
LOW-LEVEL SYSTEM INFORMATION 3-15

The Stack Frame
Each called function in a program allocates a stack frame on the run-time stack, if
necessary. A frame is allocated for each non-leaf function and for each leaf func-
tion that requires stack storage. A non-leaf function is one that calls other func-
tion(s); a leaf function is one that does not itself make any function calls. Stack
frames are allocated on the run-time stack; the stack grows downward from high
addresses to low addresses.

Each stack frame has sufficient space allocated for:

■ local variables and temporaries.

■ saved general registers. Space is allocated only for those registers that
need to be saved. For non-leaf function, $31 must be saved. If any of
$16..$23 or $29..$31 is changed within the called function, it must be saved
in the stack frame before use and restored from the stack frame before re-
turn from the function. Registers are saved in numerical order, with high-
er numbered registers saved in higher memory addresses. The register
save area must be doubleword (8 byte) aligned.

■ saved floating-point registers. Space is allocated only for those registers
that need to be saved. If any of $f20..$f30 is changed within the called func-
tion, it must be saved in the stack frame before use and restored from the
stack frame before return from the function. Both even- and odd-num-
bered registers must be saved and restored, even if only single-precision
operations are performed since the single-precision operations leave the
odd-numbered register contents undefined. The floating-point register
save area must be doubleword (8 byte) aligned.

■ function call argument area. In a non-leaf function the maximum number
of bytes of arguments used to call other functions from the non-leaf func-
tion must be allocated. However, at least four words (16 bytes) must al-
ways be reserved, even if the maximum number of arguments to any
called function is fewer than four words.

■ alignment. Although the architecture requires only word alignment, soft-

There are other user visible registers in some implementations of the architec-
ture, but these are explicitly not part of this processor supplement. A program that
uses these registers is not ABI compliant and its behavior is undefined.

NOTE

3-16 MIPS ABI SUPPLEMENT

ware convention and the operating system require every stack frame to be
doubleword (8 byte) aligned.

A function allocates a stack frame by subtracting the size of the stack frame from
$sp on entry to the function. This $sp adjustment must occur before $sp is used
within the function and prior to any jump or branch instructions.

Figure 3-21: Stack Frame

The corresponding restoration of $sp at the end of a function must occur after any
jump or branch instructions except prior to the jump instruction that returns from
the function. It can also occupy the branch delay slot of the jump instruction that
returns from the function.

Standard Called Function Rules
By convention, there is a set of rules that must be followed by every function that
allocates a stack frame. Following this set of rules ensures that, given an arbitrary
program counter, return address register $31, and stack pointer, there is a deter-
ministic way of performing stack backtracing. These rules also make possible pro-
grams that translate already compiled absolute code into position-independent

Base Offset Contents Frame
unspecified High addresses

. . .
variable size
(if present)

incoming arguments Previous
+16 passed in stack frame

space for incoming
old $sp +0 arguments 1-4

locals and
temporaries

general register
save area Current

floating-point
register save area

argument
$sp +0 build area Low addresses

LOW-LEVEL SYSTEM INFORMATION 3-17

code. See Coding Examples in this chapter.

Within a function that allocates a stack frame, the following rules must be ob-
served:

■ In position-independent code that calculates a new value for the gp regis-
ter, the calculation must occur in the first three instructions of the function.
One possible optimization is the total elimination of this calculation; a lo-
cal function called from within a position-independent module guaran-
tees that the context pointer gp already points to the global offset table.
The calculation must occur in the first basic block of the function.

■ The stack pointer must be adjusted to allocate the stack frame before any
other use of the stack pointer register.

■ At most, one frame pointer can be used in the function. Use of a frame
pointer is identified if the stack pointer value is moved into another regis-
ter, after the stack pointer has been adjusted to allocate the stack frame.
This use of a frame pointer must occur within the first basic block of the
function before any branch or jump instructions, or in the delay slot of the
first branch or jump instruction in the function.

■ There is only one exit from a function that contains a stack adjustment: a
jump register instruction that transfers control to the location in the return
address register $31. This instruction, including the contents of its branch
delay slot, mark the end of function.

■ The deallocation of the stack frame, which is done by adjusting the stack
pointer value, must occur once and in the last basic block of the function.
The last basic block of a function includes all of the non control-transfer in-
structions immediately prior to the function exit, including the branch de-
lay slot.

Argument Passing
Arguments are passed to a function in a combination of integer general registers,
floating-point registers, and the stack. The number of arguments, their type, and
their relative position in the argument list of the calling function determines the
mix of registers and memory used to pass arguments. General registers $4..$7 and
floating-point registers $f12 and $f14 pass the first few arguments in registers.
Double-precision floating-point arguments are passed in the register pairs $f12,
$f13 and $f14, $f15; single-precision floating-point arguments are passed in regis-
ters $f12 and $f14.

3-18 MIPS ABI SUPPLEMENT

In determining which register, if any, an argument goes into, take into account the
following considerations:

■ All integer-valued arguments are passed as 32-bit words, with signed or
unsigned bytes and halfwords expanded (promoted) as necessary.

■ If the called function returns a structure or union, the caller passes the ad-
dress of an area that is large enough to hold the structure to the function
in $4. The called function copies the returned structure into this area be-
fore it returns. This address becomes the first argument to the function for
the purposes of argument register allocation and all user arguments are
shifted down by one.

■ Despite the fact that some or all of the arguments to a function are passed
in registers, always allocate space on the stack for all arguments. This
stack space should be a structure large enough to contain all the argu-
ments, aligned according to normal structure rules (after promotion and
structure return pointer insertion). The locations within the stack frame
used for arguments are called the home locations.

■ At the call site to a function defined with an ellipsis in its prototype, the
normal calling conventions apply up until the first argument correspond-
ing to where the ellipsis occurs in the parameter list. If, in the absence of
the prototype, this argument and any following arguments would have
been passed in floating-point registers, they are instead passed in integer
registers. Arguments passed in integer registers are not affected by the el-
lipsis.

This is the case only for calls to functions which have prototypes contain-
ing an ellipsis. A function without a prototype or without an ellipsis in a
prototype is called using the normal argument passing conventions.

These argument passing rules apply only to languages such as C that do not do
dynamic stack allocation of structures and arrays. Ada is an example of a lan-
guage that does dynamic stack allocation of structures and arrays.

NOTE

LOW-LEVEL SYSTEM INFORMATION 3-19

■ When the first argument is integral, the remaining arguments are passed
in the integer registers.

■ Structures are passed as if they were very wide integers with their size
rounded up to an integral number of words. The fill bits necessary for
rounding up are undefined.

■ A structure can be split so a portion is passed in registers and the remain-
der passed on the stack. In this case, the first words are passed in $4, $5,
$6, and $7 as needed, with additional words passed on the stack.

■ Unions are considered structures.

The rules that determine which arguments go into registers and which ones must
be passed on the stack are most easily explained by considering the list of argu-
ments as a structure, aligned according to normal structure rules. Mapping of this
structure into the combination of stack and registers is as follows: up to two lead-
ing floating-point arguments can be passed in $f12 and $f14; everything else with
a structure offset greater than or equal to 16 is passed on the stack. The remainder
of the arguments are passed in $4..$7 based on their structure offset. Holes left in
the structure for alignment are unused, whether in registers or in the stack.

The following examples in Figure 3-22 give a representative sampling of the mix
of registers and stack used for passing arguments, where d represents double-pre-
cision floating-point values, s represents single-precision floating-point values,
and n represents integers or pointers. This list is not exhaustive.

See the section “Variable Argument List” later in this section for more information
about variable argument lists.

3-20 MIPS ABI SUPPLEMENT

Figure 3-22: Examples of Argument Passing

d1, d2 $f12, $f14
s1, s2 $f12, $f14
s1, d1 $f12, $f14
d1, s1 $f12, $f14
n1, n2, n3, n4 $4, $5, $6, $7
d1, n1, d2 $f12, $6, stack
d1, n1, n2 $f12, $6, $7
s1, n1, n2 $f12, $5, $6
n1, n2, n3, d1 $4, $5, $6, stack
n1, n2, n3, s1 $4, $5, $6, $7
n1, n2, d1 $4, $5, ($6, $7)
n1, d1 $4, ($6, $7)
s1, s2, s3, s4 $f12, $f14, $6, $7
s1, n1, s2, n2 $f12, $5, $6, $7
d1, s1, s2 $f12, $f14, $6
s1, s2, d1 $f12, $f14, ($6, $7)
n1, s1, n2, s2 $4, $5, $6, $7
n1, s1, n2, n3 $4, $5, $6, $7
n1, n2, s1, n3 $4, $5, $6, $7

In the following examples, an ellipsis appears in the second argu-
ment slot.
n1, d1, d2 $4, ($6, $7), stack
s1, n1 $f12, $5
s1, n1, d1 $f12, $5, ($6, $7)
d1, n1 $f12, f6
d1, n1, d2 $f12,$6, stack

Argument List Register and Stack Assignments

LOW-LEVEL SYSTEM INFORMATION 3-21

Function Return Values
A function can return no value, an integral or pointer value, a floating-point value
(single- or double-precision), or a structure; unions are treated the same as struc-
tures.

A function that returns no value (also called procedures or void functions) puts no
particular value in any register.

A function that returns an integral or pointer value places its result in register $2.

A function that returns a floating-point value places its result in floating-point reg-
ister $f0. Floating-point registers can hold single- or double-precision values.

The caller to a function that returns a structure or a union passes the address of an
area large enough to hold the structure in register $4. Before the function returns
to its caller, it will typically copy the return structure to the area in memory point-
ed to by $4; the function also returns a pointer to the returned structure in register
$2. Having the caller supply the return object’s space allows re-entrancy.

Both the calling and the called function must cooperate to pass the return value
successfully:

■ The calling function must supply space for the return value and pass its
address in the stack frame.

■ The called function must use the address from the frame and copy the re-
turn value to the object so supplied.

Failure of either side to meet its obligations leads to undefined program behavior.

Structures and unions in this context have fixed sizes. The ABI does not specify
how to handle variable sized objects.NOTE

These rules for function return values apply to languages such as C, but do not
necessarily apply to other languages. Ada is one language to which the rules do
not apply.

NOTE

