
Notes for 9/14/09

Branch delay slots:

1. add $t2, $t3, $t3
2. sub $t0, $t1, $t2
3. bne $t0, $s0, SomePlace
[delay slot]

To fill branch delay slot, assembler wants to reorder instructions like this...

1. add $t2, $t3, $t3
3. bne $t0, $s0, SomePlace
2. sub $t0, $t1, $t2

But it can't, since the branch depends on the values of line 2.

So this is what the assembler can do instead...

2. sub $t0, $t1, $t2
3. bne $t0, $s0, SomePlace
1. add $t2, $t3

...since the branch doesn't have any data dependencies on line 1.

Compiler optimizations:

1. Loop unrolling—remove overhead of branches in loops

for (i = 0; i < 10; ++i)
 A[i] += 1;

=> (partially unrolled)

for (i = 0; i < 10; i += 2) {
 A[i] += 1;
 A[i + 1] += 1;
}

=> (fully unrolled)

A[0] += 1;
A[1] += 1;
. . .
A[9] += 1;

2. Common subexpression elimination—remove duplicated code

int a = bar * baz * bletch;
int b = 2 * baz * bletch * bar;

=>

int a = bar * baz * bletch;
int b = 2 * a;

3. Strength reduction—replace expensive instructions with equivalent, less expensive operations
whenever possible

i *= 4; => i << 2;

4. Constant folding—compute what you can at compile time instead of run time

int i = 4*3; => int i = 12;

5. Code motion—move instructions outside of loops

for (i = 0; i < 100; ++i) {
 j = k + z;
 A[i] += j;
}

=>

j = k + z;
for (i = 0; i < 100; ++i) {
 A[i] += j;
}

6. Dead code elimination—remove code that never runs

i = 10;
if (i < 5) {
 . . .
}

=>

i = 10;

RISC vs. CISC

time to complete=
seconds
cycle

∗
cycles

instructions
∗
instructions
program

CISC wins in instructions per program.
RISC wins in cycles per instruction.
RISC wins in seconds per cycle.

