CS 361

Data Structures \& Algs Lecture II

Prof.Tom Hayes
University of New Mexico

$$
09-28-2010
$$

Last Time

Priority Queues \& Heaps
Heapify (up and down)
1: Preserve shape of tree
2: Swaps restore heap order property
Balanced Binary Tree using Array
Quiz \#2
New Reading: secs 3.1 thru 3.4

Quiz 2 grades

$20,20,20,20,19,17$
$16,16,15,15,15$
$14,14,14,14,13$
12, 12, 12
11, 11, 11, 11
10, 9, 9, 9
7, 7, 3, 0

Today

P.A. 2 due Monday, Oct 11

Graphs and Trees, terminology
Connectedness, Components
Traversal Algorithms
Breadth First vs. Depth First
Testing Bipartiteness

Graphs

A graph is a pair, (V, E), where:
V is the set of vertices (also called "nodes")
E is a set of edges
Each edge consists of a pair of vertices, called the endpoints of the edge.

Example: V = \{1,2,3,4,5\},
$E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\}\}$.
(5 vertices, 6 edges).

Kinds of Graphs

Vertices: can represent almost anything. Cities, people, computers, numbers.

Edges: represent some notion of "adjacency" or relationships like "knowing", "meeting", "liking", "being similar to." Anything that can involve (or not involve) a pair of vertices.

Sometimes: we also want to attach weights to the edges and/or the vertices. But not for today.

Drawing a graph

A diagram of a graph is a picture, with a "dot" for each vertex, and a "segment" for each edge.
Example: $\mathrm{V}=\{1,2,3,4,5\}$,
$E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\}\}$.
(5 vertices, 6 edges).

Paths \& Connectedness

A graph is connected if, for any two nodes v, w, there is a sequence of edges that joins v to w. A minimal such sequence of edges is called a "path" from v to w.

Example: one path from 1 to 4 is $\{1,2\},\{2,3\},\{3,4\}$.
Another is $\{1,4\}$.
A third is
$\{1,5\},\{5,4\}$.
$\{2,6\}$ is on no path

Components

Two nodes in a graph are said to be "in the same connected component" if there exists a path joining them.

Claim: this is an equivalence relation. Why?
Consequence: Every graph decomposes in a unique way into its connected components.

Obs: G is connected iff G has only one connected component.

Equivalence Relations

Let \sim be a binary relation on a set S. (For elements a, b in S, " $a \sim b$ " is a proposition which can be true or false.)

We say " ~ is an equivalence relation" if 3 axioms hold:

1) reflexive. " $a \sim a$ " is always true.
2) symmetric. "a ~b" is equivalent to "b ~ a"
3) transitive. If $a \sim b$ and $b \sim c$, then $a \sim c$.

Equivalence Classes

Suppose ~ is an equivalence relation on S.
Then S can be decomposed into subsets S_{1}, S_{2}, S_{3}, etc. called "equivalence classes," meaning:

For all a, b in same equiv. class S_{i}, we have $a \sim b$.
For all a in S_{i}, b in $S_{j}, i \neq j$, we have $\operatorname{NOT(a\sim b).~}$

Equivalence classes are an alternative way of defining an equivalence relation.

Components

a, b : vertices in graph G.
"a ~ b": "there is a path from a to b"
Equivalence relation.
Equivalence class containing a: All vertices that can be reached by a path from a. "Connected component containing a."
\# of connected components?

Components

a, b : vertices in graph G .
"a ~ b": "there is a path from a to b"
Equivalence relation.
Equivalence class containing a: All vertices that can be reached by a path from a. "Connected component containing a."
\# of connected components? Between 1 and n, where $\mathrm{n}=\#$ vertices in G .

Cycles

Def: A cycle in a graph is a closed loop with no repeated edges or nodes (except the start and end).

Example: In this graph, $(1,2,3,4,5)$ is a cycle. So is $(1,4,5)$. So is $(1,4,3,2)$.

Trees \& Forests

Def: A forest is a graph with no cycles.
Def: A tree is a connected graph with no cycles.
Remark: Every forest is a union of trees.
A tree is a special case of a forest.
Example: a tree.

Trees \& Forests

Def: A forest is a graph with no cycles.
Def: A tree is a connected graph with no cycles.
Remark: Every forest is a union of trees.
A tree is a special case of a forest.
Example: a forest.

Recall: Binary Trees

Data is stored in "nodes".
Each node has 4 fields: data

left_child (reference to a node or null)
right_child (reference to a node or null)
The graph for a binary tree is a tree.
(Connected, no cycles)

Rooted Trees

A binary tree has a special node called the root.
Every node, v, has a unique path to the root. parent(v) is the first node along this path.
In a general tree, any node can be made the root.
This is called "rooting"

Rooted Trees

A binary tree has a special node called the root.
Every node, v, has a unique path to the root. parent(v) is the first node along this path.
In a general tree, any node can be made the root.
This is called "rooting"

Rooted Trees

A binary tree has a special node called the root.
Every node, v, has a unique path to the root. parent(v) is the first node along this path.

In a general tree, any node can be made the root.
This is called "rooting"

Rooted Trees

A binary tree has a special node called the root.
Every node, v, has a unique path to the root. parent(v) is the first node along this path.
In a general tree, any node can be made the root.
This is called "rooting"

Rooted Trees

A binary tree has a special node called the root.
Every node, v, has a unique path to the root. parent(v) is the first node along this path. In a general tree, any node can be made the root.
This is called "rooting"

Testing Connectedness

Input: A graph G, and vertices s,t.
Output: A path from s to t, if one exists, and otherwise output "Disconnected"
How do we proceed?
First issue: How do we store a graph in the computer?

Storing a Graph

2 main approaches:
(a) Adjacency list representation. (Better)
(b) Adjacency matrix. (Worse)

Adjacency List repn

Graph:
int $\mathrm{N}=$ how many vertices there are.
$\operatorname{Adj}[\mathrm{v}]=\mathrm{A}$ List of the neighbors of v .
So: we have an Array of Linked Lists.
Example: $\mathrm{V}=\{1,2,3,4,5\}$,
$E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\},\{1,3\}\}$.
(5 vertices, 7 edges).

Adjacency List repn

Example: $\mathrm{V}=\{1,2,3,4,5\}$,
$E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\},\{1,3\}\}$.
(5 vertices, 7 edges).
$\operatorname{Adj}[1]=\{2,5,4,3\}$
Adj[2] $=\{1,3\}$
Adj[3] $=\{2,4,1\}$
Adj[4] $=\{3,5,1\}$
$\operatorname{Adj}[5]=\{4,1\}$

Adjacency Matrix repn

Graph:
int $\mathrm{N}=$ how many vertices there are.
$A=n \times n$ matrix of 0 's and 1's
$A[i, j]=1$ means the edge $\{i, j\}$ is included.

Adjacency List repn

Example: $\mathrm{V}=\{1,2,3,4,5\}$,
$E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\},\{1,3\}\}$.
(5 vertices, 7 edges).

$$
A=\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}
$$

Adjacency List repn

Example: $\mathrm{V}=\{1,2,3,4,5\}$,
$E=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,1\},\{1,4\},\{1,3\}\}$.
(5 vertices, 7 edges).

$$
A=\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}
$$

Adjacency Matrix repn

Graph:
int $\mathrm{N}=$ how many vertices there are.
$A=n \times n$ matrix of 0 's and 1 's
$A[i, j]=1$ means the edge $\{i, j\}$ is included.
Why is this worse than Adjacency List (in general)?

Adjacency Matrix repn

Graph:
int $\mathrm{n}=$ how many vertices there are.
$A=n \times n$ matrix of 0 's and 1 's
$A[i, j]=1$ means the edge $\{i, j\}$ is included.
Why is this worse than Adjacency List (in general)?
Always requires $\mathrm{n}^{\wedge} 2$ space (and $\mathrm{n}^{\wedge} 2$ time to read/ write it). So what? How many edges can there be?

Adjacency Matrix repn

Graph:
int $\mathrm{n}=$ how many vertices there are.
$A=n \times n$ matrix of 0 's and 1 's
$A[i, j]=1$ means the edge $\{i, j\}$ is included.
Why is this worse than Adjacency List (in general)?
Always requires $\mathrm{n}^{\wedge} 2$ space (and $\mathrm{n} \wedge 2$ time to read/ write it). So what? How many edges can there be? There can be $\binom{n}{2}=\Theta\left(n^{2}\right)$

Adjacency Matrix repn

Graph:

int $\mathrm{n}=$ how many vertices there are.
$A=n \times n$ matrix of 0 's and 1's
$A[i, j]=1$ means the edge $\{i, j\}$ is included.
Why is this worse than Adjacency List (in general)?
Always requires $\mathrm{n}^{\wedge} 2$ space (and $\mathrm{n} \wedge 2$ time to read/ write it). So what? How many edges can there be? There can be $\binom{n}{2}=\Theta\left(n^{2}\right)$

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.
Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.
Suppose G is a connected graph with N vertices. What is the fewest edges G can have?

N-1. Proof?

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.
Suppose G is a connected graph with N vertices. What is the fewest edges G can have?
$\mathrm{N}-1$. Proof? Induction: Start with empty graph. Then there are N connected components. Each edge we add can reduce the number of components by 0 or by 1 . So it takes at least $\mathrm{N}-1$ edges to make G connected.

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.
Suppose G is a connected graph with N vertices. What is the fewest edges G can have?
$\mathrm{N}-1$. In this case, G is always a tree!

How many edges?

Suppose G is a graph, with N vertices. What is the fewest edges G can have?

Zero.
Suppose G is a connected graph with N vertices. What is the fewest edges G can have?
$\mathrm{N}-1$. In this case, G is always a tree!
What is the most edges G can have?

$$
\binom{N}{2}=\frac{N(N-1)}{2}=\Theta\left(N^{2}\right)
$$

Testing Connectivity

Input: A graph G, and vertices s,t.
Output: A path from s to t, if one exists, and otherwise output "Disconnected"

How do we proceed?
Start at s, and "search outward"

Testing Connectivity

Input: A graph G, and vertices s,t.
Output: A path from s to t, if one exists, and otherwise output "Disconnected" How do we proceed?

Start at s, and "search outward"
Build up a tree, rooted at s, as we go.
Eventually, we will find all nodes in the component of s. If t is there, the path from t to s is t, parent (t), parent $($ parent $(t)), \ldots, s$

