
Introduction to Matlab

By:
Hossein Hamooni

Fall 2014

Why Matlab?

•  Data analytics task
•  Large data processing
•  Multi-platform, Multi Format data importing
•  Graphing
•  Modeling
•  Lots of built-in functions for rapid prototyping
•  UNM students can have it for free (It is really

expensive)

2

Why Matlab?

Graphing
•  A Comprehensive array of plotting options

available from 2 to 4 dimensions
•  Full control of formatting, axes, and other visual

representational elements

3

How to install Matlab

1.  Visit the following link:
http://it.unm.edu/download

2.  Select your operating System
3.  Click on Matlab link
4.  Log in to your UNM account
5.  Follow the instructions

4

Understanding the Matlab
Environment:

Executing Commands

Basic Calculation Operators:
+ Addition
- Subtraction
* Multiplication
/ Division
^ Exponentiation

5

Solving equations using variables
•  Matlab is an expression language
•  Expressions typed by the user are interpreted and evaluated by

the Matlab system
•  Variables are names used to store values
•  Variable names allow stored values to be retrieved for

calculations or permanently saved

Variable = Expression

 Or
Expression

**Variable Names are Case Sensitive!

Using Matlab

>> x = 6
x = 6
>> y = 2
y = 2
>> x + y
Ans = 8

>> x * y
Ans = 12
>> x / y
Ans = 3
>> x ^ y
Ans = 36

6

Using Matlab
Working with Matrices
�
•  Matlab works with essentially only one kind of object, a

rectangular numerical matrix
•  A matrix is a collection of numerical values that are organized

into a specific configuration of rows and columns.
•  The number of rows and columns can be any number
Example
 3 rows and 4 columns define a 3 x 4 matrix having 12 elements

•  A scalar is a single number and is represented by a 1 x 1 matrix

in matlab.
•  A vector is a one dimensional array of numbers and is

represented by an n x 1 column vector or a 1 x n row vector of n
elements

7

Exercises
 Working with Matrices

How to define the following Matrices in Matlab using
spaces, commas, and semicolons to separate
rows and columns:

!
!
!

"

#

$
$
$

%

&

7231
9175
6211

[]553878122641

!
!
!
!

"

#

$
$
$
$

%

&

160
16
22
4

A = B =

C =

8

Indexing Matrices
A = [1 2 4 5

 6 3 8 2]

•  The colon operator can be used to remove entire rows or

columns

>> A(:,3) = []
A = [1 2 5

 6 3 2]

>> A(2,:) = []
A = [1 2 5]

Matrix Operations

9

Scalar Operations
•  Scalar (single value) calculations can be can performed on

matrices and arrays

Basic Calculation Operators
+ Addition
- Subtraction
* Multiplication
/ Division
^ Exponentiation

Matrix Operations

10

Element by Element Multiplication
•  Element by element multiplication of matrices is performed with

the .* operator
•  Matrices must have identical dimensions

A = [1 2 B = [1 D = [2 2 E = [2 4 3 6]
 6 3] 7 2 2]
 3

 3]
>>A .* D
Ans = [2 4
 12 6]

Matrix Operations

11

Element by Element Division
•  Element by element division of matrices is performed with the ./

operator
•  Matrices must have identical dimensions

A = [1 2 4 5 B = [1 D = [2 2 2 2 E = [2 4 3 6]
 6 3 8 2] 7 2 2 2 2]
 3

 3]
>>A ./ D

Ans = [0.5000 1.0000 2.0000 2.5000
 3.0000 1.5000 4.0000 1.0000]

Matrix Operations

12

Matrix Exponents

•  Built in matrix Exponentiation in Matlab is either:

1.  A series of Algebraic dot products
2. Element by element exponentiation

Examples:
•  A^2 = A * A (Matrix must be square)
•  A.^2 = A .* A

Matrix Operations

13

Shortcut: Transposing Matrices
•  The transpose of a matrix is the matrix formed by interchanging

the rows and columns of a given matrix

A = [1 2 4 5 B = [1

 6 3 8 2] 7
 3

 3]
>> transpose(A) >> B�
A = [1 6 B = [1 7 3 3]
 2 3
 4 8
 5 2]

Matrix Operations

14

Other useful functions:

•  inv(A)
•  mean(A)
•  std(A)
•  size(A)
•  ones and zeros
•  sort(A)
•  sortrows(A)
•  rand

Matrix Operations

15

•  Relational operators are used to compare two scaler values or
matrices of equal dimensions

Relational Operators
< less than
<= less than or equal to
> Greater than
>= Greater than or equal to
== equal
~= not equal

Relational Operators

16

•  Comparison occurs between pairs of corresponding elements
•  A 1 or 0 is returned for each comparison indicating TRUE or

FALSE
•  Matrix dimensions must be equal!

>> 5 == 5
Ans 1
>> 20 >= 15
Ans 1

Relational Operators

17

 A = [1 2 4 5 B = 7 C = [2 2 2 2
 6 3 8 2] 2 2 2 2]

Try:
>>A > B
>> A < C

Relational Operators

18

The Find Function

A = [1 2 4 5 B = 7 C = [2 2 2 2 D = [0 2 0 5 0 2]
 6 3 8 2] 2 2 2 2]

•  The �find� function can also return the row and column indexes

of of matching elements by specifying row and column
arguments

>> [x,y] = find(A == 5)

•  The matching elements will be indexed by (x1,y1), (x2,y2), …
>> A(x,y) = 10
A = [1 2 4 10
 6 3 8 2]

Relational Operators

19

•  Matlab can work with almost all types of files designed
to store numbers
•  text files
•  xls,xlsx
•  csv

•  But the simplest way to store/load data in Matlab is
using its own version of data file
•  mat

Working with files

20

•  Control flow capability enables matlab to function
beyond the level of a simple desk calculator

•  With control flow statements, matlab can be used as a
complete high-level matrix language

•  Flow control in matlab is performed with condition
statements and loops

Control and Flow

21

Advantages of M-files

•  Easy editing and saving of work
•  Undo changes
•  Readability/Portability - non executable comments can be

added using the �%� symbol to make commands easier to
understand

•  Saving M-files is far more memory efficient than saving a
workspace

•  run(‘script name’)

Matlab Scripts

22

•  It is often necessary to only perform matlab

operations when certain conditions are met
•  Relational and Logical operators are used to define

specific conditions
•  Simple flow control in matlab is performed with the
�If�, �Else�, �Elseif� and �Switch� statements

Condition Statements

23

If, Else, and Elseif

•  An if statement evaluates a logical expression and evaluates a

group of commands when the logical expression is true
•  The list of conditional commands are terminated by the end

statement
•  If the logical expression is false, all the conditional commands

are skipped
•  Execution of the script resumes after the end statement

Basic form:
if logical_expression

 commands
end

Condition Statements

24

Example

A = 6 B = 0

if A > 3

 D = [1 2 6]
 A = A + 1
elseif A > 2

 D = D + 1
 A = A + 2
end

What is evaluated in the code above?

Condition Statements

25

Switch
•  The switch statement can act as many elseif statements
•  Only the one case statement who�s value satisfies the original

expression is evaluated

Basic form:
switch expression (scalar or string)

 case value 1
 commands 1
 case value 2
 commands 2
 case value n
 commands n

end

Condition Statements

26

Example

A = 6 B = 0

switch A
 case 4
 D = [0 0 0]

 A = A - 1
 case 5

 B = 1
 case 6

 D = [1 2 6]
 A = A + 1

end

** Only case 6 is evaluated

Condition Statements

27

•  Loops are an important component of flow control
that enables matlab to repeat multiple statements in
specific and controllable ways

•  Simple repetition in matlab is controlled by two types
of loops:

1. For loops
2. While loops

Loops

28

For Loops

•  The for loop executes a statement or group of

statements a predetermined number of times

Basic Form:
for index = start:increment:end

 statements
end

** If �increment� is not specified, an increment of 1 is assumed

by Matlab

Loops

29

For Loops

•  Loops can be nested in other loops

A = []
for i = 1:m

 for j = 1:n
 A(i,j) = i + j
 end

end
•  Creates an m by n matrix A whose elements are the

sum of their matrix position

Loops

30

Parallel For Loops

•  Loops can be executed in parallel (if possible)

A = ones[1000 , 1000]
parfor i = 1:1000

 for j = 1:1000
 A(i,j) = i + j
 end

end

Loops

31

While Loops

•  The while loop executes a statement or group of

statements repeatedly as long as the controlling
expression is true

Basic Form:
while expression

 statements
end

Loops

32

While Loops

Examples:
A = 6 B = 15
while A > 0 & B < 10

 A = A + 1
 B = B – 2

end
•  Iteratively increase A and decrease B until the two

conditions of the while loop are met
** Be very careful to ensure that your while loop will

eventually reach its termination condition to prevent
an infinite loop

Loops

33

Breaking out of loops

•  The �break� command instantly terminates a for and

while loop
•  When a break is encountered by matlab, execution of

the script continues outside and after the loop

Loops

34

Breaking out of loops
Example:
A = 6 B = 15
count = 1
while A > 0 & B < 10

 A = A + 1
 B = B + 2
 count = count + 1
 if count > 100
 break
 end

end
•  Break out of the loop after 100 repetitions if the while

condition has not been met

Loops

35

•  String
•  A = ‘a test string’
•  strcat(A, ‘another string’)
•  strcmp(A, ‘a string’)
•  findstr(A , ‘est’)
•  num2str(234)
•  lower(A)
•  upper(A)
•  sprintf(‘this is %d out of %f’ , 12^2, sqrt(45))

•  Struct
•  Cell
•  Map

Other Data Types

36

Figures
•  plot a line

•  hold on
•  set color
•  plot tools
•  close

•  hist
•  set number of bins

•  scatter
•  3D plots
•  surf

37

Functions in Matlab

•  In Matlab, each function is a .m file
–  It is good protocol to name your .m file the same as

your function name, i.e. funcname.m

•  function outargs=funcname(inargs)

Function output input

38

