
CS 361
Data Structures & Algs

Lecture 13

Prof. Tom Hayes
University of New Mexico

10-5-2010

1

Last Time

Spanning Trees

BFS

DFS

Testing Bipartiteness

2

Today

Inside BFS

Running Time

Implementation

Degrees & Degree sums

Properties of BFS and DFS trees

Identifying trees in the wild

3

Breadth-First Search

BFS finds the vertices in the connected
component of the start vertex s one
“level” at a time.

Level Li = {vertices whose “distance” to s
equals i}

distance(v,w) = number of edges in the
shortest path from v to w.

Question: how to implement?

4

Plan of Attack

We will first talk about a general search
framework (GSF), broad enough to
include BFS and some other search
algorithms.

Then focus on BFS in more detail.

5

GSF (includes BFS)
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v])

if (w is U) change w to A

change v to I (inactive)

6

Analysis of GSF
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v])

if (w is U) change w to A

change v to I (inactive)

How many times?

7

Analysis of GSF
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v])

if (w is U) change w to A

change v to I (inactive)

How many times?
2 (#edges)

8

Analysis of GSF
Lemma: Each node is initially U, then A
for some time, then I, and never goes
back to an earlier label.

Proof. By inspection, there is no line of
code which could turn a node marked A
or I into U, or I into A.

Corollary: Loop variable v never repeats
an earlier value.

9

Degree of a node

Let v be a vertex in a graph G=(V,E). The
degree of v equals the number of
neighbors of v, that is, the length of the
adjacency list of v.

Answer: What is the sum,∑

v∈V

degree(v)

10

∑

v∈V

degree(v) = 2|E|

Degree of a node

Let v be a vertex in a graph G=(V,E). The
degree of v equals the number of
neighbors of v, that is, the length of the
adjacency list of v.

Theorem:

11

Analysis of GSF
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v])

if (w is U) change w to A

change v to I (inactive)

2 (#edges)

(#nodes)

(#nodes)
1

Total: O(#nodes + #edges)
12

Linear Time Algorithms

We say an algorithm runs in linear time if
the running time is O(input size).

For a graph in adjacency list format, the
input size is Θ(#nodes + #edges).

So, for algorithms where the input is a
graph, linear time means O(|V| + |E|).

In particular, BFS is a linear-time
algorithm.

13

From GSF to BFS

BFS wants to explore level by level.

GSF iterates through active set A in any
order. BFS wants to explore from all
nodes in level i before any in level (i+1).

Insight: BFS also discovers all nodes in
level i before any in level (i+1).

Solution: Store A in a queue (FIFO)!
In Java: AbstractQueue.

14

GSF (includes BFS)
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v])

if (w is U) change w to A

change v to I (inactive)

15

BFS
Initially: A = empty queue.

Initially: U[each vertex] = true

A.add(s) (enqueue s)

while (A nonempty)

v = A.remove()

for (w : Adj[v])

if (U[w]) {U[w]=false, A.add(w)}

16

Notes
Originally, state U,A,I, was a single
attribute of each node. Helped prevent
conflicts (a state marked both U and A).

When A became a Queue, we made U
into a boolean array, then dropped I
entirely. Care needed to avoid conflicts.

Didn’t have to keep track of current Level
explicitly, since Queue keeps the nodes
in the right order. Suppose we want to.
How can we do it?

17

Edges in BFS

Theorem: Each time BFS looks at an
edge, it is either:

(a) joining a found node (level Li) to an
unfound node (level Li+1). Becomes an
edge in the tree, or

(b) joining a found node (level Li) to an
already found node (level Li or Li+1).

Why only these?

18

Rephrased:

Theorem: If T is a BFS tree for a graph
G, then every edge in G either:

(a) is in T, and joins adjacent levels, or

(b) is not in T, and joins nodes in the
same or adjacent levels.

Level: equal distance from the root.

19

Is this a BFS tree?

20

Is this a BFS tree?

Where is the
root?

21

Is this a BFS tree?

Yes, and root
must be here!

22

Is this a BFS tree? 2

23

Is this a BFS tree? 2

Not even a tree!
(cycle)

24

Is this a BFS tree? 3

25

Is this a BFS tree? 3

Where is the
root?

26

Is this a BFS tree? 3

root can only be here or
here (level 1 must include

all neighbors of root)
27

Is this a BFS tree? 3

can root be
here?

28

Is this a BFS tree? 3

can root be here? No!
Blue node would be in

level 2 of tree.
29

Is this a BFS tree? 3

can root be
here?

30

Is this a BFS tree? 3

can root be here? No!
Blue node would be in

level 2 of tree.
31

Is this a BFS tree? 3

Not a BFS tree!

32

Is this a BFS tree? 4

33

Is this a BFS tree? 4

Where is the
root?

34

Is this a BFS tree? 4

Check: Yes, with
3 possible roots.

35

Depth-First Search

DFS: explores fully from each vertex,
before backing up to try another one.

DFS(s): Mark s as found.

For each unfound neighbor v of s:

add edge (v,s) to T.

DFS(v)

36

DFS Trees
DFS: explores fully from each vertex,
before backing up to try another one.

Theorem: Each time DFS looks at an
edge, it either:

(a) is added to the tree, or

(b) is a back-edge to an ancestor of the
current node. (see (3.7) on page 85)

Lemma: Active nodes are always a path
from the root.

37

DFS example

38

DFS example

39

DFS example

40

DFS example

41

DFS example

42

DFS example

43

DFS example

44

DFS example

45

DFS example

46

DFS example

47

DFS example

48

DFS example

49

DFS example

50

DFS example

51

Is this a DFS tree?

52

Is this a DFS tree?

Where is the
root?

53

Is this a DFS tree?

Non-edges must
join a node to
its ancestor.

54

Is this a DFS tree?

Yes, a DFS tree.
Root must be here

55

