
CS 361
Data Structures & Algs

Lecture 11

Prof. Tom Hayes
University of New Mexico

09-28-2010

1



Last Time
Priority Queues & Heaps

Heapify (up and down)

1: Preserve shape of tree

2: Swaps restore heap order property

Balanced Binary Tree using Array

Quiz #2

New Reading: secs 3.1 thru 3.4

2



Quiz 2 grades
20, 20, 20, 20, 19, 17

16, 16, 15, 15, 15

14, 14, 14, 14, 13

12, 12, 12

11, 11, 11, 11

10, 9, 9, 9

7, 7, 3, 0

3



Today

P.A. 2 due Monday, Oct 11

Graphs and Trees, terminology

Connectedness, Components

Traversal Algorithms

Breadth First vs. Depth First

Testing Bipartiteness

4



A graph is a pair, (V,E), where:

V is the set of vertices (also called “nodes”)

E is a set of edges

Each edge consists of a pair of vertices, called 
the endpoints of the edge.

Example: V = {1,2,3,4,5},                                        
E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4} }.

(5 vertices, 6 edges).

Graphs

5



Vertices: can represent almost anything.  Cities, 
people, computers, numbers.

Edges: represent some notion of “adjacency” or 
relationships like “knowing”, “meeting”, “liking”, 
“being similar to.”  Anything that can involve (or 
not involve) a pair of vertices.

Sometimes: we also want to attach weights to the 
edges and/or the vertices.  But not for today.

Kinds of Graphs

6



A diagram of a graph is a picture, with a “dot” for 
each vertex, and a “segment” for each edge.

Example: V = {1,2,3,4,5},                                        
E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4} }.

(5 vertices, 6 edges). 1

2

34

5

Drawing a graph

7



A graph is connected if, for any two nodes v,w, 
there is a sequence of edges that joins v to w.  A 
minimal such sequence of edges is called a “path” 
from v to w.

Example: one path from 1 to 4 is {1,2}, {2,3}, {3,4}.

Another is {1,4}.

A third is 

{1,5},{5,4}.

{2,6} is on no path

Paths & Connectedness

1

2

34

5 6

8



Two nodes in a graph are said to be “in the same 
connected component” if there exists a path 
joining them.

Claim: this is an equivalence relation.  Why?

Consequence: Every graph decomposes in a 
unique way into its connected components.

Obs: G is connected iff G has only one connected

component.

Components

9



Let ~ be a binary relation on a set S.  (For 
elements a, b in S, “a ~ b” is a proposition which 
can be true or false.)

We say “~ is an equivalence relation” if 3 axioms 
hold:

1) reflexive.  “a ~ a” is always true.

2) symmetric.  “a ~ b” is equivalent to “b ~ a”

3) transitive.  If a~b and b~c, then a~c.

Equivalence Relations

10



Suppose ~ is an equivalence relation on S.

Then S can be decomposed into subsets S1, S2, 
S3, etc. called “equivalence classes,” meaning:

For all a,b in same equiv. class Si, we have a~b.

For all a in Si, b in Sj, i≠j, we have NOT(a~b).

Equivalence classes are an alternative way of 
defining an equivalence relation.

Equivalence Classes

11



a, b : vertices in graph G.

“a ~ b”:  “there is a path from a to b”

Equivalence relation.

Equivalence class containing a: All vertices that 
can be reached by a path from a.  “Connected 
component containing a.”

# of connected components?

Components

12



a, b : vertices in graph G.

“a ~ b”:  “there is a path from a to b”

Equivalence relation.

Equivalence class containing a: All vertices that 
can be reached by a path from a.  “Connected 
component containing a.”

# of connected components?  Between 1 and n, 
where n=#vertices in G.

Components

13



Def: A cycle in a graph is a closed loop with no 
repeated edges or nodes (except the start and 
end).

Example: In this graph, (1,2,3,4,5) is a cycle.  So is 
(1,4,5).  So is (1,4,3,2).

Cycles

1

2

34

5 6

14



Def: A forest is a graph with no cycles.

Def: A tree is a connected graph with no cycles.

Remark: Every forest is a union of trees.

A tree is a special case of a forest.

Example: a tree.

Trees & Forests

1

2

34

5 6

15



Def: A forest is a graph with no cycles.

Def: A tree is a connected graph with no cycles.

Remark: Every forest is a union of trees.

A tree is a special case of a forest.

Example: a forest.

Trees & Forests

1

2

34

5 6

16



Data is stored in “nodes”.  

Each node has 4 fields: 

data

parent  (either a ref to a node, or “null”)

left_child (reference to a node or null)

right_child (reference to a node or null)

The graph for a binary tree is a tree.  
(Connected, no cycles)

Recall: Binary Trees
“root”

“leaf”

“leaf”“leaf”“leaf”

17



A binary tree has a special node called the root.

Every node, v, has a unique path to the root.

parent(v) is the first node along this path.

In a general tree, any node can be made the root.

This is called “rooting”

Rooted Trees

1

2

34

5 6

18



A binary tree has a special node called the root.

Every node, v, has a unique path to the root.

parent(v) is the first node along this path.

In a general tree, any node can be made the root.

This is called “rooting”

Rooted Trees

1

2

34

5 6

19



A binary tree has a special node called the root.

Every node, v, has a unique path to the root.

parent(v) is the first node along this path.

In a general tree, any node can be made the root.

This is called “rooting”

Rooted Trees

1

2

3

4

5

6

20



A binary tree has a special node called the root.

Every node, v, has a unique path to the root.

parent(v) is the first node along this path.

In a general tree, any node can be made the root.

This is called “rooting”

Rooted Trees

1

2

34

5 6

21



A binary tree has a special node called the root.

Every node, v, has a unique path to the root.

parent(v) is the first node along this path.

In a general tree, any node can be made the root.

This is called “rooting”

Rooted Trees

1

2

3

45

6

22



Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

First issue: How do we store a graph in the 
computer?

Testing Connectedness

23



2 main approaches:

(a) Adjacency list representation.  (Better)

(b) Adjacency matrix.  (Worse)

Storing  a Graph

24



Graph:

int N = how many vertices there are.

Adj[ v ] = A List of the neighbors of v.

So: we have an Array of Linked Lists.

Example: V = {1,2,3,4,5},                                        
E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4}, {1,3} }.

(5 vertices, 7 edges).

Adjacency List repn

25



Example: V = {1,2,3,4,5},                                        
E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4}, {1,3} }.

(5 vertices, 7 edges).

Adj[1] = {2, 5, 4, 3}
Adj[2] = {1, 3}
Adj[3] = {2, 4, 1}
Adj[4] = {3, 5, 1}
Adj[5] = {4, 1}

Adjacency List repn

2

34

5

1

26



Graph:

int N = how many vertices there are.

A = n x n matrix of 0’s and 1’s

A[i,j] = 1 means the edge {i, j} is included.

Adjacency Matrix repn

27



Example: V = {1,2,3,4,5},                                        
E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4}, {1,3} }.

(5 vertices, 7 edges).

A =  0 1 1 1 1
       1 0 1 0 0 
       1 1 0 1 0
       1 0 1 0 1
       1 0 0 1 0

Adjacency List repn

2

34

5

1

28



Example: V = {1,2,3,4,5},                                        
E = { {1,2}, {2,3}, {3,4}, {4,5}, {5,1}, {1,4}, {1,3} }.

(5 vertices, 7 edges).

A =  0 1 1 1 1
       1 0 1 0 0 
       1 1 0 1 0
       1 0 1 0 1
       1 0 0 1 0

Adjacency List repn

2

34

5

1

29



Graph:

int N = how many vertices there are.

A = n x n matrix of 0’s and 1’s

A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Adjacency Matrix repn

30



Graph:

int n = how many vertices there are.

A = n x n matrix of 0’s and 1’s

A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Always requires n^2 space (and n^2 time to read/
write it).  So what?  How many edges can there 
be?

Adjacency Matrix repn

31



Graph:

int n = how many vertices there are.

A = n x n matrix of 0’s and 1’s

A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Always requires n^2 space (and n^2 time to read/
write it).  So what?  How many edges can there 
be?  There can be 

Adjacency Matrix repn

(
n

2

)
= Θ(n2)

32



Graph:

int n = how many vertices there are.

A = n x n matrix of 0’s and 1’s

A[i,j] = 1 means the edge {i, j} is included.

Why is this worse than Adjacency List (in general)?

Always requires n^2 space (and n^2 time to read/
write it).  So what?  How many edges can there 
be?  There can be 

Adjacency Matrix repn

(
n

2

)
= Θ(n2)

33



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

How many edges?

34



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

How many edges?

35



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.  
What is the fewest edges G can have?

How many edges?

36



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.  
What is the fewest edges G can have?

N-1.  Proof?

How many edges?

37



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.  
What is the fewest edges G can have?

N-1.  Proof?  Induction: Start with empty graph.  
Then there are N connected components.  Each 
edge we add can reduce the number of 
components by 0 or by 1.  So it takes at least N-1 
edges to make G connected.

How many edges?

38



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.  
What is the fewest edges G can have?

N-1.  In this case, G is always a tree!

How many edges?

39



Suppose G is a graph, with N vertices.  What is 
the fewest edges G can have?

Zero.

Suppose G is a connected graph with N vertices.  
What is the fewest edges G can have?

N-1.  In this case, G is always a tree!

What is the most edges G can have?

How many edges?

(
N

2

)
=

N(N − 1)
2

= Θ(N2)

40



Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

Start at s, and “search outward”

Testing Connectivity

41



Input: A graph G, and vertices s,t.

Output: A path from s to t, if one exists, and

otherwise output “Disconnected”

How do we proceed?

Start at s, and “search outward”

Build up a tree, rooted at s, as we go.

Eventually, we will find all nodes in the 
component of s.  If t is there, the path from t to 
s is   t, parent(t), parent(parent(t)), ..., s

Testing Connectivity

42


