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Abstract. Social media sites (e.g. Twitter and Pinterest) allow users to change
the name of their accounts. A change in the account name results in a change
in the URL of the user’s homepage. We develop an algorithm that extracts such
changes from streaming data and discover that a large number of social media ac-
counts are performing synchronous and collaborative URL changes. We identify
various types of URL changes such as handover, exchange, serial handover and
loop exchange. All such behaviors are likely to be automated behavior and, thus,
indicate accounts that are either already involved in malicious activities or being
prepared to do so.
In this paper, we focus on URL handovers where a URL is released by a user
and claimed by another user. We find interesting association between handovers
and temporal, textual and network behaviors of users. We show several anoma-
lous behaviors from suspicious users for each of these associations. We identify
that URL handovers are instantaneous automated operations. We further inves-
tigate to understand the benefits of URL handovers, and identify that handovers
are strongly associated with reusable internal links and successful avoidance of
suspension by the host site. Our handover detection algorithm, which makes such
analysis possible, is scalable to process millions of posts (e.g. tweets, pins) and
shared publicly online.

1 Introduction

Social media sites, such as Twitter, Pinterest, Tumblr and Instagram allow users to
broadcast messages and content (URLs, images, videos) publicly to their followers.
Many of these sites allow users to change their homepage URLs by changing their ac-
count names. Users may need to change their URLs for many reasons, such as marriage,
rebranding, business acquisition and closing, and so on. Such events are relatively rare
for any human or business user in social media sites. Surprisingly, we observe unusually
high numbers of URL changes in some Twitter users.

For example, we identify a user changing its URL 283 times in 78 days, equivalent
to roughly one change every six hours. Some of the URLs, released and claimed in the
same day, are shown in Figure 1. We identify an even more abnormal scenario where
a URL, twitter.com/MalumaOficiaI, belonged to ten users in three months.
Each user handed over the URL to another user collaboratively. In Figure 2, we show
the sequence of handovers where nodes are user accounts and an arrow represents the
direction of a handover. Such abnormal URL handovers are highly unlikely to be per-
formed by a group of normal users, and most likely are generated by automated bots.
As Twitter is one of the most popular social media site, we set to study such URL
manipulating bots in Twitter.



touchofmyhands

3:57 AM

BlackoutDeIuxe

1:28 PM

takeitalI

2:08 PM

sugarfalI

2:47 PM

takeitalI

3:55 PM

hoIiestspears

6:38 PM

Britneysn----r

6:54 PM

bravenewgirI

5:06 PM

thesaddestworld

3:59 PM

bravenewgirI

8:31 PM

hoIiestspears

8:16 PM

Start

Fig. 1. A user (Twitter id: 2664619086) with ten URL changes on 7 November 2015. Some URLs
are used more than once which form a loop of URLs. Repetitive URLs are connected by dotted
lines.

There have been dozens of papers on mining Twitter data [12][11][16][5][14]. How-
ever, URL changes have not been studied with due diligence. An estimated 8.5% ac-
counts in Twitter are bot accounts [15]. Our work shows that bot accounts carry out
automated URL changes on a regular basis. Irregular URL changes waste resources on
Twitter, create many broken URLs, and mislead Twitter users to spam account pages.
These negative consequences of URL manipulation motivate this work.

In this paper, we investigate to discover why and how users make such abnormal
changes. We develop a parallel algorithm using the map-reduce framework to identify
URL changes in streaming data. Our algorithm is incremental and scalable to support
social media similar to Twitter in size and traffic. We extract a set of 231K URL changes
in Twitter over a period of three months (10/15-01/16). Note that we use only 1% of
the data that Twitter publicly shares. We perform temporal, textual, and graph-based
analyses on this data and discover several interesting facts about URL changes. Our
findings are summarized below.

– Both URL changes and URL handovers are atomic operations.
– URLs that are handed over are more frequently mentioned by other users.
– URL handovers are associated with changes in content after the handover.
– URL handovers can be temporally correlated.
– URL changes are done in an organized and collaborative way by large groups of

users.

The rest of the paper is organized as follows. We begin with a background section
that provides examples of various types of URL changes and handovers. We describe
our algorithm to discover URL changes and handovers in Section 3. We provide as-
sociation analysis with temporal, textual and graph-based features in Section 4. We
investigate why and how frequent handovers are performed in Section 5. We discuss
related work in Section 6, and conclusion in Section 7.
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Fig. 2. The URL twitter.com/paradisecameronwas handed over among four users nine
times. User468 appears in the handover chain exactly every other time. The dashed lines connect-
ing the same users show loops in this chain.

2 Background

We start with sufficient background information so readers are more familiar with URL
changes and handovers.

URL Changes: Imagine a Twitter user with the name tom hanks. The URL to the
profile page of this user would be twitter.com/tom hanks. If this user changes
the screen name to thanks, the URL of its profile page will change to twitter.com/
thanks. Such a change in the URL does not affect the social connections of tom hanks
in the Twitter network. All of the followers and followings of the account before and
after the change remain the same. However, the URL change invalidates the old URL,
which will no longer be accessible from other places on the Internet. URL changes also
invalidate all of the old mentions1 within Twitter, since mentions are the short form of
URLs. In some social media, such as Pinterest, the old URL still functions because the
site automatically redirects visitors to the new URL unless the old URL is taken by
some other account.

URL Handovers: A URL handover consists of two URL changes, in which one user
releases a URL and another user claims that URL. Let us consider the example in Figure
3 to describe URL handovers in reality. A user (user1) changes its screen name (URL)
from Tom to John. The name Tom is then free on the network and can be claimed by
any other user. If another user (user2) claims the name Tom by releasing its previous
name Bill, a handover happens. We say the URL twitter.com/Tom has been
handed over from user1 to user2. Here the user1 is the from-account and the user2 is
the to-account. We also define the handover lag as the time duration between user1
releasing the URL twitter.com/Tom and the user2 claiming it.

1 Twitter users can mention other users by using the ’@’ symbol which creates a link to
the profile page of the mentioned user. For example @thanks is a link to the address
twitter.com/thanks



In sites like Pinterest, the old URLs are redirected to the new ones. When a user
changes URL, he does not need to worry about his followers who can still visit him via
the old URL. However, in Twitter, old URLs are not redirected automatically. There-
fore, a user often creates a new account to keep the old URL and leaves a pointer to the
new URL. Thus, human users can do valid and legitimate handovers. However, in such
handovers, one of the from-account or to-account should be inactive (e.g. no tweet-
ing) after the handover under the assumption that no user wants to divide his followers
among many accounts. We identify a suspicious handover if either of the following
statements are true for a handover.

– Both of the from-account and to-account continue posting after the handover. OR
– Both of the from-account and to-account were active before the handover.

In the remainder of the paper, we will refer to a suspicious handover as simply a
handover unless otherwise specified.

Time

User1

User1

User2

User2

Tom

Tom

John

Bill

R
e

a
li

ty
O

u
r 

D
a

ta

Real Lag

Calculated Lag

change in URL
t2 t3

t1 t4

Probed Lag

Fig. 3. User1 handed over the URL Tom to User2. The release time is t2 and the claim time is
t3, and the real handover lag is t3 − t2. We calculate an upper bound, t4 − t1, for the handover
lag based on the last tweet of User1 at t1 before the handover, and the first tweet from User2 at
t4 after the handover.

2.1 Data Collection

We use the Twitter streaming API to collect data and produce a set of suspicious han-
dovers. The Twitter streaming API caps the number of tweets sent to the client to a
small fraction of the total volume of Tweets at any given moment [3]. We have never
exceeded 48 Hz in practice. Our data collection module receives the tweets which con-
tain the timestamp of the tweet, the URL, the user ID, the follower count, and some
other information about the author of the tweet. The Twitter API provides tweets that
satisfy a given condition, such as the tweet matches a given keyword, the tweet has a
given topic, the tweet is made from a geo-location, or the tweet is authored by a specific
set of users. We consider each tweet as a singleton object with a set of predefined fea-
tures including timestamp, user ID, URL, geo-location, number of followers, number
of accounts the user is following, and tweet content. In order to detect handovers, we
consider three relevant features: the timestamp, the user ID, and the URL. Although a



user can change the URL of the account, the user ID is fixed for an account throughout
the lifetime of the account.

We use different keyword filters to collect tweets for a week. We sort users based on
their number of tweets and pick the top 40,000 as the seed for the rest of the data col-
lection from the Twitter streaming API. We make the data collection process parallel on
eight computers, each of which listens to 5,000 users continuously. This parallelization
maximizes the number of tweets that can be collected from the streaming source.

We have started collecting data from Twitter on 15 October 2015 and continued
until 31 December 2015. We have collected 130 million tweets with 5.7 million unique
users2 and 6 million unique URLs.

2.2 Complex Handovers

One URL change involves two URLs and one user account. One handover involves
three URLs and two user accounts (Figure 3). However, URL changes and handovers
can produce much more complex scenarios that are extremely unlikely to happen in a
network that is built for independent social entities. A few complex scenarios are given
below.

– A user changes the URL multiple times and forms a chain of URLs. An example is
shown in Figure 1.

– Some chains of URLs create a loop when the user reclaims an old URL (i.e. A →
B → C → D → A).

– A URL can be handed over in a chain from user A to user B, and then from user
B to user C. This is a suspicious behavior because it shows that multiple accounts
are interested in having the same URL. It gets more suspicious if each of these
accounts own the URL for a short time.

– The handovers on a URL can also create a loop of users. This indicates that they
either have a signaling mechanism to let each other know when the URL is free and
ready to claim, or they are controlled by the same entity (Figure 2).

Although a single URL change may not be an abnormal behavior, the chance of all of
the abnormal scenarios described above happening inadvertently is very low. We find a
multitude of evidence showing that users are performing such changes and handovers
automatically using computer programs.

3 Detecting URL Handovers

Since Twitter does not provide an event flag representing a URL change, we devise
an algorithm to identify handovers based on the last tweet from the from-account and
the first tweet from the to-account before and after the handover respectively. Figure
3 shows a toy example of handover detection using the streaming data provided by
Twitter. Note that the handover lag can be calculated as the time between the last and
the first tweets from the from-account and to-account, respectively.

2 Although our data collection seed contained 40,000 users, in total we collected tweets from
5.7 million different users.



Computationally, handover detection is very similar to the group-by order-by queries
for relational databases. We require grouping the tweets from the same URL and sort-
ing the tweets for the same URL based in order of timestamps. We need to compare
successive pairs of tweets from the same URL to detect change in their user IDs. Each
such change in user ID corresponds to a handover. The process is further complicated
by the scale of the data. A single processor cannot manage millions of tweets in reason-
able time, guiding us to develop parallel solutions. We adopt map-reduce framework to
distribute the computation and discuss our algorithm below.

Every map-reduce algorithm has two key components: a map function (mapper),
and a reduce function (reducer). There can be other useful functions such as filters in
a map-reduce framework. We discuss each of these components in this section. For
clarity we define the input and the output of our map-reduce framework. The input
is a set of tweets T = {tw1, tw2, . . . , twn} and the output is a set of URLs U =
{url1, url2, . . . , urlm} where urli = {(user1, t1, t2), (user2, t3, t4), . . . ,
(userk, t2k−1, t2k)}, k ≥ 2 and tj ≤ tj+1, ∀j 1 ≤ j ≤ 2k − 1.

Mapper: The map function in our framework converts a tweet object to an object
that can be used by the reducers. It produces a set of key-value tuples where the key
is the URL of the tweet and the value is the user ID plus two timestamps. Initially
both timestamps are equal to the tweet timestamp, but they will be converted to a
start timestamp and an end timestamp in the next steps, which reflect the period of
time in which the URL was associated with each account. In other words, initially:
mapper(tweeti) =< urli, {(useri, ti, ti)} >
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Fig. 4. The process of detecting URL handovers in the Twitter network. 2 URL handovers are
detected from 9 tweet objects in this example.

Reducer: The reduce function plays the key role in our map-reduce framework. The
map-reduce framework guarantees that all objects with the same URL will be reduced
together and that they produce one last merged object. A merged object in our case is
< urli, {(usera, t1, t1), (userb, t2, t2), . . . , (userz, tk, tk)} > where ti ≤ ti+1. The
reducer function takes two key-value tuples as the input and produces one merged tuple



as the output. As mentioned earlier, the value part is made up of a set of user IDs, each
of which has a starting and an end time. The reducer function takes these two lists and
creates a sorted output based on the start times of each object3. Since all the lists have
just one element at the beginning of the reduce task, they are trivially sorted. As the
reducer combines them, the merged lists are also sorted. In other words, the input to the
reducer function is two sorted list of length m and n, and it just takes O(m + n) steps
for the reducer to sort them by using the merge sort approach.

Mergers: After the reducer produces a sorted list of user IDs with timestamps for
each URL, we need to merge all the consecutive tweets with the same user ID to create
a shorter list for each URL where there is a start and an end time for each user ID.
For example, if the output of the reducer for a URL is {(A, 1, 1), (A, 4, 4), (B, 7, 7),
(B, 9, 9), (A, 15, 15), (A, 20, 20)} then the output of running the map value function
would be: {(A, 1, 4), (B, 7, 9), (A, 15, 20)}

Filter: At this stage, we have lists of users associated with every URL in our map-
reduce framework. However, we are not interested in detecting URLs that are only
associated with one user ID. To filter out these URLs from the output of the map-reduce
framework, we use a simple filter function. This function checks the length of the list
of the users and outputs only the lists that have more than one user ID.

Our algorithms have detected a total of 13,831 URL handovers involving 12,326
unique URLs and 21,257 unique users in the 78 days of data collection. We also detect
231,800 users who changed their URL at least once in this time period. We share the
entire set of handovers and the source code to detect them in [1].

4 Handover Analysis

In this section we analyze the handovers detected by our method to observe several sus-
picious behaviors related to the the user’s temporal profile, tweet content, and the fre-
quency of URL changes. We also discuss how multiple users can be connected through
handovers. We finally analyze the handover lags to show that the handovers are auto-
mated.

4.1 Temporal Profile

We investigate questions related to the temporal profile of a user involved in a handover.
We extract hourly time series of every user in every handover for 78 days. As mentioned
in Section 2.1, each tweet object contains the timestamp of that tweet in millisecond
resolution, and the number of followers of the user at that time. We construct hourly
activity time series of every user by aggregating the total number of activities the user
performs in each hour. Note that Twitter does not guarantee to provide all of the tweets
of a user; therefore we achieve a lower bound time series on user activity. As we shall
see, such partial data is enough to reveal abusive behaviors on Twitter.

Similarly, we create the follower time series of a user which shows the changes in
the popularity of that user. We receive follower information embedded in the tweets,

3 At this stage of the algorithm, the start time and the end time of the objects are still the same



yielding some unevenly spaced measurements of the follower counts of a user. We
interpolate the in-between follower counts by the last received count with an assumption
that follower counts change very slowly (particularly for non-popular and old accounts).
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Fig. 5. (top) Frequency distribution of hourly count of handovers. (bottom) An example user with
daily periodicity and a strong activity association with handover.

Activity Association: We first consider the distribution of handovers over 11 weeks.
We only consider handovers that have less than a day of calculated lag. This ensures
that the real lag is at most 24 hours, a reasonable value. In Figure 5(top) we show the
frequency distribution of the hourly aggregates of handover counts over 1890 hours.
We use the method in [19] and identify three sharp peaks pointing to weekly, daily and
12-hourly periodicity. Figure 5(bottom) shows an example activity sequence of a user
with daily and weekly periodicity.

We investigate if the handovers are related to a change in activity patterns. We check
if the average activity levels of a user in the 6-hour windows before and after a handover
are significantly different. 91% of the times the difference is less than 1 tweet an hour.
Therefore, we conclude there is no significant change in the activity level before and
after the handovers. However, exceptions are possible. Figure 5(bottom) shows an ex-
ample where the activity starts and stops with handovers.
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Next, we consider the association between handovers and the activity level around
them. We calculate the average activity-per-hour for every from-account in the 6-hour



window just before releasing the URL, and the same for every to-account in the 6-hour
window just after claiming the URL. We compare such pre- and post-handover activ-
ities with the average activity-per-hour of the user, calculated over the entire duration
of data collection. We identify a significant difference in activity level before and after
handover. Quantitatively, 97.4% of the users are more active than usual when perform-
ing handovers (Figure 6 (left)).

Cross-user Association: We further consider cross-user associations in temporal pro-
files of handovers. We use standard time series motif discovery tools [13] to identify
the most frequent activity time series. Note that the expected similarity in activity time
series between two users for 11 weeks is almost zero. Interestingly, we identify a motif
of three users who have almost identical activity patterns with an average correlation
coefficient of 0.96. Furthermore, the accounts perform URL handovers within the same
hour in the same manner (e.g. to-from-to). The motifs are shown in Figure 7. The URLs
that were handed over by these accounts are all related to celebrities such as MacMiller,
Rihanna, Drake, Megan Fox and Lil Wayne.
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We consider the motif as a significant discovery because it reveals that offenders
work in correlation, possibly using the same codebase, and that they hand over at the
same time to swap or pass URLs that they do not want to lose. In the future, we will
investigate how to scale handover detection in real time so we can track the interest
areas of the offenders to take countermeasures.

4.2 Content Profile

Users tweet about various topics. The topic of a tweet can be determined by analyzing
the keywords in it. We first remove all useless words like is, are, the, to, from, RT4, . . . ,
and then process the tweet content. We use the content of the tweets to determine the
similarity between two tweets, and also two sets of tweets. We use the Jaccard similarity
coefficient [20] as our metric. The similarity between two sets of tweets X and Y can
be defined as the average similarity of all pairs of tweets in them. We use this measure

4 The word “RT” appears at the beginning of all retweets and has nothing to do with the content.



to calculate the similarity between two Twitter users, or between two different periods
of time (before and after the handover) for the same user to profile content changes
around handovers.

Table 1. The tweets from the same user with 2 URLs. The user change its URL from zflexins
to loveyorslf on 11 December 2015. All the tweets of the left column are about Justin Bieber,
and the ones in the right column are about Harry Styles (both are famous singers). The average
in-URL similarity is 0.35, while the across-URL similarity is 0.03.

www.twitter.com/zflexins www.twitter.com/loveyorslf
RT @justinbieber:UK! Tonight on
@CapitalOfficial from 7pm ’Justin Bieber’s
Capital Album Party Replay’. Hear the tracks
from #Purpose

harry styles coisa mais linda gente!!!

RT @JBCrewdotcom: Another photo of Justin
Bieber with a fan at the M&G in Tokyo, Japan
yesterday. (December 4)
https://t.co/ofAYAjzP1M

harry s,tao precioso gente como vcs nao
gostam dele???????? https://t.co/o0x2DG38JI

RT @JBCrewdotcom: Another video of Justin
Bieber singing at a restaurant in Japan today.
(December 5) https://t.co/jZqaMaezrO

vou tweetar video de harry stylesN

RT @favjarbara: interviewer: what do you
think about justin bieber’s relationships?bp:
hahaha he’s mine

harry w kendall eu to gRITANDO AQUI,
OPSSS https://t.co/MURzVWnc0Q

RT @NME: Justin Bieber announces UK
Arena tour dates for 2016
https://t.co/ECsRUqEPxk

@KendallJBrasil: 31/12- Mais fotos de
Kendall e Harry Styles em St. Barts, Frana.
https://t.co/CytM8Hixk

Content Association: We consider the content of tweets for a user before and after
the URL change5 to see if the content changes with the change in URL. Let T1 and T2

be the sets of tweets of a user from its first and second URL respectively. We calculate
the in-URL similarity as the weighted average of Sim(T1, T1) and Sim(T2, T2), and
the across-URL similarity as Sim(T1, T2). For example, Table 1 shows the tweets of
a user with two different URLs: zflexins and loveyorslf. The user tweeted 98
times with the first URL about Justin Bieber, and 94 times with the second URL about
Harry Styles. These are two of the most popular celebrities in Twitter with millions of
followers. There is a clear change in the topic of the tweets after the URL change. The
average in-URL similarity for this user is 0.35 while the across-URL similarity is 0.03.
It is humorous that the content of the first tweet after URL change is: RIP zflexins.
Both of these URLs are now associated with some other accounts.

In order to check this hypothesis for other users, we select a random set of handover
users that have exactly two URLs associated with them in our dataset. We filter out the
users for which |T1| < 5 or |T2| < 5, and finally come up with 1,051 users. Figure
6(right) shows the comparison of in-URL with across-URL similarity for each of these
users. We have 100% of the users with higher in-URL similarity than the across-URL

5 We specifically are interested in URL changes that were part of a handover.



similarity. It means that the overall topic of the tweets changes when a user changes its
URL, especially if that URL change is a part of URL handover.

4.3 URL Change Analysis

In this experiment, we check if the frequency of URL changes (average number of
URL changes per day) of a user has any relation with the probability of that user being
involved in a URL handover, since we believe both a high number of URL changes and
being involved in a handover are suspicious behaviors. There are 231,800 users in our
dataset which changed their URL at least once during our data collection. Figure 8 (I)
shows the percentage of these users for different frequencies of URL changing. The
probability of a user being involved in a handover given the frequency it has changed
its URL is shown in Figure 8 (II). The higher the change frequency, the larger the
probability of performing handovers. The reason why we do not show users with more
than 9 URL change frequency on the left side is that they comprise less than 1% of
our dataset. However, we can say almost all of this 1% have done a URL handover by
looking at the right hand side of the figure.

4.4 Connectivity Profile

We create a bipartite graph where the left side is the set of all users and the right side is
the set of all URLs, and a link between a user ui and a URL vj exists if ui owned vj at
some point in our dataset, and the URL was used for a handover. A handover is defined
as a subgraph with three nodes and two edges in which two nodes from the user side
have a link to the same node on the URL side.

We use the classic co-clustering approach to identify clusters in the user-URL bipar-
tite graph [9]. Any balanced cluster with more than three members points to organized
teamwork by the accounts. It is very unlikely that a large balanced cluster was created
in this bipartite graph by accident.

We find a cluster of size 2,273 (1,205 users + 1,068 URLs) which has 2,399 edges.
The average degree of each node in this cluster is 2.11. It is highly unlikely that such
a cluster is formed randomly, and thus this cluster supports our original hypothesis that
correlated and frequent handovers are signatures of automated accounts managed by
the same entity. If we had more data, we could have identified more handovers, and
the cluster could have been much larger. About 6% of the all users that has performed
suspicious behavior (URL handover) are in this particular cluster. This again proves
that our suspicion is correct beyond a doubt since such a huge cluster can not be formed
randomly.

If we consider all of the clusters with more than three members (non-trivial han-
dover clusters), they cover 31% of all users who have been involved in handovers. Al-
though any URL handover is a suspicious behavior, this provides us with additional
evidence of misbehavior from this 31%. We believe that the majority of the other 69%
also belongs to a non-trivial cluster, but we are not able to catch them due to lack of data.
As we show in the next section, social media sites are slow in suspending such offend-
ers. We have detected thousands of automated spammers, even without the complete
dataset, and yet Twitter has suspended only a fourth of them in six weeks.



These users who are doing URL handovers usually change their URLs more than
once. Not all of their URLs are included in the discussed bipartite graph since we just
add the URLs which have been handed over. If we include all of the URLs of the users
who have done a handovers (even the URLs that have not been used in any handover so
far) in our graph and re-cluster, the biggest cluster would have 1,205 users and 6,040
URLs. These newly added URLs are good candidates for our active probing technique
(future work) since they belonged to a suspicious user at some point in the past.

4.5 Lag Profile

To examine whether these handovers are organized from a central source as opposed
to independent actions, we perform an analysis on handover time-lag. The real lag be-
tween releasing a URL and claiming it back is not detectable from the publicly available
tweets. Our active probing tool, which is not scalable because of a capacity limit set by
Twitter, estimates handover lag at most an hour longer than the real lag.
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Fig. 8. (I) Percentage of users (out of 231,800 users) based on the frequency of changing URL. (II)
The probability of a user doing a URL handover given the URL change frequency. The probability
reaches 1 for a user with frequency higher than 68 (almost one URL change every day). (III)
The distribution of handovers based on their lags calculated using our probing technique. (IV)
The distribution of handovers based on their lags calculated using the data-driven approach. 50th

percentiles are shown in both III and IV

We can only probe 180 users and/or URLs every 15 minutes. We start probing ev-
ery day with a list of 100 users who we know have high numbers of URL changes
(based on our dataset). We have done this experiment for 8 consecutive days and ob-
served 210 handovers. Figure 8 (III) shows the CDF of the percentage of handovers for
different lags. The sharp increases at minutes 15, 30, and 45 are the result of the dis-
continuities in the probing algorithm caused by Twitter API limitations imposed on our
algorithm.The approximately linear CDF illustrates the remarkable fact that handovers
are instantaneous operations. We can verify this claim by simulating a set of instan-
taneous handovers spread uniformly over time and applying our probing algorithm to
calculate an estimated CDF. The estimated CDF is, indeed, a line and the slope of the
line is very similar to what we have observed.

This analysis formed the basis of our data-driven detection process. In the data-
driven detection process, we can only detect a handover if the pair of accounts tweet



something before and after the handover, and Twitter provides us the tweets. Under
such stringent condition, the lags we calculate are weak upper bounds of the real lags.

We show the CDF of the handover lags detected by the data-driven technique in
Figure 8 (IV). Although the data-driven process detects larger lags compared to the real
lag, since we know from this analysis that the handovers are mostly instantaneous ope-
rations performed by automated programs, we trust that the handovers detected using
the data-driven technique are highly suspicious. Also note that the lag for half of the
handovers we find is less than 14 days. Therefore, if a URL is not claimed after few
days of releasing, it (probably) will not ever be claimed.

5 Why Handovers?

Such a magnitude of automated URL changes must have good reasons behind. In this
section, we discuss association of handovers with potential benefits such as obtaining
human followers and avoiding suspension, and thus attempt to answer the question why
are handovers so frequent?.

Mentions and External URLs: Although URL changes do not impact the internal
connectivity among users (who follows whom), they have a direct impact on URLs
linked from external web pages. It also affects the links created by mentions within
Twitter. For example, when user1 mentions user2 as @DavidW (whose screen name is
DavidW) in a tweet, Twitter creates the URL twitter.com/DavidW and embeds
it in the tweet content. If user2 hands over this URL to user3, the mention DavidW
would point to user3’s profile page. Thus, thousands of mentions within Twitter are
being abused by URL changes.

Our hypothesis is that the miscreants change URLs frequently to fool users in vis-
iting different pages every time they follow the same mention. The motivation is to
increase the chance of getting a human visitor or follower in the process.

To test this hypothesis, we use the Twitter Advanced Search page in which one can
search for the mentions of a certain screen name (i.e. URL). We count the number of
mentions a URL receives in the first fifteen pages of the search result. Figure 9 (left)
shows the percentage of URLs based on the number of mentions for 1000 random URLs
and 1000 handover URLs. The URLs that have been handed over have a higher number
of mentions compared to random URLs. The average number of mentions for handover
URLs is 80 compared to 22 for random URLs.

Suspension: Twitter suspends accounts that violate some of its rules [2]. Twitter rules
says, Creating multiple accounts with overlapping uses or in order to evade the tem-
porary or permanent suspension of a separate account is not allowed. Handovers are
strong signals of overlapping uses, hence, handover accounts are violating the Twitter
rules.

We have detected URL changes and handovers until 31 December 2015. In order to
see whether or not doing the handover has any impact on the suspension of the involved
users, we check the status of all handover users almost every week from 1 January
2016 to 8 February 8 2016. Each point in Figure 9 (right) shows the percentage of the
handover accounts being suspended by Twitter until that day. The interesting point is
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Fig. 9. (left) The percentage of URLs based on the number of mentions for random URLs and
handover URLs. (right) Twitter suspension rate of handover users.

that although these users had done many URL handovers in our data collection period,
just 0.6% of them were suspended by 1 January 2016. In Section 4.4, we mentioned that
we have additional strong evidence of 31% of the handover users being suspicious, and
still just 7% of these accounts are suspended by Twitter at the time of writing, while we
had found these suspicious users weeks earlier.

6 Related Work

URL changes and handovers have been actively performed by users in social media. To
the best of our knowledge, our work is the first to investigate the association between
these activities and abuse in social media. Research has been done on other various
aspects of abuse in social media including account hijacking [17], trolling [6], faking
[4] and trafficking fraudulent accounts [18]. All of these works provide an important
perspective on how fraudsters, merchants and abusers are manipulating social media
for their own benefit. Our work considers URL handovers in the same manner. There
are several works on bot and automated user account detection in social media using
data mining techniques. In [8], the authors have modeled the inter-arrival time between
tweets to understand bot behavior. In [7] and [10], supervised techniques are used to
detect bots at registration time.

7 Conclusion

We develop methods to detect URL handovers between accounts in social media us-
ing publicly available data. We perform an in-depth analysis on the users who perform
URL changes and handovers and identify several interesting characteristics. Collabo-
rative abusers exploit this ability to change their URLs in social media to trick regular
human users into following spam accounts. Our data analysis discovers automated and
collaborative handovers in temporal and connectivity profiles of these users, and pro-
vides useful insights into how the abusers are operating. In future work we will develop
active prevention based on these insights by predicting which users are going to do a
URL handover.
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