
CS 361
Data Structures & Algs

Lecture 3

Prof. Tom Hayes
Guest Lecturer: Michael Janes

University of New Mexico
08-28-2012

1

Last Time: Stable Matching

Defined: n x n stable matching problem,
with complete preference lists. Matching,
perfect matching, instability, stable
matching.

Gale-Shapley alg claims to find one of the
stable matchings. Went over pseudocode.

Today: Analyzing the algorithm (does it
really work, and how fast?)

2

Def: “Perfect” matchings
A matching is a pairing of men and women
which avoids polygamy/polyandry. That
is, it is at most 1-to-1.

A perfect matching is exactly 1-to-1.
Nobody is left unmatched.

Perfect matchings can be very imperfect!

Why? Has nothing to do with people’s
preferences.

3

Preference Lists
Input: Each man ranks every woman, from
his favorite, to his least favorite.

Women do the same for men.

Ex: Men = {1, 2, 3}. Women = {A, B, C}

1 ranks: A, C, B A ranks: 3, 2, 1

2 ranks: A, B, C B ranks: 1, 3, 2

3 ranks: C, B, A C ranks: 2, 3, 1

4

Given preference lists, and a matching, we
say that (m,w) are an instability if

(1) m, w are not married to each other.

(2) m prefers w to his spouse and

(3) w prefers m to her spouse.

A matching is stable if it has no
instabilities (m,w).

Instability

5

INPUT: preference lists for n men and n
women.

OUTPUT: a perfect matching

Moreover, output is correct only if it is a
stable matching.

Stable Matching Problem

6

Ex: Men = {1, 2, 3}. Women = {A, B, C}

1 ranks: A, C, B A ranks: 3, 2, 1
2 ranks: A, B, C B ranks: 1, 3, 2
3 ranks: C, B, A C ranks: 2, 3, 1

6 possible matchings: Stable?
 (1A) (2B) (3C) No; (2,A)
or (1A) (2C) (3B) No; (2,A)
or (1B) (2A) (3C) Yes!
or (1B) (2C) (3A) Yes!
or (1C) (2A) (3B) No; (3,C)
or (1C) (2B) (3A) No; (3,C) or (3,B)

7

INPUT: preference lists for n men and n
women.

OUTPUT: a perfect matching

Moreover, output is correct only if it is a
stable matching.

Observation: there may be more than one
correct output possible!

Stable Matching Problem

8

Principle: Fully understand the problem
statement, before trying to solve it.

1. Can you tell whether a proposed answer
is correct or wrong?

2. Can you write code to do this?

3. What are the boundary cases/base
cases?

4. Prepare some “test cases”, and use
them to test out your later ideas.

9

Naive Approach: Guess & Check

for (M in {all matchings})

if (M is stable)

return M

// else continue to next M

How long? TOO LONG!
#{all matchings} * time(“is M stable”)

Stable Matching Problem

poly(n)n! = n*(n-1)*...*2*1
10

Gale-Shapley Algorithm

David Gale

Lloyd Shapley

11

Informal, high-level idea:

One side, say the men, propose to their
favorite choices.

Each woman will accept her favorite
among those who propose to her. Then
they are “engaged.”

Unengaged men propose to their next
favorite. Engagements are broken when a
woman receives a proposal she prefers.

Stop once everyone is engaged. Marry!

Gale-Shapley Algorithm

12

Ex: Men = {1, 2, 3}. Women = {A, B, C}
1 ranks: A, C, B A ranks: 3, 2, 1
2 ranks: A, B, C B ranks: 1, 3, 2
3 ranks: C, B, A C ranks: 2, 3, 1

G-S on an example

Output: (1,B) (2,A) (3,C)

13

Initially, all men and women are free
While (exists m in {free men})

Let w = “top” woman in m’s pref list
If (w is free): (m,w) become engaged
else if (w engaged to m’ but prefers m) {

 m’ becomes free again.
 m’ removes w from his pref list.
(m,w) become engaged.

} else { // w engaged to m’, prefers m’
 m stays free, removes w from pref list

} // (see page 6 in text).

Gale-Shapley, pseudocode

14

We need to show:

(1) Gale-Shapley always terminates and
produces correct output.

(a) perfect matching

(b) stable

(2) Running time doesn’t blow up too fast,
as a function of n.

Let’s do (2) first!

Gale-Shapley, analysis

15

How many proposals will be made?

Gale-Shapley, runtime

16

How many proposals will be made?

Claim: Each man proposes to each
woman at most once.

Gale-Shapley, runtime

17

How many proposals will be made?

Claim: Each man proposes to each
woman at most once.

Proof: look at pseudocode. After m
proposes to w, 2 possibilities:
(a) accepted. Then m is no longer free.

(b) rejected. Then w is removed from m’s
preference list (permanently).

Gale-Shapley, runtime

18

How many proposals will be made?

Claim: Each man proposes to each
woman at most once.

Proof: look at pseudocode. After m
proposes to w, 2 possibilities:
(a) accepted. Then m is no longer free.

(b) rejected. Then w is removed from m’s
preference list (permanently).

m won’t propose at all until free.

when m becomes free, he removes w from
his preference list (permanently).

19

How many proposals will be made?

Claim: Each man proposes to each
woman at most once.

So, at most n2 proposals in all.

O(1) work per proposal. (Details! Data
structures! Later. O(n) obvious. Why?)

Thus O(n2) work overall. (O(n3) obvious)

Gale-Shapley, runtime

20

We need to show:

(1) Gale-Shapley always terminates and
produces correct output.

(a) perfect matching

(b) stable

(2) Running time doesn’t blow up too fast,
as a function of n. Checked: poly(n)

Gale-Shapley, analysis

21

We need to show:

(1) Gale-Shapley always terminates and
produces correct output.

(a) perfect matching

(b) stable

(2) Running time doesn’t blow up too fast,
as a function of n. Checked: poly(n)

Next: Show correctness. (1)

Gale-Shapley, analysis

22

(1) Check: Program doesn’t crash.

By run-time analysis, we know that the
program terminates in time poly(n). Now
we will also know it produces output.

(2) Check: The output must be a perfect
matching.

(3) Check: there cannot be any instabilities
in the output.

Gale-Shapley, correctness

23

Invariants
Properties that are true at the beginning
(or end) of every loop iteration are called
“loop invariants.”

Often these are key to correctness of the
program.

Prove these by induction on the number of
loop iterations. Need to show, if P holds
at the beginning of the loop body, then P
still holds at the end of the loop body.

24

A Loop Invariant for G-S
At the end of each round, every woman is
either:

(1) engaged, or

(2) has never been proposed to.

PROOF: Initially, all women satisfy (2).

Only 1 woman has her status altered in
each round. And she always ends the
round engaged (see code).

25

Initially, all men and women are free
While (exists m in {free men})

Let w = “top” woman in m’s pref list
If (w is free): (m,w) become engaged
else if (w engaged to m’ but prefers m) {

 m’ becomes free again.
 m’ removes w from his pref list.
(m,w) become engaged.

} else { // w engaged to m’, prefers m’
 m stays free, removes w from pref list

} // (see page 6 in text).

Gale-Shapley, pseudocode

26

A Second Loop Invariant
Inv 1: At the end of each round, every
woman is either:

(1) engaged, or

(2) has never been proposed to.

Inv 2: At the end of each round, the set of
engaged pairs forms a matching. That is,
no woman or man is doubly-engaged.

PROOF: again, see the code. Clear
initially.

27

Correctness of G-S

Inv 1: At the end of each round, every
woman is either engaged or has never
been proposed to.

Inv 2: At the end of each round, the set of
engaged pairs forms a matching.

Now, from this, we deduce: no single man
ever has an empty preference list (i.e. runs
out of women to propose to). Why?

28

Correctness of G-S
Inv 1: At the end of each round, every woman is
either engaged or has never been proposed to.

Inv 2: At the end of each round, the set of
engaged pairs forms a matching.

From this, we deduce: no single man ever
has an empty preference list (i.e. runs out
of women to propose to). Why? Then all
N women would be engaged by Inv 1. But
by Inv 2, that means all N men are
engaged, a contradiction.

29

Correctness of G-S

Inv 1: At the end of each round, every woman is
either engaged or has never been proposed to.

Inv 2: At the end of each round, the set of
engaged pairs forms a matching.

Lemma: No single man ever has an empty
preference list (i.e. runs out of women to propose to).

Thus, the algorithm eventually terminates
and outputs a perfect matching.

30

Correctness of G-S
Inv 1: At the end of each round, every woman is
either engaged or has never been proposed to.

Inv 2: At the end of each round, the set of
engaged pairs forms a matching.

Lemma: No single man ever has an empty
preference list (i.e. runs out of women to propose to).

Thus, the algorithm eventually terminates
and outputs a perfect matching.

But, is it stable?

31

Correctness of G-S

The algorithm eventually terminates and
outputs a perfect matching.

But, is it stable?

Inv 3: Any engaged woman prefers her
current fiance over any past proposer.

Inv 4: Any engaged man prefers w to his
current fiancee if and only if he previously
proposed to w.

32

Proof of invariant 3

Inv 3: Any engaged woman prefers her
current fiancé over any past proposer.

PROOF: Only the woman w proposed to in
round i can change her fiance. And she
only accepts a new fiance if she prefers
him to her old fiance, whom she already
preferred to all previous proposers
(inductive hypothesis)

33

Proof of invariant 4
Inv 4: Any engaged man prefers w to his
current fiancee if and only if he previously
proposed to w.

PROOF: Each man always proposes to the
highest ranked woman on his list. Since
women are only removed from the list after
they have been proposed to, this means
every higher-ranked woman than the most
recent proposee (i.e. the fiancee) has
already been proposed to.

34

Ex: Men = {1, 2, 3}. Women = {A, B, C}
1 ranks: A, C, B A ranks: 3, 2, 1
2 ranks: A, B, C B ranks: 1, 3, 2
3 ranks: C, B, A C ranks: 2, 3, 1

G-S on an example

Output: (1,B) (2,A) (3,C)

Inv 3: fiances improve Inv 4: fiancees get worse

35

Inv 3: Any engaged woman prefers her current
fiance over any past proposer.

Inv 4: Any engaged man prefers w to his
current fiancee if and only if he previously
proposed to w.

Theorem: The matching output by G-S
must be a stable matching.

PROOF: Suppose (m,w) is an instability.
By Inv 4, m must have proposed to w. But
by Inv 3, w prefers her current fiance. So
it’s not an instability after all.

36

General Lessons

To show correctness, find key invariants.
Prove them by induction.

Finding these gives new insight.

Issues: Where could the code crash?
(assumptions violated)

Must the code terminate (and how fast)?

Why can’t the output be wrong?

37

