
MIPS o32 Calling Convention Examples
Jeffrey Knockel <jeffk at cs dot unm dot edu>

This is intended to teach the MIPS o32 Calling Convention by example but should not be considered a
complete substitute for reading the official MIPS ABI.

A simple non-leaf function that takes two arguments:

Memory Addresses ↑

Stack Grows ↓

Slot for incoming a3 N/A

16 bytes

36(sp)

Slot for incoming a2 N/A 32(sp)

Slot for incoming a1 a1 28(sp)

Old sp →
Slot for incoming a0 a0 24(sp)

Register Save Area
ra ($31)

8 bytes
20(sp)

Padding 16(sp)

Slot for outgoing a3

Reserved 16 bytes Do not use
Slot for outgoing a2

Slot for outgoing a1

New sp →
Slot for outgoing a0

addiu sp, sp, -24
sw ra, 20(sp)
sw a1, 28(sp)
sw a0, 24(sp)
// storing arguments e.g. a0, a1, etc. is optional--do it only if
// convenient. here, let's say we want/have to.
. . .
lw ra, 20(sp)
addiu sp, sp, 24
jr ra

Note the following things:
• A caller reserves four words (16 bytes) at the end of its stack frame for the callee to store its

arguments, even if the callee takes fewer than four arguments, even if the callee does not
actually use this space. In other words, if you are a non-leaf function, then you must never
address 0(sp), 4(sp), 8(sp), or 12(sp)! However, supposing your frame is 32 bytes, then you
may use 32(sp), 36(sp), 40(sp), and 44(sp) for storing a0, a1, a2, and a3, respectively, even
though this is in the frame of your caller!

• All of the different sections on the stack must be double-word (8 byte) aligned. This is just so
that we can store double words onto the stack without them being unaligned. In the case above,
we have to pad the register save area to maintain this alignment.

• As a corollary to the above, the minimum size for the stack frame of a non-leaf function is 24
bytes. This is 16 bytes for the outgoing argument slots and a minimum of 8 bytes for the
register save area (we always have to save the return address, and the sections on the stack must
be 8 byte aligned, so the register save area is a minimum of 8 bytes). The minimum size for the
stack frame of a leaf function is 0 bytes, but more on that later.

A more complicated non-leaf function that takes two arguments:

Memory Addresses ↑

Stack Grows ↓

Slot for incoming a3 N/A

16 bytes

84(sp)

Slot for incoming a2 N/A 80(sp)

Slot for incoming a1 Unused 76(sp)

Old sp →
Slot for incoming a0 Unused 72(sp)

Local Variables int ary[10] 40 bytes 68(sp) … 32(sp)

Register Save Area

ra ($31)

16 bytes

28(sp)

s1 ($17) 24(sp)

s0 ($16) 20(sp)

Padding 16(sp)

Slot for outgoing a3

Reserved 16 bytes Do not use
Slot for outgoing a2

Slot for outgoing a1

New sp →
Slot for outgoing a0

addiu sp, sp, -72
sw ra, 28(sp)
sw s1, 24(sp)
sw s0, 20(sp)
// sw a1, 76(sp)
// sw a0, 72(sp)
// storing arguments e.g. a0, a1, etc. is optional--do it only if
// convenient. here, let's say we do not want/have to.
. . .
lw s0, 20(sp)
lw s1, 24(sp)
lw ra, 28(sp)
addiu sp, sp, 72
jr ra

Now note:
• Registers in register save area are stored in numerical order (higher registers in higher

addresses).
• An array is allocated above the register save area in the local variable space.

For simple leaf functions, we do not have to allocate any stack frame. Why? We do not need the
outgoing arguments section, because, by definition, we do not call any functions, and functions that we
call is the only thing that could use this space. We do not need to save the return address to the register
save area, because, again, by definition, we do not call any functions, so nothing will clobber this
register. For temporary registers, in a leaf function, we can use the t# registers instead of the s#
registers, so we won't have to store or load them to the register save area either, assuming we do not run
out of registers. So, for simple leaf functions we do not need a register save area either. Since, for
simple leaf functions, we need neither the outgoing arguments section nor the register save area, we do
not need a stack frame.

