

-1 of 8-

Lab 6: Energizer Turtles

Screen capture showing the required components:

4 Sliders (as shown)
2 Buttons (as shown)
4 Monitors (as shown)

min-pxcor = -50, max-pxcor = 50, min-pycor = -50, max-pycor = 50

The fact that in the screen capture the turtles have a turtle shape is not a requirement.
You may give the turtles any shape you want – including the default arrow shape.

Energizer Turtles is a model where, in addition to their usual properties, turtles

have energy and patches have bugs. Just as each turtle in the model has its own

location, its own color, its own pen state (up or down), and its own heading, each

turtle also has a programmer defined custom property, called an agent variable in

Netlogo. The programmer can tell Netlogo that each turtle has the agent variable

called energy, by using the following statement:

turtles-own [energy]

-2 of 8-

Similarly, the programmer can tell Netlogo that each patch as the agent variable

called bugs with the statement:

patches-own [bugs]

In the above Netlogo statements, the words shown in teal, turtles-own and

patches-own, are reserved words in the Netlogo language. The words shown in

black, energy and bugs, are words made up by the programmer of this particular

model. They can be any sequence of characters that follow Netlogo’s naming rules.

Model Overview:
The basic idea of the Energizer Turtles model is that turtles need energy. They

move quickly when they have a lot of energy and cannot move at all when they do

not have any energy. Turtles get energy from eating bugs on the patch where they

are standing.

Turtle Setup:
1) The number of turtles created must be equal to the slider variable setting

for NumberOfTurtles. This must be an integer no smaller than 1 and no

larger than 25.

2) Each turtle must start in a uniformly distributed, random location within the

Netlogo 2D world view.

3) Each turtle must start with a uniformly distributed random heading.

4) Each turtle must be of a color, size and shape that is clearly visible yet does

not interfere with seeing other aspects of the model.

5) Each turtle must start with its energy set to 10 units.

Patch Setup:
1) All patches must be assigned an amount no less than 0 and no greater than

the slider value maxBugsPerPatch. You have some option here. I assigned

every patch a uniformly distributed, random amount of energy between 0

and 75% of maxBugsPerPatch. You may do the same or use a triangular

distribution or place clusters of high bug concentrations or whatever you

think works best. The only requirements are that each patches value must be

-3 of 8-

no less than 0, no greater than maxBugsPerPatch and that the values

usually lead to interesting behavior in the model. For example, all cells having

zero bugs makes a very uninteresting run of the model.

2) The color of each patch must indicate its bug population. In particular, a

patch with zero bugs must be black. A patch with bugs maxBugsPerPatch

must be white. Patches with in between numbers of bugs must be in between

shades of green (or some other color). This is most easily done using

Netlogo’s scale-color command (see hint below).

Hint: scale-color

Syntax:

 scale-color color number lowValue highValue

Reports a shade of color proportional to the value of number.

color can be gray, red, orange, brown, yellow, green, lime, turquoise,

cyan, sky, blue, violet, magenta or pink.

If number is less than lowValue, then the darkest shade of color is chosen

(generally, this is black or so near black that it looks black).

If number is greater than highValue, then the lightest shade of color is chosen

(generally, this is white or so near white that it looks white).

Note: for color shade is irrelevant, e.g. green and green + 2 are equivalent, and the

same spectrum of colors will be used.

Example:

Try to predict what the code below will do. Then type it into a NetLogo program

and see what it does.

 ask patches

 [

 set pcolor scale-color red pxcor min-pxcor max-pxcor

]

-4 of 8-

Each Turtle on Every Tick (Eat, Turn and Walk):

Eat

1) If a turtle is on a patch with some bugs, it gobbles them up. Keep in mind

that in this model, bugs are NOT agents. In this model, each patch has an

agent variable called bugs. Thus, having the turtle “eat” 10 bugs from a

patch subtracts 10 from that patch’s bugs variable.

2) A turtle will always eat as many bugs as it can (see below for the rules).

3) A turtle cannot eat more bugs in one tick than the slider value of

MaxBugsTurtleCanEat.

4) A turtle cannot eat more bugs than are present on the patch on which it is

standing.

5) A turtle cannot eat fractional bugs.

6) A turtle cannot eat less than zero bugs (turtles cannot puke bugs back into

life).

7) A turtle gains one energy point for each bug that it eats.

Turn

1) Each turtle makes a wiggle turn. I used a wiggle angle of 5 degrees. You may

use that or you may use a different angle if you thing it gives more

interesting behavior. Note: if we were trying to create a model of real

turtles of a particular species searching for insects in some real landscape,

then we should observe the actual turtles or videos of the turtles. Then, we

should try to find a movement model that matches the real-life

observations. In this model, however, the goal is not to model anything real.

In this model, we are simply looking for interesting emergent behaviors.

-5 of 8-

Walk

1) In this model, the world does NOT wrap horizontally nor does it wrap

vertically. For info on how to set this and how to deal with it in code, see

CS4All instructor Nick Bennett’s excellent video titled “Conditional Control

Flow” from week 5.

2) The reason for calling this model Energizer Turtles is that turtles move

faster when they have more energy. In particular, the distance the turtle

will try to move is equal to 1/10th its current energy. Thus, if a turtle has an

energy of 24, then it will try to move forward 2.4 patches.

3) When a turtle cannot move, because it near the edge, it makes a 180 degree

turn rather than moving forward (again, for details, see the video

“Conditional Control Flow” from week 5).

4) When a turtle moves, it loses energy equal to the distance it moved.

5) A turtle may never have less than 0 energy.

6) If a turtle has zero energy, it does not move (0/10 = 0 distance).

7) A turtle only loses energy when it moves.

8) In this model, turtles are immortal (they never die).

Each Patch on Every Tick (Multiply, Spread and Color):

Multiply
One thing bugs are good at is making more bugs. In this model, you will use the

exponential growth equation:

set bugs (bugs + (bugs * BugPopulationGrowthPercentage / 100))

where,

BugPopulationGrowthPercentage is set with a slider.

Since the slider value is a percentage, it is divided by 100. Thus, if the setting

were 100%, the equation would become:

set bugs (bugs + bugs)

-6 of 8-

That is, if the slider were set to 100%, the number of bugs in each patch would

double every tick! This is way too fast for the turtles to keep up with. A good

value for this growth rate is more like 0.05%!

Notice that the equation above will usually increase the bug population of a

patch by a non-integer number. This might seem odd at first. This is necessary

because increasing the population by 1 each tick is too fast a growth rate, yet

increasing it by 0 is too slow. Think of these fractional populations as being still

in the egg state. If in every tick, the bug population of a patch increases by 0.2,

then after 5 ticks, one new full bug will emerge.

Note: Netlogo has a hatch command used to “hatch” new turtles or other

agents. DO NOT use this for the bugs. Remember, in this model, the bugs are

NOT agents. In this model bugs is just an agent variable of turtles NOT itself

an agent.

Spread
1) A bugs life is not just having babies: Every tick, each patch uses Netlogo’s

neighbors reporter (see below).

2) If a patch has a neighbor with less than half the number of bugs that it has

AND that patch has at least 2 bugs, then one of the bugs “moves” to its

neighbor. I put “moves” in quotation marks because since in this model, bugs

are NOT agents, they cannot actually move. The way to “move” a bug from

one patch to another is to subtract 1 to the number of bugs in the first

patch and add 1 to the number of bugs in the second patch.

Color
After growth and spread, set each patch color the same as was done in setup.

-7 of 8-

Hint: Netlogo’s neighbors reporter
neighbors

This reporter can only be used within a patch context. It reports the

set of patches that are adjacent to the current patch. Usually, this is

the surrounding patches, but when the patch is on the edge and world

wrapping is turned off, then less than 8 neighbors will be reported.

Example: Add the code below to some model’s setup button. Try to predict what

will happen, then run the code and see what happens.

ask patches

[

 let neighborsInBox 0

 ask neighbors with [pxcor > 3 and pycor < 3]

 [set neighborsInBox (neighborsInBox + 1)

]

 set pcolor green + (neighborsInBox)

]

Slider: NumberOfTurtles
Must have Minimum = 1, Maximum = 25, and Increment = 1.

Slider: MaxBugsTurtleCanEat
Must have Minimum = 1, Maximum = 25, and Increment = 1.

Slider: MaxBugsPerPatch
Must have Minimum = 1, Maximum = 25, and Increment = 1.

Slider: BugPopulationGrowthPercentage
Must have Minimum = 0, Maximum = 1, and Increment = 0.01.

Monitors:
The equation needed in each monitor is shown in the screen capture on the first

page. Set each monitor to display 1 decimal place. If min [energy] or min [bugs]

is ever less than 0, then your model has an error.

-8 of 8-

Grading Rubric [20 points total]:
[A: 1 points]: Submit Netlogo source code named: W6.firstname.lastname.nlogo.

[B: 1 points]: The first few lines of your code tab are comments including your

name, the date, your school, and the assignment name.

[C: 2 points]: The code in the code tab of your program is appropriately

documented with “inline comments”.

[D: 2 point]: Your program’s interface includes the required 4 sliders, 2 buttons

and 4 monitors. Your layout must be neat, but can be organized as you like.

The labels on your components must clearly indicate the component’s

function, but you may choose the words spacing, etc.

[E: 2 point]: Your setup procedure must set up the turtles as required above.

[F: 2 points]: Your setup procedure must set up the patches as required above

[G: 3 points]: Your go procedure must move the turtles as required.

[H: 1 point]: Your turtles must never have less than zero energy.

[I: 2 point]: Your go procedure must multiply the bugs as required.

[J: 2 point]: Your go procedure must spread the bugs as required.

[K: 2 point]: Your go procedure must color the patches required.

Extra credit: Collision Detection [+5]:
If a turtle collides with another turtle, then have your program do something

that prevents one from passing through (or jumping over) the other. You can

reverse their headings, or have them pick random headings (in such a way that

they do not pass through each other). You could have one transfer some of its

speed to the other or (if you want to get very fancy) have them move as though

they had an elastic collision. For this, you could let all turtles have the same

mass or you could make some larger turtles that have more mass.

Extra credit: Seeker Energizer Turtles [+5]:
Add a switch to your model to that when it is “on”, your turtles become seeker

turtles. A seeker turtle is one that moves the same as a normal energizer

except for when it hits one of the outer edges. When a seeker turtle hit an

edge, rather than turning 180 degrees, it turns to face the nearest patch with

the most bugs.

