Building Diverse Computer Systems

Stephanie Forrest! Anil Somayajif David H. Ackley
steph@ai.mit.edu soma@ai.mit.edu ackley@cs.unm.edu

Department of Computer Science
The University of New Mexico
Albuquerque, NM 87131

Submitted to the Sixth Workshop on Hot Topics in Operating Systems
January 16, 1997

1 Introduction: Diversity is valuable

In biological systems, diversity is an important source of robustness. A stable ecosystem, for
example, contains many different species which occur in highly-conserved frequency distributions.
If this diversity is lost and a few species become dominant, the ecosystem becomes susceptible to
perturbation s such as catastrophic fires, infestations, and disease. Similarly, health problems often
emerge when there is low genetic diversity within a species, as in the case of endangered species or
animal breeding programs. The vertebrate immune system offers a third example, providing each
individual with a unique set of immunological defenses, helping to control the spread of disease
within a population.

Computers, by contrast, are notable for their lack of diversity. Manufacturers produce multitudes
of identical copies from a single design, with the goal of making every chip of a given type and every
copy of a given program identical. Beyond the economic leverage provided by the massive cloning
of a single design, such homogeneous systems have other advantages: They behave consistently,
application software is more portable and more likely to run identically across machines, debugging
is simplified, and distribution and maintenance tasks are eased. Standardization efforts reflect the
almost universal belief that homogeneity is beneficial.

As computers increasingly become mass-market commodities, the decline in the diversity of avail-
able hardware and software is likely to continue, and as in biological systems, such a development
carries serious risks. All the advantages of uniformity become potential weaknesses when they can
be exploited by an attacker, because once a method is created for penetrating the security of one
computer, all computers with the same configuration become similarly vulnerable. The potential
danger grows with the population of interconnected and homogeneous computers.

In this paper, we argue that the beneficial effects of diversity in computing systems have been
overlooked, and we discuss methods by which diversity could be enhanced with minimal impact
on convenience, usability, and efficiency. Although diversity considerations affect computing at
many levels, here we focus primarily on computer security, and our emphasis is on diversity at the
software level, particularly for operating systems, which are a common point of intrusion.

Computer security is a growing concern for open computing environments. Malicious intrusions
are multiplying as huge numbers of people connect to the Internet, exchange electronic mail and

TCurrent address: MIT Al Laboratory, 545 Technology Sq., Cambridge, MA 02139.



commercially valuable data, download files, and run computer programs remotely, often across
international boundaries. Traditional approaches to computer security—based on passwords, access
controls, and so forth—are ineffective when an attacker is able to bypass them by exploiting some
unintended property of a system. Finding ways to mitigate such attacks is likely to be an increasing
concern for the operating systems community.

Deliberately introducing diversity into computer systems can make them more robust to easily
replicated attacks. More speculatively, it might also enhance early detection of timing problems
and other bugs. Today, each new discovery of a security hole in any operating system is a serious
problem, because all of the installed base of that operating system—thousands, if not millions, of
machines, running almost exactly the same system software—may well be vulnerable. An attack
script developed on one machine is likely to work on thousands of other machines. If every intrusion,
virus, or worm had to be explicitly crafted to a particular machine, the cost of trying to penetrate
computer systems would go up dramatically. Only sites with high-value information would be
worth attacking, and these could be protected using other methods. The relevance of diversity to
computer systems was recognized as early as 1989 in the aftermath of the Morris Worm [2], when it
was observed that only a few machine types were vulnerable to infection. Yet, this simple principle
has not been adopted in any computer security system that we know of.

2 Strategy: Avoid unnecessary consistency

Our goal is to prevent widespread attacks by making intrusions much harder to replicate. Can we
introduce diversity in a way that will tend to disrupt malicious attacks—even through security holes
that haven’t been discovered yet—without compromising reliability, efficiency, and convenience for
legitimate users? We believe that the answer is yes, because computer systems today are far
more consistent than necessary. For example, all but the lowest-level computational tasks are
now implemented in a high-level programming language, and for every such program there are
many different translations into machine code that will accomplish the same task. Each aspect
of a programming language that is “arbitrary” or “implementation dependent” is an opportunity
for randomized compilation techniques to introduce diversity. Such diversity would preserve the
functionality of well-behaved programs (we refer to this as “the box”) and be highly likely to
disrupt others by removing unnecessary regularities (“surrounding the box with noise”).

We have adopted the following guidelines to help us identify the most promising directions to
explore:

1. Preserve high-level functionality. At the user level, the behavior of different systems should
be predictable, and the input/output behavior of programs should be identical on different
computers.

2. Introduce diversity in places that will be most disruptive to known intrusion methods. However,
documenting the most common routes of intrusion is difficult for several reasons: (a) new
routes of intrusion are continually being discovered, (b) old routes of intrusion are sometimes
patched, (c) there are few if any reliable statistics on successful intrusions, and (d) there is a
distinction between the variety of intrusion methods and the frequency with which they are
exploited.

3. Minimize costs, both run-time performance and the cost of introducing and maintaining
diversity. We believe that the latter is likely be directly related to where the variations are



introduced in the software development process [6]. A load-time modification is likely to
be less costly than a compile-time modification which in turn is less costly than requiring a
developer to write multiple versions of application code.

4. Introduce diversity through randomization. Randomization methods are likely to scale well.

3 Possible Implementations

There are a wide variety of possible implementation strategies for introducing diversity. In this
section, we discuss several of these and their implications for security. Our emphasis is on variability
that can be introduced into software sometime between the time that the software is developed and
when it is executed. The methods range from those that produce variability in the physical location
of executed instructions, the order in which instructions are executed, the location of instructions
in memory at run-time, and the ability of running code to access external routines, files, and other
resources:

1. No-Ops: Perhaps the simplest method is to insert no-ops or other nonfunctional code in
compiled code at random locations. Depending on the architecture, this could potentially
affect timing relations in running code and would slightly change the physical location of
instructions. The timing attacks reported on RSA [3] could potentially be disrupted using
this method, although other remedies have also been proposed.

2. Reordering code: Optimizing and parallelizing compilers use many techniques to improve
performance, and some of these could be used to generate code variations. For example,

(a) Basic blocks: Rearrange the basic blocks of compiled code in random order [1]. This
would cause instructions to be stored in different locations but would not affect the order
in which they are executed, although there would likely be some long jumps executed
instead of short jumps. This method could potentially disrupt some viruses. However,
most file-infector viruses insert a single jump instruction that transfers control to the
virus code (stored at the end of the program), and then return control to the original
program. Thus, rearranging basic blocks in the program segment would be unlikely to
affect this large class of viruses.

(b) Optimizations for parallel processing: Many techniques already exist for producing
blocks of instructions that can be run simultaneously on multiple processors. These
techniques could be applied to code intended for execution on a single processor, res-
ulting in code that is executed in a unique order. We don’t know what if any intrusion
methods this would disrupt. Further, the amount of variability that could be produced
with this method would be limited to the amount of parallelism that could be extracted
from the original program.

(c) Vary the order of instructions within a basic block, while respecting the data and con-
trol dependencies present in the source code. A preliminary study of the source code
for the Linux kernel concluded that the number of different orderings that could be
automatically generated was very high [5].

3. Memory layout: There are standard ways of allocating memory when code runs and of or-
dering the components of memory. These are arbitrary and could be varied in many ways.
Here are a few examples:



(a) Pad each stack frame by a random amount (so the return addresses are not located in
predictable locations).

(b) Randomize the locations of global variables, and the offsets assigned to local variables
within a stack frame.

(c) Assign each newly allocated stack frame in an unpredictable (e.g., randomly chosen)
location instead of in the next contiguous location). This would amount to treating the
stack as a free store, which would result in some memory-management overhead.

Some of these memory-layout schemes would likely disrupt a pervasive form of attack—the
buffer overflow. There are several potential complications, however, including whether and
how to preserve ABI compatibility, debuggers, how to preserve the correct functionality for
the C function “alloca,” and how maintain compatibility with dynamic libraries.

4. Process initialization: Code that runs before user code executes could be varied, an example
being the startup files that give information about how to load a process image into virtual
memory [8].

5. Dynamic libraries: It should be possible to vary the way in which libraries are accessed, the
locations in which they are stored, or the information that they contain for each different
system. If every routine used by the system is stored in a unique location, or has a unique
naming scheme (e.g., by varying the system call numbering), then the code that accesses those
routines can only run if it knows the correct locations (or numbers). This idea is appealing
because it could be implemented at the shared library dynamic loader level (close to run-
time), but we don’t yet have a good analysis of what advantages it would confer in terms of
security.

6. Random/unique names for system files: Varying the locations of common system files so
they are difficult for intruding code to find would be highly effective against a wide range of
attacks. This would also tend to complicate system administration, however, and therefore
is unlikely to be acceptable at this time.

7. Magic numbers in certain files, e.g., executables: The type of information contained in many
files can be (at least tentatively) identified by searching for characteristic signatures at the
beginning of the file. Individual systems could re-map such signatures to randomly-chosen al-
ternatives and convert the signatures of externally-obtained files via an explicit “importation”
process.

8. Randomized run-time checks: Many successful intrusions could be prevented if all compiled
code performed dynamic array bounds checking [4]. However, such checks are rarely per-
formed in production code because of perceived performance costs. Instead of requiring every
program to pay the cost of doing complete dynamic checking, each executing program could
perform some of these checks (potentially a very small number of them). Which checks were to
be performed could be determined statically (at compile time) or dynamically (at run-time).

4 Preliminary Results

As an initial demonstration of these ideas, we have implemented a simple method for randomizing
the amount of memory allocated on a stack frame and shown that it disrupts a simple buffer



overflow attack (idea 3a from the previous section). Buffer overflow attacks arise because many
programs statically allocate storage for input, and then do not ensure that their received input
fits within the allotted space. Because C does not automatically check array bounds, overflows
can result in the corruption of adjacent variables and/or code. Buffer overflows are problematic
in the context of programs that run as root in UNIX, primarily because they provide a way for
a non-privileged user to obtain root access. However, any script exploiting such vulnerabilities is
brittle. In order to overwrite the return address, the size of the buffer and the relative location of
the function’s return address on the stack must be known. Further, in order to execute arbitrary
code inserted into the buffer, the exact location of the buffer in memory must also be known.

If every compilation produced an executable with a different stack layout, then exploit scripts
developed on one executable would have a low probability of success on other executables. To
change the layout of the stack, we increase the size of the stack frame by a random amount, simply
by adding a fixed amount of space to randomly selected stack slots. Such additions affect both
the stack layout for the modified function and the exact locations of every function called by it.
Such a change will of course cause a program to expand its use of stack memory, leading to some
increased cache miss rates and other performance penalties. To implement this, we made a small
modification to gece, so that it adds four bytes to a stack slot, based on a biased coin flip. For a
more complete description, see [7].

The revised version of gcc produces a program that disrupts a simple buffer overflow attack. An
important question is how much extra stack space is required for this method to be effective.
We assumed that a 10% increase in stack space would be permissible, and we then studied some
common UNIX programs to see how much variability we could achieve under this constraint. For
the three programs we examined (sendmail-8.8.4, wu-ftpd-2.4, apache_1.2b1), the number of

possible variants is large. The smallest, wu-ftpd, has 227 possible variants and approximately
274

2(%?) variants within the 10% memory constraint. Thus, stack space can be traded off against
security, simply by setting the slot padding probability. This gives one example of how a compiler
could help users create unique systems, which are vulnerable to attack but vulnerable in ways
different from every other computer.

5 Impact on Computer Security

Here we give a brief overview of common security problems and our assessment of which diversity
methods would be most effective against them. Code bugs (e.g., buffer overflows, insecurely pro-
cessing command-line options, symlink errors, temp file problems, etc.) constitute a common form
of attack. Memory layout variations, such as the one we implemented, would address several of
these. A race condition is an interaction between two normally operating programs via some shared
resource (often, a file). Compilation techniques are unlikely to prevent race conditions, but diversity
at the level of the shared resource would likely be effective. For configuration problems (e.g., setup
errors in how a service is provided or file permission problems), unique naming of system files would
be highly effective. Denial-of-service attacks are sometimes due to code bugs and sometimes due to
lack of resource checking or poor policies. Thus, one diversity technique alone is unlikely to address
all denial-of-service problems. For problems associated with insecure channels (e.g., IP spoofing,
terminal hijacking, etc.), we expect that cryptography techniques are probably more helpful than
diversity techniques, at least for diversity generated on a single host. Trust abuse, including key
management problems and inappropriately trusted IP addresses, could be addressed by generating



a unique profile of each computer’s behavior and using it to establish identity. A final security
problem that has been well-studied is that of covert channels. It might be possible to introduce
diversity to prevent exploitation of covert channels, but we haven’t thought about it carefully.

6 Conclusion

Diversity techniques such as those we have proposed here can serve an important role in the de-
velopment of more robust and secure computing systems. They cannot, by themselves, solve all
security problems, because many exploitable holes are created completely “within the box” of a
program functioning under the semantics of the language in which it is written. And indeed, di-
versity techniques may sometimes disrupt legitimate use by unmasking unintended implementation
dependencies (i.e., “bugs”) in benign code. Nonetheless, the essential principles of diversity— “avoid
unnecessary consistency,” and “surround the box with noise”—express a strategy that is likely to
find use in the computers of the future.

Acknowledgments

Over the past couple of years we have discussed the general idea of diversity with many people
and solicited their comments. In particular, A. Davis, T. Knight, M. Oprea, B. Maccabe, M.
Seltzer, H. Shrobe, and E. Stoltz have all listened with more or less open minds and made helpful
suggestions. Where possible, we have acknowledged their individual contributions. The authors
gratefully acknowledge support from the National Science Foundation (grant IRI-9157644), the
Office of Naval Research (grant N00014-95-1-0364), Defense Advanced Research Projects Agency
(grants N00014-96-1-0680 and N66001-96-C-8509), the MIT Al Lab., Interval Research Corp., and
the Santa Fe Institute.

References

[1] A. L. Davis, 1996. personal communication.

[2] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: An analysis of the Internet
virus of november 1988. In Proceedings of the IEFE Symposium on Research in Computer
Security and Privacy, Los Alamitos, CA, 1989. IEEE, IEEE Computer Society Press.

[3] E. English and S. Hamilton. Network security under siege: the timing attack. Computer, March
1996.

[4] T. Knight, 1996. personal communication.

[65] M. Oprea. Towards compiler-induced object code variability. Unpublished Manuscript, June
1996.

[6] H. Shrobe, 1996. personal communication.

[7] A. Somayaji. Object-code variation for enhanced security. Unpublished Manuscript, December
1996.

[8] E. Stoltz, 1996. personal communication.



