
Notes for 9/4/09

To see memory map of a process on linux, type:
cat /proc/<PROCESS ID>/maps

Note that user processes all have their own virtual address space. We will discuss what this means later
in the class, but an implication of this is that processes generally cannot see the memory of other
processes and they can behave as though they have the address space all to themselves.

On 32-bit MIPS linux, this is how our address space is organized:

Memory addresses ↑

0xffffffff

reserved for kernel

0xc0000000

0xbfffffff

.stack

stack (grows ↓)

. . .

heap (grows ↑)

. . .

.data (grows ↑)

0x00000000

What is stored in the stack frame:
Local variables
$t# – temporary registers / caller-saved – you have to save these to the stack before a function call
and restore them to the register after a function call if you want them to necessarily have the same
value, since the callee can overwrite them
$s# – saved temporary registers / callee-saved – you have to save these registers to the stack before
you use them and restore them for the caller before your function returns
$fp – caller frame pointer
$gp – global pointer
$ra – return address

SPIM calling convention (MIPS linux will differ):

Memory addresses ↑

Argument 4 (allocated by caller)

Argument 3 (allocated by caller)

Argument 2 (allocated by caller)

$fp →
Argument 1 (allocated by caller)

Saved registers (allocated by us)

$sp →
Local variables (allocated by us)

Arguments for functions we call...

How to generally write MIPS assembly for function calling (we will learn MIPS linux specific
convention later):
f:
 addi $sp, $sp, -24 // reserve space for stack frame
 sw $ra, 20($sp) // store return address to stack
 // (if we call other functions, $ra will be
 // overwritten)
 sw $fp, 16($sp) // store previous frame pointer to stack
 addi $fp, $sp, 24 // update frame pointer
 sw $a0, 32($fp) // save argument to stack
 // we do this into stack space allocated by
 // caller

 . . . // do stuff

 lw $ra, 20($sp) // restore return address
 lw $fp, 16($sp) // restore frame pointer
 addi $sp, $sp, 24 // move stack pointer back
 li $v0, 0 // set function return value
 jr $ra // jump to return address

