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ABSTRACT
Modern engineering incorporates smart technologies in all
aspects of our lives. Smart technologies are generating ter-
abytes of log messages every day to report their status. It
is crucial to analyze these log messages and present usable
information (e.g. patterns) to administrators, so that they
can manage and monitor these technologies. Patterns mini-
mally represent large groups of log messages and enable the
administrators to do further analysis, such as anomaly de-
tection and event prediction. Although patterns exist com-
monly in automated log messages, recognizing them in mas-
sive set of log messages from heterogeneous sources without
any prior information is a significant undertaking. We pro-
pose a method, named LogMine, that extracts high quality
patterns for a given set of log messages. Our method is fast,
memory efficient, accurate, and scalable. LogMine is imple-
mented in map-reduce framework for distributed platforms
to process millions of log messages in seconds. LogMine is
a robust method that works for heterogeneous log messages
generated in a wide variety of systems. Our method exploits
algorithmic techniques to minimize the computational over-
head based on the fact that log messages are always auto-
matically generated. We evaluate the performance of Log-
Mine on massive sets of log messages generated in industrial
applications. LogMine has successfully generated patterns
which are as good as the patterns generated by exact and un-
scalable method, while achieving a 500× speedup. Finally,
we describe three applications of the patterns generated by
LogMine in monitoring large scale industrial systems.

CCS Concepts
•Computing methodologies→MapReduce algorithms;
•Information systems → Clustering;
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1. INTRODUCTION
The Internet of Things (IoT) enables advanced connec-

tivity of computing and embedded devices through internet
infrastructure. Although computers and smartphones are
the most common devices in IoT, the number of “things”
is expected to grow to 50 billion by 2020 [5]. IoT involves
machine-to-machine communications (M2M), where it is im-
portant to continuously monitor connected machines to de-
tect any anomaly or bug, and resolve them quickly to mini-
mize the downtime. Logging is a commonly used mechanism
to record machines’ behaviors and various states for mainte-
nance and troubleshooting. An acceptable logging standard
is yet to be developed for IoT, most commonly due to the
enormous varieties of “things” and their fast evolution over
time. Thus, it is extremely challenging to parse and analyze
log messages from systems like IoT.

An automated log analyzer must have one component to
recognize patterns from log messages, and another compo-
nent to match these patterns with the inflow of log messages
to identify events and anomalies. Such a log message ana-
lyzer must have the following desirable properties:
• No-supervision: The pattern recognizer needs to be

working from the scratch without any prior knowledge
or human supervision. For a new log message format,
the pattern recognizer should not require an input from
the administrator.
• Heterogeneity: There can be log messages generated

from different applications and systems. Each system
may generate log messages in multiple formats. An
automated recognizer must find all formats of the log
messages irrespective of their origins.
• Efficiency: IoT-like systems generate millions of log

messages every day. The log processing should be done
so efficiently that the processing rate is always faster
than the log generation rate.
• Scalability: Pattern recognizer must be able to pro-

cess massive batches of log messages to maintain a cur-
rent set of patterns without incurring CPU and mem-
ory bottlenecks.

Many companies such as Splunk[11], Sumo Logic[12], Log-
gly[6], LogEntries[7], etc. offer log analysis tools. Open



1. 2015-07-09 10:22:12,235 INFO action=set root=“/”
2. 2015-07-09 12:32:46,806 INFO action=insert user=tom id=201923 record=abf343rf 
3. 2015-07-09 14:24:16,247 WARNING action=remove home=“/users/david”
4. 2015-07-09 20:09:11,909 INFO action=insert user=david id=455095 record=efrdf4w2
5. 2015-07-09 21:56:01,728 INFO action=set home=“/users”
6. 2015-07-09 22:11:56,434 WARNING action=delete user=tom id=201923 record=asepg9e
7. 2015-07-09 22:32:46,657 INFO action=insert user=david id=455095 record=3jnsg67
8. 2015-07-09 22:34:12,724 WARNING action=remove home=“/users/tom”

9. date time,number INFO action=insert user=david id=455095 record=XXX 
10. date time,number XXX action=XXX user=tom id=201923 record=XXX
11. date time,number INFO action=set XXX=XXX
12. date time,number WARNING action=remove home=XXX

13. date time,number XXX action=XXX user=XXX id=XXX record=XXX 
14. date time,number XXX action=XXX XXX=XXX

15. date time,number XXX action=XXX XXX=XXX XXX*=XXX* XXX*=XXX* 

8 3 1 5 2 6 4 7

12 11 10 9

1314
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Figure 1: Extracting log patterns for a given set of logs. Hierarchy of patterns gives user the flexibility to choose a level based
on his needs.

source packages such as ElasticSearch[2], Graylog[4] and OS-
SIM[9] have also been developed to analyze logs. Most of
these tools and packages use regular expressions (regex) to
match with log messages. These tools assume that the ad-
ministrators know how to work with regex, and there are
plenty of tools and libraries that support regex. However,
these tools do not have the desirable properties mentioned
earlier. By definition, these tools support only supervised
matching. Human involvement is clearly non-scalable for
heterogeneous and continuously evolving log message for-
mats in systems such as IoT, and it is humanly impossible
to parse the sheer number of log entries generated in an
hour, let alone days and weeks. On top of that, writing
regex rules is long, frustrating, error-prone, and regex rules
may conflict with each other especially for IoT-like systems.
Even if a set of regex rules is written, the rate of processing
log messages can be slow due to overgeneralized regexes.

A recent work on automated pattern recognition has shown
a methodology, called HLAer, for automatically parsing het-
erogenous log messages [22]. Although HLAer is unsuper-
vised and robust to heterogeneity, it is not efficient and scal-
able because of massive memory requirement and communi-
cation overhead in parallel implementation.

In this paper, we present an end-to-end framework, Log-
Mine, that addresses all of the discussed problems with the
existing tools and packages. LogMine is an unsupervised
framework that scans log messages only once and, therefore,
can quickly process hundreds of millions of log messages with
a very small amount of memory. LogMine works in iterative
manner that generates a hierarchy of patterns (regexes), one
level at every iteration. The hierarchy provides flexibility to
the users to select the right set of patterns that satisfies
their specific needs. We implement a map-reduce version
of LogMine to deploy in a massively parallel data process-
ing system, and achieve an impressive 500× speedup over a
naive exact method.

The rest of this paper is organized to discuss related work
in Section 1, and background in Section 2. We describe
our proposed method in Section 3. Section 4 and 5 discuss

the experimental findings and case studies on the related
problems respectively. Finally, we conclude in Section 6.

2. RELATED WORK AND BACKGROUND
Authors of [29] have proposed a method to cluster the web

logs without any need to user-defined parameters. Their
method is not scalable to large datasets because the time
complexity is O(n3) where n is the number of the logs. [16]
introduces a method to create the search index of a web-
site based on the users’ search logs. [25] discusses a pre-
processing algorithm that extracts a set of fields such as IP,
date, URL, etc. from a given dataset of web logs. Authors
of [17] have proposed a method to help website admins by
extracting useful information from users’ navigation logs.

In [15], the authors have clearly reasoned why map-reduce
is the choice for log processing rather than RDBMS. Au-
thors have showed various join processing techniques for log
data in map-reduce framework. This work, along with [20],
greatly inspired us to attempt clustering on massive log data.
In [19], the authors describe a unified logging infrastructure
for heterogeneous applications. Our framework is well suited
to work on top of both of these infrastructures with mini-
mal modification. In HPC (High Performance Computing),
logs have been used to identify failures, and troubleshoot
the failures in large scale systems [23]. Such tools majorly
focus on categorizing archived log messages into sequence of
failure events, and use the sequence to identify root cause of
a problem.

2.1 Motivating Examples
In Figure 1, we show examples of log patterns that our

method generates. Our method clusters the messages into
coherent groups, and identifies the most specific log pattern
to represent each clusters. In Figure 1, the input log segment
has four different clusters. The messages within each cluster
can be merged to produce the log patterns shown in red.
These four patterns can again be clustered and merged to
form two more general patterns (in green). Same process
can be repeated till we get to the root of the hierarchy which



Clusters
Fast 

Clustering

Set of N logs

Fast
Pattern 

Recognition 

Set of 
Patterns

Relax 
Conditions

Add One Level 
to the Hierarchy

Iteration

Hierarchy of 
Patterns

Figure 2: Creating hierarchy of patterns by using a fast clus-
tering algorithm and a fast pattern recognition algorithm.

contains the most general pattern. Note that, there are three
basic types of fields in each pattern: Fixed value, Variable
and Wildcard. A fixed value field is matched just with one
unique value like www, httpd and INFO . A variable field is
matched with any value of a certain type such as number,
IP address and date. Wildcards are matched with values of
all types.

Clearly the most generic pattern is a set of wildcards,
and the most specific pattern is a set of fixed attributes.
None of these patterns are useful for the administrators. Our
method produces a hierarchy of patterns: specific patterns
are children of general patterns. Such hierarchy is useful for
the system administrators to pick the right level of detail
they want to track in the log messages as opposed to write
regular expression manually.

2.2 Pattern Recognition Framework
With the above motivation, we design a novel framework

for LogMine as shown in the Figure 2. LogMine takes a
large batch of logs as input and clusters them very quickly
with a restrictive constraints using the clustering module.
A pattern is then generated for each cluster by our pattern
recognition module. The sets of patterns form the leaf level
of the pattern hierarchy. The method will continue to gen-
erate clusters with relaxed constraints in subsequent itera-
tions and merge the clusters to form more general patterns,
which will constitute a new parent level in the hierarchy.
LogMine continues to iterate until the most general pattern
has been achieved and/or the hierarchy of patterns is com-
pletely formed.

The framework meets all the criteria of a good log ana-
lytics tool. It is an unsupervised framework that does not
assume any input from the administrator. The framework
produces a hierarchy of patterns which is interpretable to the
administrator. The framework does not assume any prop-
erty in sources of the log messages. The recognizer can work
on daily or hourly batches if the following challenges can be
tackled.

2.3 Challenges
This framework for log pattern recognition is unsupervised

and suitable for heterogeneous logs. However, the scalability
of the framework depends on the two major parts of the
framework: log clustering and pattern recognition. Standard
clustering and recognition methods do not scale well, and it
is non-trivial to design scalable versions of the clustering and

recognition modules for massive sets of log messages. Since
the two modules work in a closed loop, we must speedup
both of them to scale the framework for large datasets.

To quantify the significance of the challenge, let us imag-
ine an average website that receives about 2 million visitors
a day (much less compared to 500 million tweets a day in
Twitter, or 3 billion searches a day in Google). Even if we
assume that each visit results in only one log message, 2 mil-
lion log messages per day is a reasonable number. Clustering
such a large number of log messages in only one iteration is
extremely time consuming. A standard DBSCAN [28] al-
gorithm takes about two days to process a dataset of this
size with state-of-the-art optimization techniques [1]. Simi-
lar amount of time would be needed by k-means algorithm
although no one would know the best value for the parame-
ter k. Clearly, the framework cannot work on daily batches
using standard clustering algorithms and, therefore, we need
an optimized clustering algorithm developed for log analysis.
A similar argument can be made for the recognition mod-
ule where a standard multiple sequence alignment operation
on a reasonable sized cluster may need more than a day to
recognize the patterns.

3. FAST LOG-PATTERN MINING
The key intuition behind our log mining approach is that

logs are automatically generated messages unlike sentences
from a story book. There are some specific lines in an ap-
plication source code that produce the logs, therefore, all
log messages from the same application are generated by a
finite set of formats. Standard clustering and merging meth-
ods do not consider any dependency among the objects in
the dataset. In logs, the dependency among the messages
is natural, and as we show in this paper, the dependency is
useful to speedup the clustering and the merging process.

3.1 Tokenization and Type Detection
We assume all the logs are stored in a text file and each

line contains a log message. We do a simple pre-processing
on each log. We tokenize every log message by using white-
space separation. We then detect a set of pre-defined types
such as date, time, IP and number, and replace the real
value of each field with the name of the field. For instance,
we replace 2015-07-09 with date, or 192.168.10.15 with IP.
This set of pre-defined types can be configured by the user
based on his interest in the content over the type of a field.
Figure 3 shows an example of tokenization and type replace-
ments in a log message. Tokenization and type detection is
embedded in the clustering algorithm without adding any
overhead due to the one-pass nature of the clustering algo-
rithm described in the next section. Although this step is
not mandatory, we use it to make the similarity between two
logs meaningful. If no type detection is done, two logs gen-
erated by the same pattern can have a low similarity, just
because they have different values for the same field. There-
fore, we may end up generating huge number of unnecessary
patterns if we do not tokenize.

3.2 Fast and Memory Efficient Clustering
Our clustering algorithm is simply a one-pass version of

the friends-of-friend clustering for the log messages. Our al-
gorithm exploits several optimization techniques to improve
the clustering performance.



2014  - 07  - 09  20  :  32  INFO  http  recommended  =  12523  actual  =  14235

2014  - 07  - 12  05  :  21  INFO  https  source  =  192  .  168  .  32  .  10   

2014-07-09   20:32   INFO   http   recommended=12523   actual=14235

2014-07-12   05:21   INFO   https source=192.168.32.10   

Tokenize

Type Detection

date  time  INFO  http  recommended  =  number  actual  =  number

date  time  INFO  https  source  =  IP   

Figure 3: Two examples of how pre-processing works on the
input log messages.

3.2.1 Distance Function
We first define the distance between two log messages by

the following equations:

Dist(P,Q) = 1−
∑Min(len(P ),len(Q))

i=1
Score(Pi,Qi)

Max(len(P ),len(Q))

Score(x, y) =

{
k1 if x=y
0 otherwise

Pi is the ith field of log P , and len(P ) is the number of
fields of log P . k1 is a tunable parameters. We set k1 = 1
in our default log distance function, but this parameter can
be changed to put more or less weight on the matched fields
in two log messages.

Since we want to cluster patterns in the subsequent iter-
ations of our framework, we also need a distance function
for patterns. The distance between two patterns is defined
very similarly as the distance between two log messages, just
with a new score function.

Score(x, y) =

 k1 if x=y and both are fixed value
k2 if x=y and both are variable
0 otherwise

We again set k1 = k2 = 1 in our default pattern distance
function. Our distance function is non-negative, symmetric,
reflexive, and it satisfies the triangular inequality. Therefore,
it is a metric. Log messages generated by the same format
have a very small distance (zero in most cases), and log mes-
sages generated by different formats have larger distances.
This is a desirable property for fast and memory-efficient
log clustering algorithm. In the high dimensional space, the
log messages form completely separated and highly dense
regions. Therefore, finding the clusters using the above dis-
tance function is a straightforward task.

3.2.2 Finding Clusters
In this section, we explain how to find the dense clusters

out of the input logs in a sequential fashion. The same ap-
proach will also be used when we create the hierarchy of log
patterns by several iterations of clustering. First, we define
an internal parameter named MaxDist, which represents the
maximum distance between any log entry/message in a clus-
ter and the cluster representative. Therefore, the maximum
distance between any two logs in a cluster is 2×MaxDist.
We start from the first log message and process all the log
messages one by one until we reach the last message. Each
cluster has a representative log message, which is also the

first member of the cluster. For any new log message, we
insert the message in one of the existing clusters only if the
distance between the log and the representative is less than
the MaxDist. Otherwise, when the message is not similar to
any representative, we create a new cluster and put the log
message as the representative of that new cluster.

The above process can be implemented in a very small
memory footprint. We need to keep just one representative
log for each cluster in the memory, and output the subse-
quent log messages without saving in the memory. This
allows our algorithm to process massive number of logs with
a small amount of memory. In fact, the memory usage of
our clustering algorithm is O(number of clusters). Ignoring
large number of log messages when deciding about cluster
membership and using only one representative log message
do not reduce the quality of the clusters. The major reason
is that all the log messages in any given cluster are almost
identical because they are most likely generated by the same
code segment of the same application. Therefore, the above
one-pass clustering algorithm with a very small MaxDist in
the beginning can generate highly dense (i.e., consistent)
clusters of log messages, where keeping one representative
message is both sufficient and efficient.

We finally have a set of dense clusters with one repre-
sentative each. As mentioned before, this algorithm is also
used to cluster and merge patterns. In case of clustering the
patterns, unlike the above approach, we keep all the pat-
terns in each cluster because we will use them in the pattern
recognition component. In most systems, the set of patterns
generated after the first iteration fits in the memory. The
speed and efficiency of this algorithms comes from the fact
that the number of dense clusters does not scale with the
number of log messages, because it is not possible for an
application to generate huge number of unique patterns. In
other words, finding a million unique patterns is impossible
even in a dataset of hundreds of millions of log messages.

The one-pass clustering algorithm has a strong depen-
dency on the order of the messages, which is typically the
temporal order. The pathological worst case happens when
one message from every pattern in every cluster appears very
early in the log, and all of the remaining messages will have
to be compared with all of the unique representatives. In
practice, log messages from the same application show tem-
poral co-location which makes them more favorable for the
clustering algorithm.

3.2.3 Early Abandoning Technique
Early abandoning is a useful technique to speedup sim-

ilarity search under Euclidean distance. Some of the ini-
tial mentions of early abandoning were in [18][13]. It has
been extensively used later by many researchers for prob-
lems such as time series motif discovery [21], and similarity
search under dynamic time warping (DTW) [24]. We adopt
the technique for log analytics.

When comparing a new log message with a cluster rep-
resentative, if the distance is smaller than MaxDist, we can
add the new log to that cluster. Since the distance between
two logs is calculated in one scan of the logs by summing
up only non-negative numbers, early abandoning techniques
can be applied. As we compare two logs field by field, we
may discover that the accumulated distance has already ex-
ceeded the threshold, MaxDist, even though many of the
fields are yet to be compared. In this case, we don’t need to



continue calculating the distance completely, because we are
certain that these two logs are not in MaxDist radius of each
other. Since the number of fields in a log can be large, this
technique helps us skip a significant amount of calculation,
especially when MaxDist is small.

3.2.4 Scaling via Map-Reduce Implementation
We mentioned earlier that the memory usage of our one-

pass clustering algorithm is O(number of clusters). The one-
pass clustering algorithm is very amenable to parallel execu-
tion via map-reduce approach. For each log in our dataset,
we create a key-value pair. The key is a fixed number (in
our case 1), and the value is a singleton list containing the
given log. We also add the length based index to the value
of each tuple. In the reduce function, we can merge every
pair of lists. Specifically, we always keep the bigger list as
the base list, and update this base list by adding all elements
of the smaller list to it (if needed). This makes the merging
process faster. While adding the elements of the smaller list
to the base set, we add only the elements which do not have
any similar representative in the base set. If a very close
representative already exists in the base list, we ignore the
log. We also update the length based index of the base list
meanwhile. Finally, the base list will be the result of the
merging of two given lists. The pseudo code of the reduce
function can be found in Algorithm 1.

Algorithm 1 Reduce

Input: Two tuples A = (1, List1), B = (1, List2)
Output: A tuple
if size(List1) >= size(List2) then
Base list← List1
Small list← List2

else if size(List1) < size(List2) then
Base list← List2
Small list← List1

for i = 1, . . . , size(Small list) do
Found=False
for j = 1, . . . , size(Base list) do

if d(Small list(i), Base list(j)) ≤MaxDist then
Found=True
break

if ¬ Found then
Append Small list(i) in the Base list

return (1,Base list)

Since we use the same key for all the logs, we will get one
tuple as the final output which contains all the log repre-
sentative (dense clusters). As we need to create a key-value
tuple for each log, the memory usage of the map-reduce im-
plementation is no longer O(number of dense clusters), in
fact it is O(number of log entries). This is not a problem
because each worker in map-reduce platform loads a chunk
of the logs. Even if a chunk of the data does not fit in mem-
ory, new map-reduce frameworks like Spark [30] can handle
that with a small overhead. We compare the running time
of both sequential and parallel implementations in Section
4.

3.3 Log Pattern Recognition
After we cluster the logs, we need to find a pattern for each

cluster. Since we keep one representative for each dense clus-
ter in the first round, the representative itself is the pattern

2014-07-09   20:32   INFO   http   recommended=12523   actual=14235   source=192.168.25.23   

2014-07-12   05:21   INFO   https  actual=289   source=192.168.32.10   

2014-07-09   20:32   INFO   http   recommended=12523       actual=14235      source=192.168.25.23   

2014-07-12   05:21   INFO   https          GAP      GAP GAP actual=289          source=192.168.32.10   

date time INFO string XXX XXX XXX actual=number source=IP

Align

Field Detection

Figure 4: An example of how Algorithm 2 works.

of its cluster, but in the subsequent rounds, after we cluster
the patterns, we need an algorithm that can generate one
pattern for a set of logs/patterns in a cluster. We start with
the pattern generation process for a pair of patterns and
then generalize to a set of patterns.

3.3.1 Pattern Generation from Pairs
Irrespective of the pattern recognition algorithm, we al-

ways need to merge two logs at some point in the algo-
rithm. Therefore, we shortly discuss our Merge algorithm
here. Given two logs to be merged, we first need to find
their best alignment. The best alignment of two logs is
the one that generates the minimum number of wildcards
and variables after merging. In the alignment process, some
gaps may be inserted between the fields of each log. The
alignment algorithm ensures that the length of two logs are
equal after inserting the gaps. Once we have two logs with
the same length, we process them field by field and gener-
ate the output. An example is shown in Figure 4. Note
that the align step introduces gaps in the second message.
The field detection step requires a straightforward scan of
the two logs. A detailed pseudocode can be found in Al-
gorithm 2. There are different algorithms for aligning two
sequences. We use Smith-Waterman algorithm which can
align two sequences of length l1 and l2 in O(l1.l2) time steps
[26]. Therefore, the time complexity of our Merge function
is also O(l1.l2). We use the same score function as in [22]
for the Smith-Waterman algorithm.

Algorithm 2 Merge

Input: Two logs (Loga, Logb)
Output: A merged log

Log
′
a, Log

′
b ← Align(Loga, Logb)

for i , i = 2, 3, . . . , |Log
′
a| do

x← Fieldi(Log
′
a) and y ← Fieldi(Log

′
b)

if x = y then
Fieldi(Lognew)← x

else if Type(x) = Type(y) then
Fieldi(Lognew)← V ariableType(x)

else
Fieldi(Lognew)←Wildcard

return Lognew

3.3.2 Sequential Pattern Generation
To generate the pattern for a set of patterns, we start

from the first log message, merge it with the second log,
then merge the result with the third log and we go on until
we get to the last one. Clearly, the success of this approach
largely depends on the ordering of the patterns in the set.



However, as described before, the logs inside each of the
dense clusters are almost identical. This is why, in practice,
the merge ordering does not associate with the quality of
the final pattern. In other words, we will get the same re-
sults if we do the merging in reverse or any arbitrary order.
If the logs to be merged are not similar, sequential merg-
ing may end up producing a pattern with many wildcards
which is not desirable. There exists techniques to find the
optimal merge ordering for a set of patterns. We provide
detailed experiments in the Section 4 to empirically show
that sequential merging does not lose quality.

3.3.3 Scaling via Map-Reduce Implementation
As discussed in Section 3.3.2, the order of merging the

logs in a cluster to create the final pattern has no effect on
the output. Such sequential pattern generation can be par-
allelize very easily. An efficient way to implement sequential
merging is using map-reduce framework. This framework
can be useful whenever the order of the operation does not
matter, and that is true for our case. Since the pattern
recognition is done after clustering the logs, we know the
exact cluster for each log. In the map function, we create a
key-value pair for each log. The key is the cluster number
of the log and the value is the log itself. The map-reduce
framework will reduce all the key-value pairs with the same
key. In the reduce function, two logs from the same cluster
are merged. The final output of the reduce phase is one pat-
tern for each cluster which is exactly what we want. If we
ignore the map-reduce framework overhead, in a full parallel
running of this algorithm on m machines, its time complex-
ity is O( n

m
.l2), where n is the number of the logs, and l is

the average number of fields in each log.

3.4 Hierarchy of Patterns
In Sections 3.2.2 and 3.3, we explain how to find dense

clusters of logs, and how to find one pattern that covers all
the log messages in each cluster. These two modules consti-
tute an iteration in our pattern recognition framework. We
also motivate that one set of patterns generated in one of
the iterations can be too specific or general, and may not
satisfy the administrator. In contrast, a hierarchy of pat-
terns can provide an holistic view of the log messages, and
the administrator can pick a level with the right specificity
in the hierarchy to monitor for anomalies.

In order to create the hierarchy, we use both clustering
and pattern recognition algorithms iteratively as shown in
Figure 2, and produce the hierarchy in bottom-up manner.
In the first iteration, we run the clustering algorithm with a
very small MaxDist on the given set of logs. This is our most
restrictive clustering condition. The output of the cluster-
ing is a (possibly large) set of dense clusters each of which
has a representative log. The representative log is trivially
assigned as the pattern for a dense cluster without calling
the pattern recognition module. We treat these patterns
as the leaves (lowest level) of the pattern hierarchy. To
generate the other levels of the hierarchy, we increase the
MaxDist parameter of the clustering algorithm by a factor
of α (MaxDistnew = αMaxDistold) and run the clustering
algorithm on the generated patterns. In other words, we
run a more relaxed version of the clustering algorithm on
the patterns which will produce new clusters. We then run
the pattern recognition module on all the patterns that are
clustered together to find more general patterns. These set

of new patterns will be added to the hierarchy as a new level.
In each iteration of this method, a new level is added to the
hierarchy. As we go higher in the hierarchy, we add less num-
ber of patterns, which are more general than the patterns
in the lower levels. This structure gives us the flexibility to
choose whatever level of the hierarchy as the desired set of
patterns.

3.4.1 Hybrid Pattern Recognition
When we explain our sequential pattern recognition is Sec-

tion 3.3.2, we assume that the logs/patterns inside a cluster
are very close together. In order to generate the hierarchy
of patterns, we start from the leaf level which has the most
specific patterns, and the clusters are also dense. As we go
up in the hierarchy and merge patterns, the clusters become
less dense. Since the MaxDist parameter has been relaxed,
we allow patterns with larger distances to group together.
This creates a chance of being incorrect at the higher levels
of the hierarchy if we use the sequential pattern recognition
algorithm. Fortunately, the number of patterns inside each
cluster at the higher levels of the hierarchy is much less than
the lower levels, and we can use a selective merge order, in-
stead of the sequential order, found by the classic UPGMA
(Unweighted Pair Group Method with Arithmetic Mean)
method. UPGMA, which is simply the hierarchical cluster-
ing with average linkage [27], is optimal when the clusters
are spherical in shape in the high dimensional space, and we
conjecture that this is asymptotically true for log patterns
when clusters contain large number of messages.

Our final pattern recognition algorithm is a hybrid of UP-
GMA, the sequential recognition and the map-reduce imple-
mentation. Algorithm 3 shows how We pick the best choice
for each cluster of logs. th1 and th2 are the thresholds for
density and the number of patterns in a cluster respectively.

Algorithm 3 HybridPatternRecognition

Input: A cluster of logs (Logs)
Output: A pattern
if density(Logs) ≤ th1 then
pattern← UPGMA(Logs)

else
if Size(Logs) ≤ th2 then
pattern← SequentialPatternGeneration(Logs)

else
pattern←MapReducePatternGeneration(Logs)

return pattern

3.4.2 Cost of a Level
Given a hierarchy of patterns for a set of logs, the user may

be interested in a level with specific properties. Some users
may prefer to get the minimum number of patterns while the
others may be interested to get very specific patterns and not
care about the number of patterns. There are many different
criteria one can say a level is satisfying or not. We introduce
an intuitive cost function to pick the best descriptive level
of the hierarchy. We also propose a cost function that suits
our datasets. This cost function can easily serve as a general
template to calculate the cost of a level of the hierarchy.

Cost =

# of clusters∑
i=1

Sizei × (a1WCi + a2V ari + a3FVi)



Figure 5: Pattern selection illustration with a1 = 1, a2 = 0,
and a3 = 0 in the cost function.

where Sizei is the number of logs in cluster i and WCi,
V ari and FVi are the number of wildcards, variable fields
and fixed value fields in the pattern of cluster i respectively.
a1, a2 and a3 are tunable parameters that can be set in such
a way that satisfies user’s requirements.

If a user has no preference, we can set a1 = 1, a2 = 0, and
a3 = 0 in the cost function, and select the level having no
wildcards with minimum number of patterns as the final set
of patterns. For example, in Figure 5 we find that Level 2
generates two patterns with no wildcards, so we select these
two patterns from Level 2 as the final set of patterns. In
our experiments, we assume that a user will not provide any
preferences. A user can also provide preferences by specify-
ing the maximum number of expected patterns. For exam-
ple, a user may want to generate at most 4 patterns. In this
case, we select two patterns from the Level 2 in Figure 5 be-
cause it will generate minimum number of wildcards while
not exceeding the user given maximum of 4 patterns.

4. EVALUATION
We describe the baseline method that we compare Log-

Mine against first. We then discuss our datasets and provide
detailed experimental results.

4.1 HLAer: The Baseline
We pick the method HLAer [22] as a baseline algorithm,

that is similar to our method in being unsupervised and
supporting heterogeneous logs. HLAer finds very good sets
of patterns, if not the optimal patterns, under reasonable
assumptions. HLAer uses a highly accurate and robust
clustering algorithm, OPTICS (Ordering Points To Identify
the Clustering Structure), and the average linkage technique
(UPGMA) instead of sequential merging for pattern recog-
nition. We describe these two modules next.

4.1.1 Clustering using OPTICS
OPTICS (Ordering Points To Identify the Clustering Struc-

ture) is a famous hierarchical density-based clustering algo-
rithm [14] used in HLAer. In OPTICS, a priority queue of
the objects (e.g. using an indexed heap) is generated [28].
The priority queue can be used to cluster the objects at
many different levels without redoing the bulk of the com-
putation. OPTICS has two parameters: ε and MinPts. It
ensures that the final clusters have at least MinPts objects,
and the maximum distance between any two objects in a
cluster is less than or equal to ε.

OPTICS is an expensive clustering algorithm for large
datasets because it needs to calculate the MinPts-nearest
neighbors for each object, which requires O(n2) pair-wise
distance calculations for n objects. Typical improvement

Table 1: A summary of all datasets.

Dataset # Logs # Fields Availability
D1 2,000 65 proprietary
D2 8,028 200 proprietary
D3 10,000,000 90 proprietary
D4 10,000 37 public
D5 10,000 45 public
D6 10,000 25 public

strategies include parallel computation and indexing tech-
niques. However, these techniques become invalid in the
iterative framework and for near-online batch processing.
One may also think of pre-computing the pairwise distances,
which requires loading all the computed distances in mem-
ory in O(n2) space for random accesses during clustering.
Irrespective of non-scalability, OPTICS is a good baseline
to compare accuracy with. The algorithm can find clusters
of arbitrary shapes and densities in the high dimensional
space. The algorithm is easy to reconfigure without recal-
culating the pair-wise distances.

4.1.2 Log pattern recognition via UPGMA
Once the HLAer finds all the clusters, it needs to find a

pattern for each cluster that covers all the log entries in it.
HLAer considers a log entry as a sequence of fields. It finds
the best way to align multiple log entries together based
on a cost function. After alignment, the algorithm merges
each field by selecting a representative field to output. Un-
weighted Pair Group Method with Arithmetic Mean (UP-
GMA) is one of the most commonly used multiple sequence
alignment (MSA) algorithms. It is a simple bottom-up hier-
archical clustering algorithm [27] which can produce a tree
of input objects on the basis of their pairwise similarities.
HLAer runs UPGMA on the set of logs and finds the best
order of merging the log entries. The Merge function that
HLAer uses is identical to the one in Section 3.3.

If there are n log entries with l fields (on average), the time
complexity of running UPGMA is O(n2l2) which takes 300
years for 10 million logs. However, UPGMA can be used for
smaller number of log entries, and generate valuable ground
truth to evaluate the performance of our pattern recognition
algorithms.

4.2 Datasets
For evaluation, we use six different datasets as summa-

rized in Table 1. D1 and D2: Small proprietary datasets.
D3: An industrial proprietary dataset of size 10,000,000
generated by an application during 30 days. The size of D3
on disk is 10 GB. D4 and D5: Random log entries from two
traces which contain a day’s worth of all HTTP requests to
the EPA webserver located at Research Triangle Park, North
Carolina [3], and the San Diego Supercomputer Center in
San Diego, California [10] respectively. D6: A synthetic
dataset generated from 10 pre-defined log patterns. We fix
the type of each field in the patterns, and generate random
values for that field. This dataset is used as a ground truth
to evaluate the accuracy of our method.

We set MaxDist = 0.01 and α = 1.3 in all the exper-
iments unless otherwise stated. Since HLAer takes ε and
MinPts as the input parameters, an expert set them for each
dataset. As HLAer is a single CPU algorithm, for fair com-



parison, we run the sequential version of our algorithm on a
single machine for all experiments unless otherwise stated.

4.3 Accuracy
Since our algorithm is made up of two main components,

we test the accuracy of each component separately.

4.3.1 Accuracy of Clustering
We use the clusters generated by OPTICS as a baseline.

We define an agreement metric to calculate how close the
output of our fast clustering algorithm is to the output of
OPTICS. Given a set of n log entries S = {l1, l2, . . . , ln}, we
run OPTICS to get the set of clusters X = {X1, X2, . . . , Xr}
and we run our clustering algorithm to get the set of clusters
Y = {Y1, Y2, . . . , Ys}. The agreement score is a

b
, where a is

the number of pairs of logs in S that are in the same set in
Y and in the same set in X, and b is the number of pairs of
logs in S that are in the same set in Y . This metric takes
a value between 0 (the worst) and 1 (the best). Note that
splitting a cluster of OPTICS into multiple clusters does not
harm us because it leads to more accurate patterns and we
can merge the sub-clusters in higher levels of the hierarchy.
On the other hand, having a cluster which has log entries
from multiple OPTICS’s clusters can generate a meaningless
pattern.

As shown in Table 2, in all datasets except D2, we capture
the OPTICS’s clusters. The problem with D2 is that the log
entries do not have a clear underlying structure. Logs in D2
have many strings and commas, and they are very similar
to each other. In addition, OPTICS throws away 38% of
the entries as outliers because they do not fall in a cluster
with at least MinPts entries. Therefore, a set of separable
clusters may not exist in this dataset failing both LogMine
and OPTICS.

4.3.2 Accuracy of Pattern Recognition
As discussed in Section 4.1.2, UPGMA finds the best order

to merge the log entries, and it produces the best possible
pattern for a given cluster. We use the results of UPGMA
as a ground truth to evaluate the accuracy of our pattern
recognition algorithm. We cluster each dataset by both OP-
TICS and our clustering algorithm, and then give each clus-
ter to both UPGMA and our pattern recognition algorithm
to produce one pattern. We compare the patterns generated
by the two algorithms, field by field. The accuracy of a given
pattern compared to the ground truth is simply the number
of matched fields over the number of all fields. The accuracy
of pattern recognition for each dataset is:

Total Accuracy =

# of clusters∑
i=1

(Acci×Sizei) ÷
# of clusters∑

i=1

Sizei

where Acci is the accuracy of pattern recognition on cluster
i and Sizei is the number of log entries in cluster i. As Table
2 shows we can get almost same patterns as UPGMA except
in D2. Since the quality of clustering on D2 is low, the logs
inside each cluster are not very similar, and the order of
merging can change the structure of the final pattern. The
fact that our patterns for D2 are 73% similar to UPGMA
patterns does not mean that ours are not accurate, because
the patterns generated by UPGMA are also low quality. All
the other results support the fact that the order of merging
the logs has no effect on the final generated pattern in a
cluster with similar logs.

Table 2: The accuracy of pattern recognition and the agree-
ment score for different datasets. We do not report these
measurements on D3 because HLAer cannot handle it.

Accu-
racy

Agree-
ment
Score

HLAer
Memory

(MB)

LogMine
Memory

(MB)
D1 100% 86% 32 2
D2 73% 48% 520 11
D4 96% 95% 801 15
D5 98% 100% 802 14
D6 100% 100% 795 13

4.4 Memory Usage
HLAer calculates all the logs pairwise distances and use

them while running OPTICS. This needs either O(n2) mem-
ory space or multiple disk accesses in case all the distances
are stored back in the disk for n logs. Conversely, LogMine is
very memory efficient with a space complexity of O(number
of clusters) in sequential fashion. We run our sequential im-
plementation and measure the amount of memory used by
both HLAer and LogMine. Results are shown in Table 2.

4.5 Running Time
HLAer has maximum processing capacity of 10,000 log

entries because of the quadratic memory requirement. For
the rest of the datasets, results are shown in Figure 6(right).
LogMine is up to 500× faster than HLAer . It takes
1,524 seconds for LogMine to cluster the logs, and find all
the patterns in dataset D3.

It is worth to mention that LogMine has an advantage
over HLAer in terms of running time of pattern recogni-
tion. Pattern recognition component of LogMine has a fixed
running time for datasets of the same size, because it just
scans the data once no matter how many cluster exists in
the dataset. In contrast, HLAer depends on domain and
data properties

4.6 Map-Reduce vs. Sequential
We discussed the way we find the dense clusters in Section

3.2.2 both in sequential and map-reduce fashion. In this
experiment we compare them. We generate synthetic data
by changing number of log entries (10 million default) and
number of patterns (1500 default). We change the number
of map-reduce workers (8 default) to understand scalability.
Each worker has 1 GB of memory and a single-core CPU.

As shown in Figure 6(left), the execution time of the map-
reduce implementation grows slowly compared to the growth
of the sequential implementation. Map-reduce implementa-
tion reaches up to 5× speed-up by using 8 workers com-
pared to the sequential implementation. Note that we have
a fixed number of patterns in this experiment. Our map-
reduce implementation can handle millions of logs in few
minutes, because the number of patterns does not grow at
the same rate as the number of logs grows in real world ap-
plications. Figure 6(second-left) shows that with increasing
number of patterns, the execution time of both sequential
and map-reduce implementation consistently grows. In Fig-
ure 6(second-right), we show that doubling the number of
workers reduces the running time by 40%. The reason is
that as we add more workers, the algorithm needs to per-
form more merges (see Algorithm 1), and this adds more
overhead to the algorithm.
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Figure 7: Sensitivity of the algorithm to the parameters MaxDist0 and α.

4.7 Parameter Sensitivity
We have two parameters in our algorithm, and both of

them are used in the clustering phase. The first one is the
MaxDist0 which is the value we use to run the clustering
algorithm at the lowest level of the hierarchy. After we find
the leaves, we relax the clustering algorithm condition by
increasing the MaxDist by a factor of α. We run an ex-
periment 10 times on a dataset of 10,000 log entries picked
randomly from dataset D3, and report the average of dif-
ferent measurements change by increasing MaxDist0(0.01
default) and α (1.3 default). Results are shown in Figure 7.
We make the following observations:
• As we increase MaxDist0 we find fewer number of leaves

in shorter time. Since the leaves are the basis of our hier-
archy, we don’t want to lose many of them due to a large
MaxDist0. On the other hand, small MaxDist0 usually
(not always) yields to longer running time. Although the
best value for MaxDist0 is to some extent depends on the
dataset, we recommend to set it to 0.01. • As the MaxDist0
grows, we may end up extracting fewer number of patterns,
but the plot shows that the algorithm can capture almost
the same set of patterns even if we change MaxDist0 in a
wide range [0.001,0.02]. Thus, our algorithm is not very sen-
sitive to this parameter in terms of the final set of patterns.
• Obviously if we pick smaller values for MaxDist0 and α,
the final hierarchy will have more levels and we have more
options to choose a satisfactory level in the hierarchy. How-
ever, it takes longer to produce such a hierarchy. • Number
of patterns does not change drastically with changes in α.
We vary this parameter from 1.1 to 1.5 and the number of
final patterns stays within the range [966,1127]. We find
α = 1.3 is the best performing value.

5. CASE STUDY
We use LogMine to analyze logs collected from the Open-

Stack framework, which an open-source platform for cloud

computing [8]. We have collected logs from the execution
of nova-boot commands to demonstrate how LogMine can
be used to build a log analytics solution. LogMine enable
us to reveal various insights on logs that helps us to quickly
diagnose the cause of failures.
Dataset: We have collected logs generated by 200 successful
execution of the nova-boot commands. This is our training
dataset. Using LogMine we have found 28 patterns which
can correctly identify all training logs. These patterns serve
as a basis for analyzing OpenStack logs. Next, we have
collected logs from six failed executions (i.e., abnormal) of
nova-boot commands. This is our testing dataset.
Detecting New Logs: To identify the cause of a failure, we
need to detect logs which are not seen during the successful
(i.e., normal) executions of the nova-boot commands. We
use the 28 patterns generated by LogMine to detect those
unseen logs. If a log in the testing dataset does not match
with any of the 28 patterns, then we conclude that it is a
new log. Using LogMine we have correctly identify those
new logs, and report them to the system administrators
for further analysis. Typically, administrators run adhoc
keyword-based search on these new logs using their domain
knowledge. In this case, searching few keywords, they have
identified a subset of new logs, which help them to quickly
localize the cause of the failed executions.
Detecting Logs with New Content: To analyze a fail-
ure, we are interested to find out whether or not there is any
content-wise anomaly among the failure logs. To this end,
we have structured 28 patterns generated by LogMine into
various fields, and built a content-profile map for each field
using the training dataset. During testing, if an incoming
log matches with any of the 28 patterns, we identify its fields
from the content. Now, if the content of any field value is not
present in our training content-profile map, then we report
corresponding log to the system administrators for detailed
analysis. Using this content analysis, they have correctly



identified new contents in the testing logs, which help them
to diagnose failure scenarios quickly.
Detecting Logs with Abnormal Execution Sequence:
The execution of OpenStack could result abnormal log pat-
tern sequence if any failure happens. Therefore, we can de-
tect system failure by discovery of anomalous log sequences.
In order to achieve this functionality, we built log sequence
order for any pair of 28 patterns and modeled their statis-
tics such as the maximal elapse time, maximal concurrency
of log pattern during training stage. During testing, we de-
tect if the incoming log violates any of the following rules:
log sequence reversal, exceeding the maximal elapse time
or concurrency number, or missing the matching log for the
pair. System administrators find these violations very useful
to debug failures.
Detecting Log Rate Fluctuations: In order to analyze
logs, it is helpful to find out whether or not there is any
fluctuation in the log rates compared to the normal working
scenarios. To detect fluctuations, we keep track of the range
(i.e., minimum and maximum counts) that we have observed
in a fixed interval of the training dataset for all 28 patterns
generated by LogMine. During testing, if the matched logs
count of any pattern falls out its training range in an inter-
val, we report corresponding time range and pattern infor-
mation to the system administrators for the further analysis,
and they find it very useful to diagnose failure scenarios.

6. CONCLUSION
We have proposed an end-to-end framework, LogMine, to

identify patterns in massive heterogeneous logs. LogMine is
the first such framework that is 1 unsupervised, 2 scalable

and 3 robust to heterogeneity. LogMine can process mil-
lions of logs in a matter of seconds on a distributed platform.
It is a one-pass framework with very low memory footprint,
which is useful to scale the framework up to hundreds of
millions of logs.
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