removing any redundancy in the resulting set using

ManagedGrowth (line 29).

Example 4.1 (Conversion from bSH to tNSH). Given the same sharing set

as in Example 3.4: bsh = {1000, 1001, 0100, 0010, 0101, 0001}. A negative ternary

string representation is generated by applying the NegConvert algorithm to obtain

{0000, 11**, 1*1*, *11*, **11}. Since a string of all 0’s is meaningless in a set-

sharing representation, it is removed from the set. So, tnsh = {11**, 1*1*, *11*,

**11}.

For Example 4.1, the first string 1000 is deleted from U = {∗ ∗ ∗∗}. So, Dx =

{∗ ∗ ∗∗} (line 11) and tnsh′ = ∅ (line 12). For each ith bit of x, a new y′i /M x

is evaluated for insertion into the result set. So, Insert (∅, y′0 = 0***, k = 1) is

called (line 17). Since Specified(y′) ≥ k and tnsh′ = ∅, the result returned is

tnsh′ ={0***} (line 27-30). For all other unspecified positions (line 14) of y, a new

string is created with a bit value opposite of xi’s value, (bi). So, Insert ({0***},
y′1 = *1**, k = 1) is called next and y′1 is appended to tnsh′. The process continues

with y′2 and y′3 resulting in tnsh = {0***, *1**, **1*, ***1}.

Next, 1001 from bsh is deleted (line 2) resulting in Dx ={***1} and tnsh′ =

{0***, *1**, **1*} (line 11,12). Then, Insert ({0***, *1**, **1*}, y′ = 0**1,

k = 1) is called. Since 0**1 ×j tnsh′, then tnsh′ remains unchanged. The process

continues with y′1 =*1*1, y′2 =**11 being subsumed by tnsh′; so the result returned

is tnsh = {0***, *1**, **1*}. Next, 0100 is deleted resulting in tnsh = {00**,

0**1, 11**, *1*1, **1*}. Next, 0010 is deleted resulting in tnsh = {000*, 0**1,

11**, 1*1*, *11*, *1*1, **11}. Next, 0101 is deleted resulting in tnsh = {000*,

00*1, 11**, 1*1*, *11*, **11}. Finally, 0001 is deleted resulting in tnsh = {0000,

11**, 1*1*, *11*, **11}. Removing the all 0 string, we get the final tnsh = {11**,

1*1*, *11*, **11}. Notice that tnsh = U \ (bsh ∪ {0000}).

NegConvertMissing would return the same result for Example 4.1, and in gen-

10



Input Convert Operation Result Description Time Complexity Size Complexity

bsh Convert tsh bSH to tSH O(|bsh|αl) O(|bsh|)

bsh/tsh NegConvert tnsh pos. to neg. O(|bsh|α(α2δ + 1)) O(|tnsh|(l − m)2δ)

tnsh NegConvert tsh neg. to pos. O(|tnsh|α(α2δ + 1)) O(|tsh|(l − m)2δ)

bsh NegConvertMissing tnsh pos. to neg. O(β + |bnsh|(α2δ + 1)) O(|bnsh|2δ)

Table 1
Summary of conversions: l-length strings; α = |Result| · l; if m < k then δ = k − m else δ = 0, where m =
minimum specified bits in entire set, k = number of specified bits desired; bnsh = U \ bsh; β = O(2l) time

to find bnsh.

eral, an equivalent negative representation. Table 1 illustrates the different trans-

formation functions and their results for a given input and convert operation. Rows

3 and 5 show that both NegConvert and NegConvertMissing can convert a posi-

tive representation into negative with corresponding difference in time complexity.

Depending on the size of the original input we may prefer one transformation over

another. If the input size is relatively small < 50% of the maximum size, then

NegConvert is often more efficient than NegConvertMissing. Otherwise, we may

prefer to insert those strings missing in the input set. In our implementation, we

continuously track the size of the relationships to choose the most efficient trans-

formation.

Consider now the same set of variables and order among them as in Exam-

ple 4.1 but with a slightly different set of sharing groups encoded as bsh = {1000,

1100, 1110} or tsh ={1*00, 1110}. Then, a negative ternary string representa-

tion produced by NegConvert is tnsh ={00**, 01**, 0*1*, 0**1, 1**1, *01*}.
This example shows that the number of elements, or size, of the negative result,

|tnsh| = 6 > |bsh| = 3 and |tsh| = 2. However, in Example 4.1 when |bsh| = 6,

|tnsh| = 4 < |bsh|. This is because when |bsh| is less than 2|V|−1, i.e., |bsh| = 3 < 23,

then its complement set must represent (2|V| − |bsh|) = 13 elements. Depending

on the strings in the positive set, the size of negative result may indeed be greater.

This is a good illustration of how selecting the appropriate set-sharing represen-

tation will affect the size of the converted result. We want to leverage the size of

the original sharing set at specific program points in the analysis to produce the

most compact working set. The negative sharing set representation results in the

ability to represent more variables of interest enabling larger problem instances to

be evaluated.

We now define negative operations in order to perform abstract unification and

the rest of the abstract operations required by our engine using this negative rep-

resentation.

Definition 4.2 (Negative relevant sharing rel(tnsh, t) and irrelevant shar-

ing irrel(tnsh, t)) Given t ∈ Term and tnsh ∈ tNSH l with strings of length l, the

set of strings in tnsh that are negative relevant with respect to t is obtained by a

function rel(tnsh, t) : tNSH l × Term → tNSH l defined as

rel(tnsh, t) = tnsh ∩ 0-mask(t̂),

where ∩ is the negative intersection of two negative sets, as defined in [13]. In

addition, irrel(tnsh, t) is defined as

irrel(tnsh, t) = tnsh ∩ 1-mask(t̂).

11



The negative representation, the complement of a set, provides a more com-

pact representation for large positive set-sharing instances. This has enabled us

to efficiently conduct operations in the negative that are more memory and com-

putationally expensive in the positive. However, the negative representation does

have its own drawbacks. Certain operations that are straightforward in the positive

representation are NP-Hard in the negative representation [12,13]. A key observa-

tion given in [12] is that there is a mapping from Boolean formulae to the negative

set-sharing domain such that finding which strings are not represented is equivalent

to finding satisfying assignments to the corresponding Boolean formula, which is

known to be an NP-Hard problem. This mapping is defined as follows.

Let tnsh = {11**, 1*1*, *11*, **11} be the same sharing set as in Example 4.1.

Its equivalent Boolean formula φ ≡ not [(x1 and x2) or (x1 and x3) or (x2 and x3)

or (x3 and x4)] is defined over the set of variables {x1, x2, x3, x4}. The formula φ

is mapped into a negative set-sharing instance where each clause corresponds to a

string and each variable in the clause is represented as a 0 if it appears negated,

as a 1 if it appears un-negated, and as a * if it does not appear in the clause. By

applying DeMorgan’s law, we can convert φ to an equivalent formula in conjunctive

normal form. Then, it is easy to see that a satisfying assignment of the formula

such as {x1 = true, x2 = false, x3 = false, x4 = true} corresponding to the string

1001 is not represented in the negative set-sharing instance.

Due to the interdependent nature of the relationship between the elements of

a negative set, it is unclear how or how efficiently a precise negative cross-union

can be accomplished without going through a positive representation. Therefore,

we accomplish the negative cross-union by first identifying the represented positive

strings and then applying cross-union accordingly.

Rather than iterating through all possible strings in U and performing cross-

union on strings not in tnsh, we achieve a more efficient negative cross-union, ×∪ ,

by converting tnsh to tsh first, i.e., using NegConvert from Table 1 and performing

ternary cross-union on strings t ∈ tsh. In this way, the ternary representation con-

tinues to provide a compressed representation of the sharing set. Note that negative

up-closure operation, ∗, suffers the same drawback as cross-union. Therefore, we

deal with it in the same way as the negative cross-union.

Definition 4.3 (Negative abstract unification, amgu). The negative abstract

unification is a function amgu : V × Term × tNSH l → tNSH l defined as

amgu(x, t, tnsh) = irrel(tnsh, x = t) ∪ (rel(tnsh, x) ×∪ rel(tnsh, t))
∗

,

where ∪ is the negative set union as defined in [13].

Example 4.4 (Negative abstract unification). Let tnsh = {11**, 1*1*, *11*,

**11} be the same sharing set as in Example 4.1. Consider the analysis of X1 =

f(X2, X3), the result is:

(i) A = rel(tnsh, X1) = {11**, 1*1*, *11*, **11, 0***}
B = rel(tnsh, f(X2, X3)) = {11**, 1*1*, *11*, **11, *00*}

(ii) A×∪B = {00**, 01**, 0*0*, *00*}

(iii) (A×∪B)
∗

= {01**, 0*1*, 100*}

12



(iv)
C = irrel(tnsh, X1 = f(X2, X3)) = {11**,1*1*,*11*,**11,1***,*1**,**1*}

= {1***,*1**,**1*}

(v) amgu(X1, f(X2, X3), tnsh) = C ∪ (A×∪B)
∗

= {01**, 0*1*, 0**0, 100*}

Definition 4.5 (Negative projection, tnsh|t). The negative projection is a func-

tion tnsh|t: tNSH l × Term → tNSHk (k ≤ l) that selects elements of tnsh

projected onto the binary representation of t ∈ Term and is defined as

tnsh|t = π(tnsh, Υt),

where Υt is equal to all ith-bit positions of t̂ where t̂[i] = 1 and π is the negative

project operation, as defined in [13].

Example 4.6 (Negative projection). Let tnsh = {11**, 1*1*, *11*, **11} be

the same sharing set as in Example 4.1. The negative projection of tnsh over the

term t = f(X1, X2, X3) is tnsh|t = {11*, 1*1, *11}. String **1 is not in the result

because it represents the following strings when fully specified {001, 011, 101, 111}
and not all these strings are in the complement, e.g., 001 is in the positive result of

the same projection over bsh.

Definition 4.7 (Negative initial state, init). The negative initial state init :

V × I+ → tNSH |V| describes an initial substitution given a set of variables of in-

terest. Assuming as in Def. 3.9 the binary initial state operation initbSH : V →
bSH |V|, the negative initial state can be defined using both the NegConvert and

NegConvertMissing algorithms described in Fig. 2 (denoted by Convert ) as fol-

lows:

init(V, k) = Convert(initbSH(V), k)

Definition 4.8 (Negative set equivalence, ≡). Given tnsh1, tnsh2 ∈ tNSH l,

they are equivalent if and only if (∀t1 ∈ tnsh1,∀s1
×⊆ t1, s1

×/j tnsh2) ∧ (∀t2 ∈
tnsh2,∀s2

×⊆t2, s2
×/j tnsh1).

Definition 4.9 (Negative join, ⊔). Given tnsh1, tnsh2 ∈ tNSH l, the negative

join function ⊔ : tNSH l × tNSH l → ℘0(tNSH l) is defined as the negative set

union of the two sets, i.e., tnsh1 ∪ tnsh2.

5 Experimental Results

We have developed a proof-of-concept implementation, which is currently being

optimized, in order to measure experimentally the relative efficiency obtained with

the inclusion of the two new representations presented in this paper, tSH and

tNSH, as alternatives to the traditional set-sharing domain. In this preliminary

prototype we have used Patricia tries [22] to handle efficiently binary and ternary

strings, and a naive bottom-up fixpoint for testing real programs.

Our first objective is to study the implications of the conversions in the repre-

sentation for analysis. Note that although both tSH and tNSH do not imply a loss
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Fig. 3. Size comparisons, average (µ), for binary (bSH), ternary (tSH), and negative ternary (tNSH) with
up to 212 sharing relationships for k = 1, 4, 6, and 9.

of precision, the sizes of the resulting representations can vary significantly from

one to another. An essential part will be to show experimentally the best overall k

parameter for the conversion algorithms. Second, we study the core abstract oper-

ation of the traditional set-sharing, amgu, expressing its performance considering

a notion of memory consumption, size of the representation (in terms of number of

strings) during key steps in the unification. All experiments were performed with

up to 212 sharing relationships since we consider this value characteristic enough to

show all the relevant features of our representations. In general, within some upper

bound, the more variables considered the better the efficiency expected.

Our first experiment determines the best k value suitable for the conversion

algorithms, shown in Figs. 1 and 2. We proceed by submitting a set of 12-bit

strings in random order using different k values. We evaluate the size of the results

for the smallest output size (see Fig. 3) for a given k value. As expected, bSH

(x = y line) results in no compression; tSH slowly increases from left to right

remaining below bSH (for k = 6 and k = 9) due to the compression provided by the

∗ symbol and by having little redundancy; tNSH, the complement set, starts larger

than bSH but quickly tapers off as the input size increases pass 50% of |U|. Since

the k parameter helps determine the minimum number of specified bits in the set,

there is a direct relationship between the k parameter and the size of the output

due to compression by the ∗ symbol. A smaller k value, i.e., k = 1, introduces the

maximum number of ∗’s in the set. However, for a given input, a small k value does

not necessarily result in the best compression factor (see k = 1 of Fig. 3). This

result may be counter-intuitive, but it is due to the potentially larger number of

unmatched strings that must be re-inserted back into the set determined by all the
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bSH tSH tNSH

Initial Num Strings Num. Strings Num. Strings

2048 1397 1379

2457 1645 1123

2867 1846 860

3276 1986 587

3685 1913 300

4095 3285 1

Table 2
Size for conversion algorithms with up to 212 sharing relationships, k = 7.

strings that must be represented by the converted result, see line 13-17 of Fig. 2.

We have found empirically that a k setting near (or slightly larger than) l/2 is

the best overall value considering both the result size and time complexity. We use

k = 7 in the following experiments below. It is interesting to note that a k value

of log2(l) results in polynomial time conversion of the input (see the Complexity

column of Table 1) but it may not result in the maximum compression of the set

(see k = 4 of Fig. 3). Therefore, k may be adjusted to produce results based on

acceptable performance level depending on which parameter is more important to

the user, the level of compression (memory constraints) or execution time.

Our second experiment shows in Table 2 the comparison between the conversion

algorithms to transform an initial set of binary strings, bSH, into its corresponding

set of ternary strings, tSH, or its complement (negative), tNSH. Recall that the

number of variables used is 12, hence the size of the input binary set might vary from

0 to 4095 (there is no representation for the zero string). Since a basic assumption

in this work is the analysis of programs in which there is a large set of sharing

relationships (i.e., scalable set-sharing), we measure our experiments by starting

at 50% of the maximum size (i.e. 2048). The first column shows the size of the

input binary set which varies approximately from 50% (2048) to 100% (4095). The

second and third columns illustrate the sizes of the sets after the conversions from

bSH into tSH and tNSH, respectively. These conversions are performed by the

Convert algorithm described in Fig. 1 for tSH, and NegConvertMissing in Fig. 2

for tNSH, using k = 7. Table 2 shows that our two representations proposed

can reduce dramatically the size of the input set. For example, at 90% (3685) of

the binary set size, tSH compacts by 51% and tNSH by 92% of the initial input

size. This difference between tSH and tNSH is even larger when the binary set

size is 4095 since using k = 7 a more compression for tSH is not possible. Note

also the efficiency of tSH and tNSH compressing the initial input depends on its

input size. If the size of bSH is approximately 50% of the total, then the level

of compression is relatively similar. This fact makes sense since it was expected

these two representations would behave similarly when the size of the positive and

negative images were close to 50%. Significant gains in compression of tNSH with

respect to tSH are observed when the input size increases above 50%. Once again,

notice at the 90% (3685) point, the compression ratio from bSH to tNSH is almost

seven times more compact as compared to bSH to tSH. Again, at 100% (4095)

this difference between tNSH and tSH is remarkably significant, 1 : 3285.

Our third experiment shows in Table 3 the efficiency in terms of the level of
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Pre-amgu Post-amgu

Converted Size (% of |U|) t1 tm/4 tm/2 t3m/4 tm

2048 (50%) 1535(14) 1909(9) 2017(8) 2028(7) 2033(8)

2457 (60%) 1642(14) 1942(8) 2029(7) 2038(6) 2040(6)

bSH 2867 (70%) 1742(12) 1968(7) 2035(4) 2042(3) 2044(4)

3276 (80%) 1843(8) 1995(6) 2042(2) 2045(2) 2047(4)

3685 (90%) 1945(6) 2021(4) 2044(1.4) 2046(.7) 2047(.7)

4095 (99%) 2047(0) 2047(.5) 2047(.17) 2047(0) 2047(0)

1397 (50%) 408(14) 117(12) 39(13) 33(10) 28(11)

1645 (60%) 494(18) 130(11) 31(11) 21(7) 18(6)

tSH 1846 (70%) 568(16) 136(11) 25(8) 15(5) 13(4)

1986 (80%) 620(21) 133(12) 19(4) 12(2) 11(1)

1913 (90%) 586(32) 119(15) 18(4) 11(1) 11(0)

3285 (99%) 15(6) 13(4) 11(0) 11(0) 11(0)

1379 (50%) 745(88) 200(19) 43(10) 26(7) 16(8)

1123 (60%) 619(31) 163(17) 31(7) 19(4) 12(6)

tNSH 860 (70%) 462(22) 123(14) 24(5) 16(3) 11(4)

587 (80%) 310(14) 83(10) 18(2) 13(2) 12(4)

299 (90%) 162(10) 47(6) 14(2) 12(1) 12(3)

1 (99%) 5(1) 6(1) 9(.4) 11(0) 13(0)

Table 3
For up to 212 sharing relationships with various t values (30 runs each): comparing average size, and

standard deviation before and after amgu with k = 7.

compression of tSH and tNSH performing the major abstract operation of the

Jacobs and Langen’s set-sharing domain: the abstract unification amgu. Another

reason for testing amgu, rather than others such as projection, join, etc., is because

amgu may affect more significantly the size of the abstract substitutions than those

operations. The experiment has been carried out as follows. Given an arbitrary

set of variables of interest V such that |V| = l = 12, we constructed x ∈ V by

selecting one variable and t ∈ Term as a term consisting of a subset of the remaining

variables, i.e., V \ {x}. We tested with different values of t. Let m = l − 1 and

|.|ones : BS → I+ a function that returns the number of 1’s in a binary string, then

t1 represents |t̂|ones = 1, tm/4 means |t̂|ones = ⌊11/4⌋, and so on. Another important

aspect that affects the amgu performance is the input sharing set, bSH. In order

to reduce the effect of the input set in the amgu results we generated randomly

30 different sets which varies from 50% to 100% of the total size, 4095. Column

Pre-amgu shows the number of input strings for bSH, and for tSH and tNSH,

after the conversion. The data shown in this column is the same as in Table 2, but

it is given again for clarity. Column Post-amgu provides the average number of

strings and its standard deviation (in parenthesis) for each values of t, after running

the abstract unification using 30 different input sets (bSH, tSH, and tNSH).

Firstly, Table 3 shows clearly that after amgu both tSH and tNSH always

yield dramatically less number of strings than bSH. In our experiment, the level of

compression for tSH and tNSH varies from 50% until 99% as compared to bSH.

We also experienced that the bigger the size of the input and more variables are

involved in the amgu, and the smaller the size after the amgu for tSH and tNSH.

However, this trend is inverse in bSH: the bigger is the size of the input, the bigger

is the size after the amgu.

The second relevant component of this experiment is to compare the performance

between tSH and tNSH. For values of t1, tm/4, and tm/2, the break-even point p is
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around between 60% and 70% of |U|. That is, tSH compresses more effectively the

number of strings after unification at a size smaller than p, but it is significantly

improved by tNSH with sizes bigger than p. However, for the rest of t values (t3m/4

and tm), tNSH compacts more effectively than tSH between 50% and 80% in

most cases, but they offer very similar performances after 80% and even sometimes,

tSH compacts more than tNSH. After some investigation, we discovered that

when unifications imply large input sets (close to |U|) and the term t involves most

variables of V, tSH yields sets with very few strings because of the large amount of

redundancies captured by the representation. Conversely, tNSH represents those

strings which are in the complement of tSH also resulting in few strings. The

remarkable implication is that both numbers of strings have very close values.

6 Conclusions

We have presented two novel alternative representations to Jacobs and Langen’s

domain, tSH and tNSH, which in certain cases provide a more compact repre-

sentation of the sharing relationships. The first representation, tSH, compacts the

sharing relationships by eliminating redundancies among them. The second, tNSH,

leverages the complement or negative sharing relationships of the original sharing

set. Note also that the representations presented here can be potentially used to

improve other sharing-related analyses (e.g., [21]). Our experimental evaluation

has shown that both representations can reduce dramatically the size of the shar-

ing representation. Our experiments also show how to set up some key parameters

in our algorithms in order to control the desired compression and also their time

complexities. We have shown that we can obtain a reasonable compression in poly-

nomial time by tuning appropriately those parameters. Thus, we believe our results

contribute to the practical application of scalable set-sharing.

References

[1] T. Armstrong, K. Marriott, P. Schachte, and H. Søndergaard. Boolean functions for dependency
analysis: Algebraic properties and efficient representation. In Springer-Verlag, editor, Static Analysis
Symposium, SAS’94, number 864 in LNCS, pages 266–280, Namur, Belgium, September 1994.

[2] R. Bagnara, R. Gori, P. M. Hill, and E. Zaffanella. Finite-tree analysis for constraint logic-based
languages. Information and Computation, 193(2):84–116, 2004.

[3] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Set-sharing is redundant for pair-sharing.
Theoretical Computer Science, 277(1-2):3–46, 2002.

[4] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract unification for a composite domain deriving
sharing and freeness properties of program variables. In F.S. de Boer and M. Gabbrielli, editors,
Verification and Analysis of Logic Languages, pages 213–230, 1994.

[5] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM
Comput. Surv., 24(3):293–318, 1992.
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