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Last Time: Stable Matching

Defined: n x n stable matching problem, 
with complete preference lists.  Matching, 
perfect matching, instability, stable 
matching.

Gale-Shapley alg claims to find one of the 
stable matchings.  Went over pseudocode.

Today: Analyzing the algorithm (does it 
really work, and how fast?)
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Def: “Perfect” matchings
A matching is a pairing of men and women 
which avoids polygamy/polyandry.   That 
is, it is at most 1-to-1.

A perfect matching is exactly 1-to-1.  
Nobody is left unmatched. 

Perfect matchings can be very imperfect!

Why?  Has nothing to do with people’s 
preferences.
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Preference Lists
Input: Each man ranks every woman, from 
his favorite, to his least favorite.

Women do the same for men.

Ex: Men = {1, 2, 3}.  Women = {A, B, C}

1 ranks:  A, C, B       A ranks: 3, 2, 1

2 ranks:  A, B, C       B ranks: 1, 3, 2

3 ranks:  C, B, A       C ranks: 2, 3, 1
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Given preference lists, and a matching, we 
say that (m,w) are an instability if 

(1) m, w are not married to each other.

(2) m prefers w to his spouse and

(3) w prefers m to her spouse.

A matching is stable if it has no 
instabilities (m,w).

Instability
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INPUT: preference lists for n men and n 
women.

OUTPUT: a perfect matching

Moreover, output is correct only if it is a 
stable matching.

Stable Matching Problem
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Ex: Men = {1, 2, 3}.  Women = {A, B, C}

1 ranks:  A, C, B       A ranks: 3, 2, 1
2 ranks:  A, B, C       B ranks: 1, 3, 2
3 ranks:  C, B, A       C ranks: 2, 3, 1

6 possible matchings:     Stable?
    (1A) (2B) (3C)          No; (2,A)   
or (1A) (2C) (3B)          No; (2,A)  
or (1B) (2A) (3C)          Yes!
or (1B) (2C) (3A)          Yes!
or (1C) (2A) (3B)          No; (3,C)  
or (1C) (2B) (3A)          No; (3,C) or (3,B)
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INPUT: preference lists for n men and n 
women.

OUTPUT: a perfect matching

Moreover, output is correct only if it is a 
stable matching.

Observation: there may be more than one 
correct output possible!

Stable Matching Problem
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Principle: Fully understand the problem 
statement, before trying to solve it.

1. Can you tell whether a proposed answer 
is correct or wrong?

2. Can you write code to do this?

3. What are the boundary cases/base 
cases?  

4. Prepare some “test cases”, and use 
them to test out your later ideas.
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Naive Approach: Guess & Check

for (M in {all matchings})

if (M is stable)

return M

// else continue to next M

How long?  TOO LONG!
#{all matchings} * time(“is M stable”)

Stable Matching Problem

poly(n)n! = n*(n-1)*...*2*1
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Gale-Shapley Algorithm

David Gale 

Lloyd Shapley
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Informal, high-level idea:

One side, say the men, propose to their 
favorite choices.

Each woman will accept her favorite 
among those who propose to her.  Then 
they are “engaged.”

Unengaged men propose to their next 
favorite.  Engagements are broken when a 
woman receives a proposal she prefers.

Stop once everyone is engaged.  Marry!

Gale-Shapley Algorithm
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Ex: Men = {1, 2, 3}.  Women = {A, B, C}
1 ranks:  A, C, B       A ranks: 3, 2, 1
2 ranks:  A, B, C       B ranks: 1, 3, 2
3 ranks:  C, B, A       C ranks: 2, 3, 1

G-S on an example

Output:   (1,B) (2,A) (3,C)
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Initially, all men and women are free
While (exists m in {free men})

Let w = “top” woman in m’s pref list
If (w is free):  (m,w) become engaged
else if (w engaged to m’ but prefers m) {

 m’ becomes free again.
 m’ removes w from his pref list.
(m,w) become engaged.

} else {  // w engaged to m’, prefers m’
 m stays free, removes w from pref list

}    // (see page 6 in text).

Gale-Shapley, pseudocode
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We need to show:

(1) Gale-Shapley always terminates and 
produces correct output.

(a) perfect matching 

(b) stable

(2) Running time doesn’t blow up too fast, 
as a function of n.

Let’s do (2) first!

Gale-Shapley, analysis
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How many proposals will be made?

Gale-Shapley, runtime
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How many proposals will be made?

Claim: Each man proposes to each 
woman at most once.

Gale-Shapley, runtime
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How many proposals will be made?

Claim: Each man proposes to each 
woman at most once.

Proof: look at pseudocode.  After m 
proposes to w, 2 possibilities:
(a) accepted.  Then m is no longer free.

(b) rejected.  Then w is removed from m’s 
preference list (permanently).

Gale-Shapley, runtime
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How many proposals will be made?

Claim: Each man proposes to each 
woman at most once.

Proof: look at pseudocode.  After m 
proposes to w, 2 possibilities:
(a) accepted.  Then m is no longer free.

(b) rejected.  Then w is removed from m’s 
preference list (permanently).

m won’t propose at all until free.

when m becomes free, he removes w from 
his preference list (permanently).
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How many proposals will be made?

Claim: Each man proposes to each 
woman at most once.

So, at most n2 proposals in all.

O(1) work per proposal. (Details! Data 
structures! Later.  O(n) obvious. Why?)

Thus O(n2) work overall.  (O(n3) obvious)

Gale-Shapley, runtime
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We need to show:

(1) Gale-Shapley always terminates and 
produces correct output.

(a) perfect matching 

(b) stable

(2) Running time doesn’t blow up too fast, 
as a function of n.  Checked: poly(n)

Gale-Shapley, analysis
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We need to show:

(1) Gale-Shapley always terminates and 
produces correct output.

(a) perfect matching 

(b) stable

(2) Running time doesn’t blow up too fast, 
as a function of n.  Checked: poly(n)

Next: Show correctness. (1)

Gale-Shapley, analysis
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(1) Check: Program doesn’t crash.

By run-time analysis, we know that the 
program terminates in time poly(n).  Now 
we will also know it produces output.

(2) Check: The output must be a perfect 
matching.

(3) Check: there cannot be any instabilities 
in the output.

Gale-Shapley, correctness
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Invariants
Properties that are true at the beginning 
(or end) of every loop iteration are called 
“loop invariants.”

Often these are key to correctness of the 
program.

Prove these by induction on the number of 
loop iterations.  Need to show, if P holds 
at the beginning of the loop body, then P 
still holds at the end of the loop body.
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A Loop Invariant for G-S
At the end of each round, every woman is 
either:

(1) engaged, or

(2) has never been proposed to. 

PROOF: Initially, all women satisfy (2).

Only 1 woman has her status altered in 
each round.  And she always ends the 
round engaged (see code).
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Initially, all men and women are free
While (exists m in {free men})

Let w = “top” woman in m’s pref list
If (w is free):  (m,w) become engaged
else if (w engaged to m’ but prefers m) {

 m’ becomes free again.
 m’ removes w from his pref list.
(m,w) become engaged.

} else {  // w engaged to m’, prefers m’
 m stays free, removes w from pref list

}    // (see page 6 in text).

Gale-Shapley, pseudocode
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A Second Loop Invariant
Inv 1: At the end of each round, every 
woman is either:

(1) engaged, or

(2) has never been proposed to. 

Inv 2: At the end of each round, the set of 
engaged pairs forms a matching.  That is, 
no woman or man is doubly-engaged.

PROOF: again, see the code.  Clear 
initially.
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Correctness of G-S

Inv 1: At the end of each round, every 
woman is either engaged or has never 
been proposed to.

Inv 2: At the end of each round, the set of 
engaged pairs forms a matching.  

Now, from this, we deduce: no single man 
ever has an empty preference list (i.e. runs 
out of women to propose to).  Why?
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Correctness of G-S
Inv 1: At the end of each round, every woman is 
either engaged or has never been proposed to.

Inv 2: At the end of each round, the set of 
engaged pairs forms a matching.  

From this, we deduce: no single man ever 
has an empty preference list (i.e. runs out 
of women to propose to).  Why?  Then all 
N women would be engaged by Inv 1.  But 
by Inv 2, that means all N men are 
engaged, a contradiction.
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Correctness of G-S

Inv 1: At the end of each round, every woman is 
either engaged or has never been proposed to.

Inv 2: At the end of each round, the set of 
engaged pairs forms a matching.  

Lemma: No single man ever has an empty 
preference list (i.e. runs out of women to propose to).  

Thus, the algorithm eventually terminates 
and outputs a perfect matching.
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Correctness of G-S
Inv 1: At the end of each round, every woman is 
either engaged or has never been proposed to.

Inv 2: At the end of each round, the set of 
engaged pairs forms a matching.  

Lemma: No single man ever has an empty 
preference list (i.e. runs out of women to propose to).  

Thus, the algorithm eventually terminates 
and outputs a perfect matching.

But, is it stable?
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Correctness of G-S

The algorithm eventually terminates and 
outputs a perfect matching.

But, is it stable?

Inv 3: Any engaged woman prefers her 
current fiance over any past proposer.

Inv 4: Any engaged man prefers w to his 
current fiancee if and only if he previously 
proposed to w.
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Proof of invariant 3

Inv 3: Any engaged woman prefers her 
current fiancé over any past proposer.

PROOF: Only the woman w proposed to in 
round i can change her fiance.  And she 
only accepts a new fiance if she prefers 
him to her old fiance, whom she already 
preferred to all previous proposers 
(inductive hypothesis)
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Proof of invariant 4
Inv 4: Any engaged man prefers w to his 
current fiancee if and only if he previously 
proposed to w. 

PROOF: Each man always proposes to the 
highest ranked woman on his list.  Since 
women are only removed from the list after 
they have been proposed to, this means 
every higher-ranked woman than the most 
recent proposee (i.e. the fiancee) has 
already been proposed to.
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Ex: Men = {1, 2, 3}.  Women = {A, B, C}
1 ranks:  A, C, B       A ranks: 3, 2, 1
2 ranks:  A, B, C       B ranks: 1, 3, 2
3 ranks:  C, B, A       C ranks: 2, 3, 1

G-S on an example

Output:   (1,B) (2,A) (3,C)

Inv 3: fiances improve Inv 4: fiancees get worse 
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Inv 3: Any engaged woman prefers her current 
fiance over any past proposer.

Inv 4: Any engaged man prefers w to his 
current fiancee if and only if he previously 
proposed to w.

Theorem: The matching output by G-S 
must be a stable matching.

PROOF: Suppose (m,w) is an instability.  
By Inv 4, m must have proposed to w.  But 
by Inv 3, w prefers her current fiance.  So 
it’s not an instability after all.
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General Lessons

To show correctness, find key invariants.  
Prove them by induction.

Finding these gives new insight.

Issues: Where could the code crash? 
(assumptions violated)

Must the code terminate (and how fast)?

Why can’t the output be wrong?
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