CS 361 Data Structures & Algs Lecture 9

Prof. Tom Hayes University of New Mexico 09-21-2010

Today

Orderings Searching Sorting Priority Queues & Heaps

Order Relation

We say a binary relation R is an "order relation" if it is

(1) transitive a R b and b R c implies a R c and (2) antisymmetric a R b implies not(b R a).

example: < > "is a prefix of" "is younger than" "is a descendent of" "is a superclass of"

Total Ordering

- An order relation R is total if, for every a, b, either a=b, a R b or b R a. "trichotomy"
- Example: < on real numbers.
- Otherwise: partial ordering. example: "is an ancestor of". "came to class before". (Why are these orderings only partial?)

Sorting

Prerequisites: a total ordering, R.

Input: an unordered collection of things.

Output: a list containing the same things, now in order

(A[0] R A[1] R A[2] R ... R A[n-1])

How to Sort

Basic idea: Divide and Conquer!

(a) QuickSort. Choose a "pivot" P = A[i]. Split the rest of A into 2 sides: less than P, and more than P. Place these sides in the correct order: (< P) P (> P). Finally, recursively sort the two sides.

(b) MergeSort. Split the list into two equal parts. Recursively sort each part. Finally, "splice" them together in O(n) time.

Analysis of MergeSort

Let T(n) denote the (worst case) running time on an array of length n. T(n) $\leq 2T(n/2) + C n$ (recurrence relation)

Analysis of MergeSort

Let T(n) denote the (worst case) running time on an array of length n.

 $T(n) \le 2T(n/2) + C n$ (recurrence relation)

- $\leq 4(2T(n/8) + C(n/4)) + 2 C n$
- = 8 T(n/8) + 3 C n
- ... = n T(1) + log(n) C n = O(n log n).

"Analysis" of QuickSort

How big do we expect the side "< P" to be, typically?

"Analysis" of QuickSort

How big do we expect the side "< P" to be, typically?

If it were always close to (n/2), then we would expect to get the same recurrence as for MergeSort:

 $T(n) \le 2 T(n/2) + C n.$

So, the solution would be the same, O(n log n) "nearly linear time"

Analysis of QuickSort

Let T(n) = worst-case running time of QuickSort.

 $T(n) \leq C n + T(left side) + T(right side).$

left side + right side = n-1. So, T(left side) + T(right side) \leq T(n-1). This case can happen! (Pivot could be max or min elt.)

 $T(n) \le C n + T(n-1)$. Unroll this recurrence.

 $T(n) = O(n^2)$. (Actually, also $\Omega(n^2)$.)

QuickSort Rmks

Although worst-case performance is quadratic, QuickSort tends to perform very well in practice.

(a) With randomized pivot, average running time is provably O(n log n).

(b) Practical advantages over MergeSort: sorting in place, improved locality of reference (good for memory caching).

Searching

Say we want to store a set of data, such as UNM student names. How quickly can we check whether an input equals the name of a student?

Searching

Say we want to store a set of data, such as UNM student names. How quickly can we check whether an input equals the name of a student?

Goal: O(log N), where N is the total number of students.

Method: Binary search!

Binary Search

Prerequisite: Totally Ordered Data. Store Data in a Sorted Array. Let T(N) = worst-case time to test a name. Recurrence: $T(N) \le C + T(N/2)$. unroll!

Binary Search

- Prerequisite: Totally Ordered Data.
- Store Data in a Sorted Array.
- Let T(N) = worst-case time to test a name.
- Recurrence: $T(N) \leq C + T(N/2)$.
- $\leq 2 \text{ C} + \text{T}(\text{N}/4)$
- $\leq 3 \text{ C} + T(N/8) \leq ... \leq (\log N) \text{ C} + T(1)$ = O(log N).

Summary

With a total ordering, can sort in time O(N log N). In a sorted list, can search in time O(log N).

Variant: Binary Search Tree

BST is a data structure providing the following operations:

add

remove

is_element

Goal: These 3 operations run fast!

Variant: Binary Search Tree

Data structure:

class Node<T> {

T data;

Node leftChild, rightChild;

Recall: these are "references" or "pointers" Invariant: leftChild.data < data < rightChild.data

Variant: Binary Search Tree

Time for these operations:

add

remove

is_element

All proportional to depth(tree). Ideally, log(N). "complete" binary tree. Problem: may become unbalanced.

Priority Queues

Stores a collection of data

Each data has a numeric "key value"

operations supported: add, delete, extract_min.

guarantees: O(log n) time per operation

n = current size of collection.

Where does the name come from?

The Name

Queue: operations add, delete, get_next first-in, first-out (FIFO) data flow. Often implemented as linked list.

Priority Queue: whenever-in, highest-priority first-out (WHiPFO) data flow.

(A priority queue is not a kind of queue, in the standard sense)

In Java

java.util.PriorityQueue (look at API)

Idea 1: Maintain a sorted list

Then, to extract_min, just need to grab the first element, and point to the second one.

What will it cost to insert an element?

Idea 1: Maintain a sorted list

Takes $\Omega(n)$ time to find/add/delete. No good.

Idea 2: Maintain a sorted array.

Idea 1: Maintain a sorted list

- Takes $\Omega(n)$ time to find/add/delete. No good.
- Idea 2: Maintain a sorted array.

Can use binary search to find, but add/delete still take $\Omega(n)$ time. No good!

- Idea 1: Maintain a sorted list
- Takes $\Omega(n)$ time to find/add/delete. No good.
- Idea 2: Maintain a sorted array.
- Can use binary search to find, but add/delete still take $\Omega(n)$ time. No good!
- Idea 3: Special kind of tree called a "heap"

Binary Trees

Data is stored in "nodes".

Each node has 4 fields:

data

parent (either a ref to a node, or "null")

left_child (reference to a node or null)

right_child (reference to a node or null)

We say a tree storing "key" values satisfies the (min-) heap order property if it is always the case that the parent of a node stores a value \leq than the node does.

We say a tree storing "key" values satisfies the (min-) heap order property if it is always the case that the parent of a node stores a value \leq than the node does.

Such a tree is called a "heap."

We say a tree storing "key" values satisfies the (min-) heap order property if it is always the case that the parent of a node stores a value \leq than the node does.

Such a tree is called a "heap."

A heap is called "balanced" if every layer except perhaps the bottom one, has the maximum possible number of nodes.

We say a tree storing "key" values satisfies the (min-) heap order property if it is always the case that the parent of a node stores a value \leq than the node does.

Such a tree is called a "heap."

A heap is called "balanced" if every layer except perhaps the bottom one, has the maximum possible number of nodes.

Q: What is this number?

We say a tree storing "key" values satisfies the (min-) heap order property if it is always the case that the parent of a node stores a value \leq than the node does.

Such a tree is called a "heap."

A heap is called "balanced" if every layer except perhaps the bottom one, has the maximum possible number of nodes.

Q: What is this number? 2^{L} for the L'th level away from the root. ("depth L")

What can we do with a heap? Can we search it quickly?

What can we do with a heap?

Can we search it quickly?

No. (whiteboard)

What can we do with a heap?

- Can we search it quickly?
- No. (whiteboard)

Can we extract_min quickly?

- What can we do with a heap?
- Can we search it quickly?
- No. (whiteboard)
- Can we extract_min quickly?
- Well, we can find_min quickly. But if we extract it, we will have to replace the root.

- What can we do with a heap?
- Can we search it quickly?
- No. (whiteboard)
- Can we extract_min quickly?
- Well, we can find_min quickly. But if we extract it, we will have to replace the root.
- What about adding an element?

- What can we do with a heap?
- Can we search it quickly?
- No. (whiteboard)
- Can we extract_min quickly?
- Well, we can find_min quickly. But if we extract it, we will have to replace the root.
- What about adding an element? Stick it in a leaf.

- What can we do with a heap?
- Can we search it quickly?
- No. (whiteboard)
- Can we extract_min quickly?
- Well, we can find_min quickly. But if we extract it, we will have to replace the root.
- What about adding an element? Stick it in a leaf. But it might violate the order property!

Reading: Heapify-Up, Heapify-Down

Goal: Fix a near-heap that has just one value out of place.

If it's smaller than its parent, swap it with its parent. Recurse! (Heapify-up)

If it's bigger than a child, swap it with the smaller child. Recurse! (Heapify-down)

Applet at <u>http://people.ksp.sk/~kuko/bak/</u> index.html

Next P.A.

- A 2-sided Priority Queue.
- Can extract_min and extract_max, both in time O(log N).
- Design: How can this be achieved?

Don't Forget: Quiz on Thursday. Finish HW!