CS 361 Data Structures & Algs Lecture 11

Prof. Tom Hayes University of New Mexico 09-28-2010

Last Time

Priority Queues & Heaps

Heapify (up and down)

1: Preserve shape of tree

2: Swaps restore heap order property

Balanced Binary Tree using Array

Quiz #2

New Reading: secs 3.1 thru 3.4

Quiz 2 grades

- 20, 20, 20, 20, 19, 17
- 16, 16, 15, 15, 15
- 14, 14, 14, 14, 13
- 12, 12, 12
- 11, 11, 11, 11
- 10, 9, 9, 9
- 7, 7, 3, 0

Today

P.A. 2 due Monday, Oct 11 Graphs and Trees, terminology Connectedness, Components **Traversal Algorithms** Breadth First vs. Depth First **Testing Bipartiteness**

Graphs

A graph is a pair, (V,E), where:

- V is the set of vertices (also called "nodes")
- E is a set of edges

Each edge consists of a pair of vertices, called the endpoints of the edge.

Example: V = $\{1,2,3,4,5\}$, E = $\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\}\}$.

(5 vertices, 6 edges).

Kinds of Graphs

Vertices: can represent almost anything. Cities, people, computers, numbers.

Edges: represent some notion of "adjacency" or relationships like "knowing", "meeting", "liking", "being similar to." Anything that can involve (or not involve) a pair of vertices.

Sometimes: we also want to attach weights to the edges and/or the vertices. But not for today.

Drawing a graph

A diagram of a graph is a picture, with a "dot" for each vertex, and a "segment" for each edge.

Example: V = $\{1,2,3,4,5\}$, E = $\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\}\}$.

(5 vertices, 6 edges).

Paths & Connectedness

A graph is connected if, for any two nodes v,w, there is a sequence of edges that joins v to w. A minimal such sequence of edges is called a "path" from v to w.

Example: one path from 1 to 4 is $\{1,2\}, \{2,3\}, \{3,4\}$. Another is $\{1,4\}$. A third is $\{1,5\}, \{5,4\}$. $\{2,6\}$ is on no path

Components

Two nodes in a graph are said to be "in the same connected component" if there exists a path joining them.

Claim: this is an equivalence relation. Why?

Consequence: Every graph decomposes in a unique way into its connected components.

Obs: G is connected iff G has only one connected component.

Equivalence Relations

Let ~ be a binary relation on a set S. (For elements a, b in S, "a ~ b" is a proposition which can be true or false.)

We say "~ is an equivalence relation" if 3 axioms hold:

- 1) reflexive. "a ~ a" is always true.
- 2) symmetric. "a ~ b" is equivalent to "b ~ a"
- 3) transitive. If a~b and b~c, then a~c.

Equivalence Classes

Suppose ~ is an equivalence relation on S.

Then S can be decomposed into subsets S_1 , S_2 , S_3 , etc. called "equivalence classes," meaning:

For all a,b in same equiv. class S_i , we have $a \sim b$. For all a in S_i , b in S_j , $i \neq j$, we have NOT($a \sim b$).

Equivalence classes are an alternative way of defining an equivalence relation.

Components

- a, b : vertices in graph G.
- "a ~ b": "there is a path from a to b"
- Equivalence relation.

Equivalence class containing a: All vertices that can be reached by a path from a. "Connected component containing a."

of connected components?

Components

- a, b : vertices in graph G.
- "a ~ b": "there is a path from a to b"
- Equivalence relation.

Equivalence class containing a: All vertices that can be reached by a path from a. "Connected component containing a."

of connected components? Between 1 and n, where n=#vertices in G.

Cycles

Def: A cycle in a graph is a closed loop with no repeated edges or nodes (except the start and end).

Example: In this graph, (1,2,3,4,5) is a cycle. So is (1,4,5). So is (1,4,3,2).

Trees & Forests

Def: A forest is a graph with no cycles.

Def: A tree is a connected graph with no cycles.

Remark: Every forest is a union of trees.

A tree is a special case of a forest.

Example: a tree.

Trees & Forests

Def: A forest is a graph with no cycles.

Def: A tree is a connected graph with no cycles.

Remark: Every forest is a union of trees.

A tree is a special case of a forest.

Example: a forest.

Recall: Binary Trees "root" 2 Data is stored in "nodes". Each node has 4 fields: 6 "leaf" data parent (either a ref to a node, or "hull")^{leaf}" left_child (reference to a node or null) right_child (reference to a node or null) The graph for a binary tree is a tree. (Connected, no cycles)

Testing Connectedness

- Input: A graph G, and vertices s,t.
- Output: A path from s to t, if one exists, and
- otherwise output "Disconnected"
- How do we proceed?
 - First issue: How do we store a graph in the computer?

Storing a Graph

2 main approaches:

(a) Adjacency list representation. (Better)(b) Adjacency matrix. (Worse)

Adjacency List repn

Graph:

int N = how many vertices there are.

Adj[v] = A List of the neighbors of v.

So: we have an Array of Linked Lists.

Example: V = {1,2,3,4,5}, E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4}, {1,3} }.

(5 vertices, 7 edges).

Adjacency List repn

Example: $V = \{1, 2, 3, 4, 5\},\$ $E = \{ \{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}, \{1,4\}, \{1,3\} \}.$ (5 vertices, 7 edges). $Adi[1] = \{2, 5, 4, 3\}$ $Adi[2] = \{1, 3\}$ $Adi[3] = \{2, 4, 1\}$ $Adi[4] = \{3, 5, 1\}$ $Adi[5] = \{4, 1\}$

Graph:

int N = how many vertices there are.

A = n x n matrix of 0's and 1's

A[i,j] = 1 means the edge {i, j} is included.

Adjacency List repn

Example: $V = \{1, 2, 3, 4, 5\},\$ $\mathsf{E} = \{ \{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}, \{1,4\}, \{1,3\} \}.$ (5 vertices, 7 edges). A = 011111010011010 10101 10010

Adjacency List repn

Example: $V = \{1, 2, 3, 4, 5\},\$ $\mathsf{E} = \{ \{1,2\}, \{2,3\}, \{3,4\}, \{4,5\}, \{5,1\}, \{1,4\}, \{1,3\} \}.$ (5 vertices, 7 edges). A = 0111111010011010 10101 10010

- Graph:
 - int N = how many vertices there are.
 - A = n x n matrix of 0's and 1's
 - A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Graph:

int n = how many vertices there are.

A = n x n matrix of 0's and 1's

A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Always requires n^2 space (and n^2 time to read/ write it). So what? How many edges can there be?

Graph:

int n = how many vertices there are.

A = n x n matrix of 0's and 1's

A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Always requires n^2 space (and n^2 time to read/ write it). So what? How many edges can there be? There can be $\binom{n}{2}$

$$\binom{n}{2} = \Theta(n^2)$$

Graph:

- int n = how many vertices there are.
- A = n x n matrix of 0's and 1's
- A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Always requires n^2 space (and n^2 time to read/ write it). So what? How many edges can there be? There can be $\binom{n}{2} = \Theta(n^2)$

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

N-1. Proof?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

N-1. Proof? Induction: Start with empty graph. Then there are N connected components. Each edge we add can reduce the number of components by 0 or by 1. So it takes at least N-1 edges to make G connected.

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

N-1. In this case, G is always a tree!

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

N-1. In this case, G is always a tree!

What is the most edges G can have?

$$\binom{N}{2} = \frac{N(N-1)}{2} = \Theta(N^2)$$

Testing Connectivity

- Input: A graph G, and vertices s,t.
- Output: A path from s to t, if one exists, and
- otherwise output "Disconnected"
- How do we proceed?
 - Start at s, and "search outward"

Testing Connectivity

- Input: A graph G, and vertices s,t.
- Output: A path from s to t, if one exists, and
- otherwise output "Disconnected"
- How do we proceed?
 - Start at s, and "search outward"
 - Build up a tree, rooted at s, as we go.

Eventually, we will find all nodes in the component of s. If t is there, the path from t to s is t, parent(t), parent(parent(t)), ..., s