
Notes for 8/31/09

f = (g + h) - (i + j)
f, g, h, i, j := $s0, $s1, $s2, $s3, $s4

How could we write this in MIPS assembly?

We will write this as though f...j are global variables, not stack variables.

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
la $t7, f
sw $s0, 0($t7)

A[12] = h + A[8]
A:= $s3
h := $s2

How could we write this in MIPS assembly?

To allocate an int array of size 20 (assume ints are 32 bit) as though it were a global variable, we could
write this line in the .data section:

A: .space 80

Then in our .text section...

lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

A[i]
A:= $s3
i := $s4

How could we write this in MIPS assembly?

sll $t6, $s4, 2 // multiply $s4 by 4, size of a 32-bit int
 // logical shifts are faster than multiplication
 // this optimization is called strength reduction
add $t7, $t6, $s3
lw $t8, 0($t7)

Branches in MIPS

if (a != b) {
. . .
} else {
. . .
}
a, b := $t0, $t1

How could we write this in MIPS assembly?

beq $t0, $t1, LabelA // LabelA is 16 bits, so we can only jump
 // +/-32768 from the program counter
. . .
b End // jump unconditionally to End
LabelA:
. . .
End:

if (a == b) {
. . .
} else {
. . .
}
a, b := $t0, $t1

How could we write this in MIPS assembly?

beq $t0, $t1, LabelA // branch if not equal this time
. . .
b End // jump unconditionally to End
LabelA:
. . .
End:

if (a < b) {
. . .
} else {
. . .
}
a, b := $t0, $t1

How could we write this in MIPS assembly?

Without using a branch pseudo-instruction:

slt $t7, $t0, $t1 // set $t7 to 1 if $t0 < $t1
bne $t7, $zero, LabelA // branch if $t7 is not zero
. . .
b End // jump unconditionally to End
LabelA:
. . .
End:

Using a branch pseudo-instruction:

blt $t0, $t1, LabelA // branch if $t0 < $t1
. . .
b End // jump unconditionally to End
LabelA:
. . .
End:

if (a <= b) {
. . .
} else {
. . .
}
a, b := $t0, $t1

How could we write this in MIPS assembly?

Without using a branch pseudo-instruction:

slt $t7, $t1, $t0 // set $t7 to 1 if $t1 < $t0
beq $t7, $zero, LabelA // branch if $t7 is not zero
. . .
b End // jump unconditionally to End
LabelA:
. . .
End:

Using a branch pseudo-instruction:

bgt $t1, $t0, LabelA // branch if $t1 > $t0
. . .
b End // jump unconditionally to End
LabelA:
. . .
End:

