
1

9/3/2019

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Office: Farris Engineering

Center, Room 2110

Coding Standard

CS 241

Data Organization using C

Why Do All Cars Have Cigarette Lighters?

a) Because most people smoke.

b) Because the cigarette lighter is actually the most

efficient and robust design for optimal delivery of

automobile battery power to a great variety of

electronic devices.

c) Because the cigarette companies have powerful

lobbyists.

d) Because it is a standard in a sea of chaos.

2

1

2

mailto:joel@unm.edu
http://cs.unm.edu/~joel/

2

Order vs Chaos: Standard Since 1925

3

Car Cigarette Lighter Charger for a few Cell Phone

Models
....Then there are Dell

laptops, Sony laptops,

Switch, Nintendo DS, new

Norelco razor, old Norelco

razor…..

wikipedia: However, they were

not originally designed to provide

electrical power for

miscellaneous devices, and are

not an ideal power connector for

several reasons:.....

CS-241 Coding Standards

◼ All project and Labs must follow the great and

hallowed CS-241 coding standards.

◼ These standards do not necessarily represent

the best nor the only good way to write C code.

◼ If you have experience programming, then

these standards may not be the standards you

are used to using.

◼ However, in this class, these are the standards

we will use.

4

3

4

3

Primary Reasons for Defined Standard

1. A standard makes it easier for the instructors to

read your code.

2. A class standard makes it easier for a grader to

recognize when a program does not use a

consistent standard.
Often when each student is allowed to define his or

her own standard, students switch standards

multiple times in a single project. It is tedious for a

grader to deduce each person’s standard and then

check for self-consistency.

3. It is good practice to learn to follow a standard.

5

Coding Standard: Naming

◼ All variables not declared const must start with a lowercase

letter.

◼ All variables declared with const and #define macro

definitions must be all uppercase letters.

◼ All program scope variables must be given descriptive names.

For example, use wordCount, charCount, and lineCount, not wc,

cc and lc.

◼ Function and block scope variables should usually have

descriptive names, but this is not a strict requirement. A character
read from a stream is commonly named c. Integer loop indexes

are often named i, j, and k.

◼ Never use the single letter l nor the single letter O as a variable.

◼ Function names must be descriptive and start with in lowercase.6

5

6

4

Coding Standard: Function Comments

At the top of every function, there must be a

comment block with the following information:

/*************************************/

/*Each parameter's type and name: */

/* input and/or output, */

/* its meaning, */

/* its range of values. */

/*Function's return value. */

/*Description of what the function */

/* does. */

/*Function's Algorithm */

/*************************************/7

Coding Standard: File Comments

At the top of .c source file, there must be a comment

block with the following information:

/*************************************/

/*Your first and last name */

/* */

/*Description of what the file */

/* is used for and how to use it. */

/* */

/*************************************/

8

7

8

5

Coding Standard – Open Brackets

Open brackets will be placed at the beginning of a

line (not at the end).

9

ok

if (x == 5)

{ y = y+1;

}

Not CS-241

standard

if (x == 5) {

y = y+1;

}

10

Coding Standard – Closing Brackets

Closing brackets will be indented on a line with no

other commands. The only exception being

comments placed on the line with a closing

bracket.

if (x == 5)

{ y=y+1;

} else if (x == 7)

{ y=y+2;

}

Badif (x == 5)

{ y=y+1;

} //Comment here ok

else if (x == 7)

{ y=y+2;

}

9

10

6

Coding Standard – Blocks and { }

◼ Whenever a structure spans more than one line,

brackets must be used. For example:

11

ok if (x == 5) y=y+1;

ok

if (x == 5)

{ y=y+1;

}

Not CS-241 standard
if (x == 5)

y=y+1;

Coding Standard - Indenting

◼ Code blocks will be indented to show the block

structure consistently using either two or four

spaces per structure level.

◼ Tab characters shall not be used for indenting.

◼ All statements within a block must be indented

equally.

12

11

12

7

120 Character Line Max

No line shall be more than 120 characters.

The best way to avoid overly long statements is by not doing too

much in a single statement.

13

1 if (getVolume(length1, width1, height1) >

getVolume(length2, width2, height2)) printf ("box 1 is

bigger\n"); else printf("box 2 is bigger\n");

2

3

4

5

6

7

8

9

int volume1 = getVolume(length1, width1, height1);

int volume2 = getVolume(length2, width2, height2);

if (volume1 > volume2)

{ printf("box 1 is bigger\n");

}

else

{ printf("box 2 is bigger\n");

}

Stored in

register

Fixing Too Long a Line Example 2

14

1 if (stack[topOfStack - 1] == '*' ||

stack[topOfStack - 1] == '+' || stack[topOfStack -

1] == '-' || stack[topOfStack - 1] == '/')

2

3

char c = stack[topOfStack - 1];

if (c == '*' || c == '+' || c == '-' || c == '/')

◼ Another case where a temporary variable can shorten a

line and improve readability.

◼ Creating the temporary variable c also improves code

maintenance:

If the code changes so that the comparison needs to check
stack[topOfStack] or stack[topOfStack-2], then

Line 2 and 3 require only a single change while line 1

requires 4 changes.

13

14

8

Fixing Too Long a Line Example 3

15

◼ There are times when breaking a long statement in to multiple

statements is more awkward than keeping the long statement.

◼ In such cases, the statement should be broken in a logical place

and each line over which the long statement is continued must

be indented.

◼ The indenting must be at least 2 spaces, but can be more

spaces if that improves readability. The example below, indents

line 3 so that the comparisons match up.

1 if (commandOption =='f' || commandOption == 'c' ||

commandOption == 'd' || commandOption == 'g')

2

3

if (commandOption == 'f' || commandOption == 'c' ||

commandOption == 'd' || commandOption == 'g')

Quiz: Coding Standard

16

Which line does NOT follow the standard?

a..for (i=0; i<10; i++)

b..{ int c = i*10;

c....if (c == 30)

d......c=c+6;

e....else if (c == 40) c = c-6;

}

15

16

9

Quiz: Coding Standard

Which line does NOT follow the standard?

for (i=0; i<10; i++)

{ char c = inStr[i];

if (c == '+') c=a+b;

else if (c == '*') c = a*b;

a....else if (c>='0' && c<='9')

b....{ for (j=0; j<c; j++)

c......{ printf("j=%d\n", j);

d......}

e....printf("\n");

}

}
17

Dead Code Elimination

Code that is unreachable or that does not affect the

program should be eliminated. This includes:

◼ Dead stores,

◼ Variables declared, but never read,

◼ #includes never used, and

◼ Functions never called.

18

int foo(void)

{

int x, i; /* i is never read */

i = 1; /* dead store */

x = 1; /* dead store */

x = 2;

return x;

x = 3; /* unreachable */

}

17

18

10

Replace Needlessly Deep Nestings

1. if (c == '*') multply();

2. else

3. { if (c == '+') add();

4. else

5. { if (c == '-') subtract();

6. else

7. { if (c == '/') divide();

8. else error();

9. }

10. }

11. }

19

if (c == '*') multply();

else if (c == '+') add();

else if (c == '-') subtract();

else if (c == '/') divide();

else error();

Avoid Code Duplication

◼ Code duplication is when two or more sequences of code are

either identical or differ by a small percentage.

◼ Code duplication is generally considered a mark of poor or lazy

programming style:

◼ Contributes to code bulk which interferes with

comprehension.

◼ Cause update anomalies: Any modification to a redundant

piece of code must be made for each duplicate separately. At

best, coding and testing time are multiplied by the number of

duplications. At worst, some copies may be missed, and for

example bugs thought to be fixed may persist in duplicated

locations.

◼ Best practice: avoid code duplication with a reusable function or

library.20

19

20

11

Example of Functionally Duplicate Code

int sum1 = 0;

int sum2 = 0;

for (int i=0; i<4; i++)

{

sum1 += array1[i];

}

average1 = sum1/4;

for (int i=0; i<4; i++)

{

sum2 += array2[i];

}

average2 = sum2/4;

21

int calcAverage (int array[])

{

int sum = 0;

for (int i=0; i<4; i++)

{

sum += array[i];

}

return sum/4;

}

The two loops should be

rewritten as the single

function:

Keep Function Size Functional

Source code, as it appears on the

display, becomes an extension of

the programmer’s mind: it is used

to organize, remember, and

articulate thoughts.

22

It is fine for a list of constants or simple statements to scroll

off the screen, but when complex logic spans more lines

than fit on the display (usually about 40), then the code

becomes difficult for a human to think with.

Best practice is to extract logical units from such code and

place each unit in a function, even when such functions

are only called from one place in the program.

21

22

12

Last Word....

◼ Of course, only the end product is graded; however, if

you take the time to maintain proper indenting and

formatting as you write your code, then you will find

coding easier.

◼ When you show clean code to an instructor, the

instructor is more likely to be friendly and will require

less time to help you.

23

Use clean coding standards

as you code.

23

