
CS 361
Data Structures & Algs

Lecture 13

Prof. Tom Hayes
University of New Mexico

10-5-2010

1



Last Time

Spanning Trees

BFS

DFS

Testing Bipartiteness
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Today

Inside BFS

Running Time

Implementation

Degrees & Degree sums

Properties of BFS and DFS trees

Identifying trees in the wild
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Breadth-First Search

BFS finds the vertices in the connected 
component of the start vertex s one 
“level” at a time.

Level Li = {vertices whose “distance” to s 
equals i}

distance(v,w) = number of edges in the 
shortest path from v to w.

Question: how to implement?
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Plan of Attack

We will first talk about a general search 
framework (GSF), broad enough to 
include BFS and some other search 
algorithms.

Then focus on BFS in more detail.
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GSF (includes BFS)
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v]) 

if (w is U) change w to A

change v to I (inactive)
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Analysis of GSF
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v]) 

if (w is U) change w to A

change v to I (inactive)

How many times?
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Analysis of GSF
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v]) 

if (w is U) change w to A

change v to I (inactive)

How many times?
2 (#edges)
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Analysis of GSF
Lemma: Each node is initially U, then A 
for some time, then I, and never goes 
back to an earlier label.

Proof.  By inspection, there is no line of 
code which could turn a node marked A 
or I into U, or I into A.

Corollary: Loop variable v never repeats 
an earlier value.
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Degree of a node

Let v be a vertex in a graph G=(V,E).  The 
degree of v equals the number of 
neighbors of v, that is, the length of the 
adjacency list of v.

Answer: What is the sum,∑

v∈V

degree(v)
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∑

v∈V

degree(v) = 2|E|

Degree of a node

Let v be a vertex in a graph G=(V,E).  The 
degree of v equals the number of 
neighbors of v, that is, the length of the 
adjacency list of v.

Theorem:
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Analysis of GSF
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v]) 

if (w is U) change w to A

change v to I (inactive)

2 (#edges)

(#nodes)

(#nodes)
1

Total: O(#nodes + #edges)
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Linear Time Algorithms

We say an algorithm runs in linear time if 
the running time is O(input size).

For a graph in adjacency list format, the 
input size is Θ(#nodes + #edges).

So, for algorithms where the input is a 
graph, linear time means O(|V| + |E|).  

In particular, BFS is a linear-time 
algorithm.
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From GSF to BFS

BFS wants to explore level by level.

GSF iterates through active set A in any 
order.  BFS wants to explore from all 
nodes in level i before any in level (i+1).

Insight: BFS also discovers all nodes in 
level i before any in level (i+1).

Solution: Store A in a queue (FIFO)!        
In Java: AbstractQueue.
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GSF (includes BFS)
Each node has 3 different “states”: U, A, I

Initially: everything marked U (unfound).

Change s to A (active).

for (v : A)

for (w : Adj[v]) 

if (w is U) change w to A

change v to I (inactive)
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BFS
Initially: A = empty queue.

Initially: U[each vertex] = true

A.add(s)                       (enqueue s)

while (A nonempty)

v = A.remove()

for (w : Adj[v]) 

if (U[w]) {U[w]=false, A.add(w)}
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Notes
Originally, state U,A,I, was a single 
attribute of each node.  Helped prevent 
conflicts (a state marked both U and A).

When A became a Queue, we made U 
into a boolean array, then dropped I 
entirely.  Care needed to avoid conflicts.

Didn’t have to keep track of current Level 
explicitly, since Queue keeps the nodes 
in the right order.  Suppose we want to.  
How can we do it?
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Edges in BFS

Theorem: Each time BFS looks at an 
edge, it is either: 

(a) joining a found node (level Li) to an 
unfound node (level Li+1).  Becomes an 
edge in the tree, or

(b) joining a found node (level Li) to an 
already found node (level Li or Li+1). 

Why only these?
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Rephrased:

Theorem: If T is a BFS tree for a graph 
G, then every edge in G either:

(a) is in T, and joins adjacent levels, or

(b) is not in T, and joins nodes in the 
same or adjacent levels.

Level: equal distance from the root.
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Is this a BFS tree?
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Is this a BFS tree?

Where is the 
root?
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Is this a BFS tree?

Yes, and root 
must be here!
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Is this a BFS tree? 2

23



Is this a BFS tree? 2

Not even a tree! 
(cycle)
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Is this a BFS tree? 3
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Is this a BFS tree? 3

Where is the 
root?
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Is this a BFS tree? 3

root can only be here or 
here (level 1 must include 

all neighbors of root)
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Is this a BFS tree? 3

can root be 
here?
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Is this a BFS tree? 3

can root be here?  No!  
Blue node would be in 

level 2 of tree.
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Is this a BFS tree? 3

can root be 
here?
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Is this a BFS tree? 3

can root be here?  No!  
Blue node would be in 

level 2 of tree.
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Is this a BFS tree? 3

Not a BFS tree!
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Is this a BFS tree? 4
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Is this a BFS tree? 4

Where is the 
root?
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Is this a BFS tree? 4

Check:  Yes, with 
3 possible roots.
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Depth-First Search

DFS: explores fully from each vertex, 
before backing up to try another one.

DFS(s): Mark s as found.

For each unfound neighbor v of s:

add edge (v,s) to T. 

DFS(v)
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DFS Trees
DFS: explores fully from each vertex, 
before backing up to try another one.

Theorem: Each time DFS looks at an 
edge, it either:

(a) is added to the tree, or

(b) is a back-edge to an ancestor of the 
current node. (see (3.7) on page 85)

Lemma: Active nodes are always a path 
from the root.
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example
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DFS example

48



DFS example
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DFS example
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DFS example
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Is this a DFS tree?
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Is this a DFS tree?

Where is the 
root?
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Is this a DFS tree?

Non-edges must 
join a node to 
its ancestor.
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Is this a DFS tree?

Yes, a DFS tree. 
Root must be here
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