
11/7/2019

Maze Generator

CS 241
Data Organization using C

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Office: Farris Engineering Center

Room 2110

mailto:joel@unm.edu
http://cs.unm.edu/~joel/

The Maze Project: Required Skills

◼ Control flow and character I/O: Chapters 1-4

◼ Header files: 4.5

◼ Variable scope: 4.4 and 4.6

◼ Recursion: 4.10

◼ Pointers: 5.1 through 5.6

◼ Multi-dimensional Arrays: 5.7, 5.8, 5.9

◼ Dynamic Memory Allocation: malloc(), free()

◼ valgrind
2

Maze Project Milestones

◼ Basic Recursive Maze
◼ Draw with Pipe Characters.

◼ Tested with function calls from given mazeTest.c

◼ Improved Recursive Maze
◼ Draw with Pipe Characters.

◼ Tested with function calls from given mazeTest.c

◼ Polished Maze with extra credit enhancements.
◼ Write bitmap binary image file.

◼ One-on-one: Demo, Code Review, & "How Would
You?"

3

4

Maze Requirements (Milestone I)

1. Your generator must create rectangular mazes of
any specified width and height (≥3 and within the
computer’s memory limitations).

2. The mazes must be random: A pair of mazes of the
same, sufficiently large size, must have a low
probability of being identical.

3. Each maze must have exactly two openings along
its outer edge: one in a random location along the
top. The other in a random location along the
bottom.

5

Maze Requirements (Milestone I)

4. Each maze must have exactly one path that
connects the two outer edge openings.

5. Every cell in each maze must be reachable from any
other cell in the maze.

6. Each maze must contain dead ends which, on
average, increase in number, get longer, have more
turns, and more branches as maze size increases.

6

Maze Requirements (Milestone 1)

7. Each maze must use dynamically allocated memory
(malloc & free) and must not contain memory leaks
(checked using valgrind).

8. Your file, mazegen.c, must implement each of the
functions defined in the header file mazegen.h.

9. The functions defined in mazegen.h must run
correctly when called from mazetest.c. This file
contains main(...).
◼ Hint: to get started, comment out all but the first

1 or 2 tests in mazetest.c

7

Maze Requirements (Milestone 1)

In milestone 1 and 2,
each maze must be
drawn using the pipe
characters of the CP437
character set.

If you are physically at an
ubuntu cs machine, use CP866:

Terminal →encoding set →
add/remove set.

8

CP437 Extended ASCII Pipe Characters

ASCII Sym Bits

181 ╡ 1000

188 ╝ 1001

205 ═ 1010

202 ╩ 1011

187 ╗ 1100

185 ╣ 1101

203 ╦ 1110

206 ╬ 1111

ASCII Sym Bits

219 █ 0000

208 ╨ 0001

198 ╞ 0010

200 ╚ 0011

210 ╥ 0100

186 ║ 0101

201 ╔ 0110

204 ╠ 0111

Required Interface: mazegen.h

int mazeGenerate(int width, int height,
int wayPointX, int wayPointY,
int wayPointAlleyLength,
double wayPointDirectionPercent,
double straightProbability,
int printAlgorithmSteps)

void mazeSolve(void);

void mazePrint(void);

void mazeFree(void);

9

Unused in

Milestone I

Useful Constants: mazegen.h

#define NORTH 1 //0000 0001
#define EAST 2 //0000 0010
#define SOUTH 4 //0000 0100
#define WEST 8 //0000 1000
#define TOTAL_DIRECTIONS 4
#define ALL_DIRECTIONS 0x0F //0000 1111
#define NO_DIRECTIONS 0 //0000 0000

//Useful when solving the maze.
#define GOAL 16 //0001 0000
#define VISITED 32 //0010 0000

#define SPECIAL 64 //0100 0000
10

mazeGenerate(...)

int mazeGenerate(int width, int height,
int wayPointX, int wayPointY,
int wayPointAlleyLength,
double wayPointDirectionPercent,
double straightProbability,
int printAlgorithmSteps)

◼ Allocates memory and generates a random maze of the
given width and height.

◼ Returns FALSE if all is well.

◼ Returns TRUE and displays an error message to stdout

(NOT stderr).
11

mazeFree(void)

extern void mazeFree(void);

◼ Frees memory used by the maze.

◼ Must be called (by you) at the start of every call to
mazeGenerate(...)to free all memory used to create
the last maze.

◼ Must be called (by mazetest.c) before program exits.

◼ valgrind will be used to test for memory leaks.

12

mazeSolve(void)

Must solve the maze.

How you solve the maze and how you represent the solution
internally is not specified.

If a maze is printed before mazeSolve() is called, then the output
must not show the solution,

If a maze is printed after mazeSolve() is called, then the output
must show the solution in green pipes.

13

mazePrint(void)

Prints:

printf("\n\n");
printf("========================\n");
printf("Maze(%d x %d): (%d, %d)\n",

width, height, wayPointX, wayPointY);
printf("========================\n");

The Maze - using the pipe characters:

◼ The waypoint must be red.

◼ The solution path, if mazeSolve()was called, must be
green.

◼ The other pipes must be white.
14

mazetest.c: Structure and Use

#include <stdio.h> //look in standard library
#include "mazegen.h" //look in current directory.

int main(void)
{
// Test Cases:

// Release memory
mazeFree();

// Program finished properly
return FALSE;

}
15

Build maze executable:

Create a directory with

mazeTest.c
mazegen.h
mazegen.c

Compile:
gcc *.c

mazetest.c: Required Output

mazeGenerate(3,3, 2,2,0, 1.0, 0.0, FALSE);

//When mazePrint()is called after mazeGenerate(),
// must print maze using monochrome pipes characters.

mazePrint();

mazeSolve();

//When mazePrint()is called after mazeSolve():
// Must print the most recent maze.
// Must draw pipes that are not part of the solution in one
// color and pipes that lie on the solution in green.
// Must draw pipe at waypoint in red.
mazePrint();

16

Setting Text Color

◼ Given in mazetest.c is a helper function for setting the text
color displayed by printf.

//#define TEXTCOLOR_BLACK 30
//#define TEXTCOLOR_RED 31
//#define TEXTCOLOR_GREEN 32
//#define TEXTCOLOR_YELLOW 33
//#define TEXTCOLOR_BLUE 34
//#define TEXTCOLOR_MAGENTA 35
//#define TEXTCOLOR_CYAN 36
//#define TEXTCOLOR_WHITE 37
void textcolor(int color)
{

printf("%c[%d;%d;%dm", 0x1B, 0, color, 40);
}17

Grading Rubric (Milestone I, 50 Points)

20 Points: TEST 1: Basic random mazes.
This includes, correct formatting, correct pipe

characters, correct coloring before and after call to
mazeSolve, and maze meeting requirements.

10 Points: TEST 2: No memory leaks (valgrind), does not
use much memory for a given maze size. Does not need
expanded stack or heap space.

10 Points: TEST 3: Super stress test.

10 Points: TEST 4: Error cases.

Note: if your code gets less that 15 points on Test 1, then
your code auto fails all of test 2 and 3.

18

Grading Penalties

[-20 points]: Does not use malloc/free to dynamically
reserve space the maze. For example:

unsigned char maze[1000][1000];

[-10 points]: Code does not follow CS-241 standard.
This includes comments, indenting, variable
naming, repeated code, etc.

19

Recursive Algorithm: carvemaze(x,y, dir)

1) Call carvemaze with the starting location and the direction it
came from.

2) carvemaze must add an opening in cell (x,y) in direction, dir.

3) carvemaze must also add an opening of the opposite direction in
the location it came from.

4) carvemaze must determine how many directions are currently
open.

a) If there are no open directions, it must return.

b) If there is one or more open directions, it must call carvemaze with
the x and y value of a cell in a randomly selected open direction.

c) When that call returns, go back to start of step 4.

20

Recursive Algorithm: debugging

◼ Create a small grid and print the state of the maze at the
start of each call to carvemaze().

◼ For testing, use srand(seed) with a fixed seed value, so you
can regenerate the same maze until you get it working.

21

4 6 9

7 9

3 12

4 5

3 9

╥ ╔ ╝ █ █

╠ ╝ █ █ █

╚ ╗ █ █ █

╔ ║ █ █ █

╚ ╝ █ █ █

Dealing with the Maze Edges

◼ One way to avoid out-of-bounds errors at the maze edges is to
protect each check of the cell to the north with an if (y-1 > 0).
Similarly, protect checks in each of the other directions.

◼ I recommend a different way to avoid out-of-bounds errors at the
maze edges:

22

1

1

x
y-1 1

x-1
y

x
y

x+1
y 1

x
y+1 1

Add an extra row and column on
each edge with all values = 15.

With this structure, you can look
in that direction, without going
out-of-bounds, yet never break a
wall in that direction. Also, never
render those extra boarder cells.

3×3 maze

Path to Success #1: Paper First!!

◼ Get some graph paper!

◼ Draw a small, maze (54) and work manually through the
process you are trying to code.

◼ When you do this, write in each cell, as the maze develops, the
number your algorithm should store in each cell.

◼ Later, when you have code, print the direction your program
chooses at each step. Then figure out on your graph paper what
value your algorithm should write in each cell. Verify that your
program writes the same value in each cell that you calculate
on paper.

23

Path to Success #2: Fixed Size Array

Start by using:

static unsigned char maze[1000][1000];

void mazeFree(void) {} //Does nothing.

After you get this working change to

static unsigned char **maze;

and then use malloc() and free().

24

Recursive Algorithm: Heap verses Stack

Before you start coding, think about what variables are needed.

◼ Which of these variables should be arguments in the recursive
call and why?

◼ Which variables not passed as arguments need to be automatic
variables (stored on the stack where each level of the recursion
has its own version of the variable).

◼ Which variables need to be on the heap so that all levels of the
recursion see the same memory for the variable. This is needed
to have one level of recursion see changes made by other levels.

◼ Which value(s) need to be returned by the recursion?

◼ Should the maze project use tail recursion?

25

How to Increasing Stack Size

NOTE: If you are running out of stack space on the maze
project, then you ARE DOING SOMETHING WRONG.

◼ User limits - limit the use of system-wide resources.

◼ ulimit -s <maximum stack size in byes>

◼ ulimit -s 32768

◼ ulimit is a Bash shell command.

◼ man ulimit for more information.

26

How might these structures be useful?

const int DIRECTION_LIST[] = {NORTH, EAST, SOUTH, WEST};
const int DIRECTION_DX[] = { 0, 1, 0, -1};
const int DIRECTION_DY[] = { -1, 0, 1, 0};

const unsigned char pipeList[] =
{
219, 208, 198, 200, 210, 186, 201, 204,
181, 188, 205, 202, 187, 185, 203, 206

};

27

Is there a particular
order to the elements of
this array?

How to Find and Fix: **Error** Stack Overflow

◼ Does the problem only happen on mazes larger than any in the
test file? If so, what might be the issue?

◼ Does the problem only happen when you generate and solve
multiple mazes?

◼ Does problem happen always on a second maze?

◼ Does problem only happen after a bunch of large mazes?

◼ How do last two questions effect where to look for errors?

◼ Does the problem happen when carving OR when solving OR
when carving only after a solve?

◼ If problem happens with just a single maze, then test with the
smallest maze that results in the same problem (3x3? 3x4?, …).

28

Maze II: wayPointX, wayPointY

mazeGenerate(3,3, 2,2,0, 1.0, 0.0, TRUE);

mazeGenerate(20,11,18,5,4, 1.0, 0.0, TRUE);

29

The maze solution must pass through (wayPointX, wayPointY).

The waypoints are indexed with the first row and column as 1.

For example, a 3,3 maze with a waypoint at location 2,2 would
have its waypoint in the center:

Waypoint Algorithm

30

There are a number of ways to implement this. The one suggested
below also works when adding wayPointAlleyLength.

1) Start carving at the waypoint.

2) When you reach the top or bottom edge near one of
corners, carve a hole. DO NOT RETURN. Set a global
variable and start a new recursion within the recursion
only in a random direction from the waypoint.

3) Carve from the waypoint in the usual way until you reach
the top or bottom edge near the same or different corner.

Note: This will sometimes fail. When carving the first path from the
waypoint, the path might completely block off the other waypoint
directions from all edges. In this case, set an error flag to true, print a
message, and print the maze partly completed. When the error flag is
set, Each recursive call should return without doing any other carving.

Maze II: wayPointAlleyLength

mazeGenerate(3,3, 2,2,0, 1.0, 0.0, TRUE);

mazeGenerate(20,11,18,5,4, 1.0, 0.0, TRUE);

31

Before starting the maze carving recursion, carve a set of allies

that start at the waypoint and go straight in each direction for

wayPointAlleyLength cells. Stop when you hit an edge!

The wayPointDirectionPercent specifies the maximum number of

cells to carve from the end of a single waypoint alley before starting a

new recursion at the end of a different randomly selected waypoint alley.

When the max number of cells is reached, start a new recursion at each of

the alley endpoints that are still open.

For example, if a 20x11 maze has a wayPointDirectionPercent = 0.2

(20%), then the maximum cells to carve from a single waypoint before

starting another is:

20×11×0.2 = 44 cells.

This cell count includes all branches made from the start of the most recent

waypoint alley.

When a new waypoint recursion is started, DO NOT RETURN from the

current recursion. After that new recursion returns, your maze carving still

needs to pick up where it left off

Maze II: wayPointDirectionPercent

32

Maze II: leaveGap

33

After carving the allies, when carving new cells, always choose a
carve direction that connects to a cell neither next to a carved
cell nor next to an edge in forward five directions – if and only if
such a direction exists.

For example, in the figure below, if carving NORTH from the green
cell, then the forward 5 cells are shown in gray.

After carving the
current step, all
directions lead either
to a used cell or a cell
next to a used cell.

╥ ?

╠ ═ ═

╨

SKIP

Maze II: straightProbability

34

If the most recent carve direction is d, and if continuing in that
direction would not break any of the other constraints (no cycles,
leave gap and max direction percentage)...

Then, before choosing a random direction, the algorithm must
continue to carve in direction d with percentage equal to
straightProbability.

A straightProbability of 0.0, was used in milestone 1.

A straightProbability of 1.0 makes degenerate mazes.

Maze II: printAlgorithmSteps

When printAlgorithmSteps is true, then print the maze as it is
(with uncarved blocks shown as the solid fill character) after each
step in the algorithm. In particular, print:

1) At the start of each new alley recursion.

2) At the return of each alley recursion

Draw alleys in red.

After mazeSolve, show solution in green, and alley not on solution
in red.

35

Maze II: Grading Rubric

[30 Points]: Pass 10 unknown tests (3 points each).

[10 Points]: Uses dramatic memory allocation with no
memory leek.

[-10 points]: Code does not follow CS-241 standard. This
includes comments, indenting, variable naming,
repeated code, etc.

36

Maze III: Bitmap and Extra Credit

◼ Milestone III of the maze project adds only one requirement:

◼ Replace the pipe characters with tiles (no smaller than 8x8 and
no larger than 16x16). Output the maze (when mazePrint() is
called) as a single bitmap image.

◼ Grading is during a one-on-one Demo, Code Review, & "How
Would You? Some of these will be done during lab class others
can be scheduled outside of class.

◼ There are no special color requirements for Maze III (you are not
required to display a solution or color waypoint …).

◼ Full points for Maze III can still be earned if the ally length or
other parameters are not working correctly (but no seg faults or
other crashing: make sure you always draw a random maze).37

Maze III: Extra Credit

You can earn extra credit for many different creative things you
might choose to do with maze III. Example:

◼ Use isometric sprites so the maze has a 3D appearance.

◼ Do actual 3D rendering with lighting and surface effects using
OpenGL.

◼ Invent or implement form some other source different
parameters than waypoint direction percent, or allies or straight
probability that makes more interesting mazes.

◼ Make hex mazes (where each cell has 6 directions).

◼ Maybe experiment with cluster mazes: (i.e. size 15x15 maze
areas each connected to two others via a single path).

38

