
1

10/8/2019

Structures - Chapter 6

CS 241
Data Organization using C

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Read: Kernighan & Ritchie

◼ Due Tuesday, Oct 8:
6.1: Basics of Structures
6.2: Structures and Functions

◼ Due Tuesday, Oct 8:

6.3: Arrays of Structures

6.4: Pointers to Structures

6.5: Self-referencing Structures

2

1

2

mailto:joel@unm.edu
http://cs.unm.edu/~joel/

2

3

Textbook Section 6.1: Basics of Structure

//x and y are members of the structure point.

struct Point {int x; int y;};
//A structure does not reserve storage.
//It only defines the type of storage.

struct Point pt; //This reserves storage.

// Alternate syntax defining and instantiating a structure.

struct Point
{ int x;

int y;
} pt;

Like class names in Java, in

CS-241, we will use structure

names that start with a capital

letter.

4

Accessing the Members of a Structure

struct Point
{ int x;
int y;

} pt;

//Assignment to the members of a structure.
pt.x = 5;
pt.y = 8;

//Initializing a structure when it is instantiated.
struct Point maxpt = {320, 200};

3

4

3

5

CS-241 Coding Standard

struct Point
{ int x;

int y;
};
struct Point pt;

struct Point
{ int x;

int y;
} pt;

struct Point {int x; int y;} pt;

struct Point {
int x; int y;

} pt;

6

Section 6.2: Structures and Functions

struct Point {int x; int y;};
struct Point makepoint(int x, int y)
{ //reuse of the variable names x and y is good.

struct Point temp;
temp.x = x;
temp.y = y;
return temp;

}

void main(void)
{ struct Point p1 = makepoint(5,7);

printf("p1=(%d, %d)\n", p1.x, p1.y);
}

Unlike a Java class, temp

is returned by value.

5

6

4

7

Passing a Structures as an Argument

struct Point {int x; int y;};

void incrementPoint(struct Point p)
{ p.x++;

p.y++;
}

void main(void)
{ struct Point p1 = {4, 7};

incrementPoint(p1);
printf("p1=(%d, %d)\n", p1.x, p1.y);

}
p1=(4, 7)output:

8

Section 6.4: Pointers to Structures

struct Point {int x; int y;};

void incrementPoint(struct Point *p)
{ (*p).x++; // . has higher precedence than *

// *p.x++; is a syntax error.
// dereferencing a pointer, then accessing a member is so

// common that it is given a special notation.

p->y++;
}
void main(void)
{ struct Point p1 = {4, 7};

incrementPoint(&p1);
printf("p1=(%d, %d)\n", p1.x, p1.y);

}

p1=(5, 8)output:

7

8

5

9

Quiz: Structures and Functions

struct Point {int x; int y;};
struct Point incPoint(struct Point p)
{ p.x++; p.y++;
return p;

}
void main(void)
{ struct Point p1 = {12, 3};
struct Point p2 = incPoint(p1);
printf("p1=(%d, %d) p2=(%d, %d)\n",

p1.x, p1.y, p2.x, p2.y);
}
a) p1=(12, 3) p2=(13, 4) b) p1=(12, 3) p2=(12, 3)

c) p1=(13, 4) p2=(13, 4) d) p1=(13, 4) p2=(12, 3)

e) The value returned into p2 was stored on the stack in incPoint.

Therefore, the value in p2 is unpredictable!

10

Warning:
Function Returns Address of Local Variable
#include <stdio.h>
struct Point {int x; int y;};

struct Point* badPointer(int x, int y)
{
struct Point temp;
temp.x = x;
temp.y = y;
return &temp;

}

void main(void)
{ struct Point* p1 = badPointer(5,7);
printf("p1->(%d, %d)\n", (*p1).x, (*p1).y);

}

9

10

6

11

Quiz: Pointers to Structures

struct Point {int x; int y;};

void incrementPoint(struct Point *p)
{ (*p).x += 2;

p->y += 2;
}
void main(void)
{ struct Point p1 = {7, 7};

incrementPoint(&p1);
printf("p1=(%d, %d)\n", p1.x, p1.y);

}

a) p1=(7, 7) b) p1=(7, 9) c) p1=(9, 9)
d) p1=(9, 7) e) p1 = 14

12

Section 6.3: Arrays of Structures

char *keyword[NUM_KEYWORDS];
int keycount[NUM_KEYWORDS];

struct KeyStructure
{ char *word; //allocates space for a pointer.
int count;

} key[NUM_KEYWORDS];

key[0].word= "if"; key[0].count = 0;
key[1].word= "for"; key[1].count = 0;
key[2].word= "char"; key[2].count = 0;
key[3].word= "int"; key[3].count = 0;

Parallel Arrays

Array of
Structures

11

12

7

13

gcc Compile Error

1. #include <stdio.h>
2. #define NUM_KEYWORDS 32;
3. int main()
4. { struct KeyStructure
5. { char *word;
6. int count;
7. } key[NUM_KEYWORDS];
8.

foo.c: In function ‘main’:
foo.c:7: error: expected ‘]’ before ‘;’ token

14

Quiz: Pointers to Structures

#include <stdio.h>
#include <math.h>
struct Point {double x; double y;};
void foo(struct Point *p)
{ double d = sqrt((p->x)*(p->x) + (p->y)*(p->y));
p->x /= d;
p->y /= d;

}
void main(void)
{ struct Point p1 = {2, 3};
foo(&p1);
printf("p1=(%5.2f, %5.2f)\n", p1.x, p1.y);

}
a) p1=(1.50, 1.75) b) p1=(0.55, 0.83)
c) p1=(2.00, 3.00) d) p1=(2, 3)
e) p1=(1.41, 1.73)

13

14

8

15

Pointer and Index to the Same Place

void main(void)
{ char data[] = "Hello World";
data[2] = 'X';
char *linePt = &data[3];
*linePt = 'Z';
printf("[%s], [%s]\n", data, linePt);

}

[HeXZo World], [Zo World]

output:

16

Quiz: Pointer and Index

void main(void)
{ char data[] = "Warcraft";
data[7] = '+';
char *linePt = &data[4];
linePt = '';
printf("[%s], [%s]\n", data, linePt);

}

a) [Warcraft], [Warcraft]
b) [Warcraf+], [Warc*aft]
c) [Warc*aft], [Warcraf+]
d) [Warc*aft], [raf+]
e) [Warc*af+], [*af+]

15

16

9

17

Binary Tree: Kernighan and Ritchie 6.5

now

is the

for men of
time

all good

Tree state
just before
"party" is
read:

their to

aid come

Read a file and count the occurrences of each word.

now is the time for all good men to come to the aid
of their party

  

 

   

 

 
party

 

18

Quiz: Binary Tree - Insert

now

is the

for men of
time

all good
their to

aid come

Given the binary tree in the state shown below, if a node is
added with the name "hello", where would it be placed?

  

 

   

 

 

a) Right child of "good"

b) Right child of "men"

c) Left child of "men"

d) Right child of "come"

e) Left child of "come"

17

18

10

19

Binary Tree: tnode

The structure, tnode, is use for each node of the binary tree.
struct tnode
{ char *word;
int count;
struct tnode *left;
struct tnode *right;

};

This is called a self-referential structure since it contains pointers
to other tnodes.

An instance of struct allocates space for a pointer to a char
array, two pointers to other tnodes and an int. On a 64-bit
address machine, this is a total of 28 bytes.

20

Binary Tree: talloc (NOT a Library Function)

1. Allocate memory for a tree node.

2. In this binary tree, nodes are added to leaves. Thus, initialize the
node's children to NULL.

3. Call strCopyMalloc to allocate space for the word and to copy it
from the input buffer into the allocated space.

struct tnode *talloc(char *newWord)
{
struct tnode *node = malloc(sizeof(struct tnode));
node->word = strCopyMalloc(newWord);
node->left = NULL;
node->right = NULL;
node->count = 1;
return node;

}

19

20

11

21

Binary Tree: strCopyMalloc

1. Allocate memory for a copy of newWord.

2. Copy each character from newWord into the allocated block.

3. Return a pointer to the start of the allocated block.

char *strCopyMalloc(char *source)
{
char *sink;

sink = malloc(strlen(source)+1);

if (sink != NULL) strcpy(sink, source);
return sink;

}

22

Binary Tree: Memory Leaks

In Kernighan and Ritchie's binary tree, Memory is allocated and
never freed!!!!

MEMORY LEAK WARNING: DO NOT free a node until:

a) Its children have been freed, or pointers to its children have
been saved somewhere else.

b) Its word has been freed.

struct tnode *root;
root = talloc("Memory");
root->right = talloc("Leak");
root->left = talloc("Bad");
free(root); //Leaves "unreachable" memory.

21

22

12

valgrind

23

Valgrind is an open source programming tool for
detection of memory leak, invalid memory usage and profiling.

The name valgrind comes from the main entrance to Valhalla in
Norse mythology.

valgrind a.out //Runs a.out in a virtual machine.

If a.out is the Binary Tree code in the textbook:

...
==24825== LEAK SUMMARY:
==24825== definitely lost: 32 bytes in 1 blocks
==24825== indirectly lost: 88 bytes in 5 blocks
...

24

Binary Tree: freeSubTree

Recursive function that frees all allocated memory in a subtree.

Any references to node (such as would be in node's parent) MUST
NOT BE USED AFTER calling this. Best practice is to set such
references to NULL.

void freeSubtree(struct tnode *node)
{
if (node == NULL) return;

freeSubtree(node->left);
freeSubtree(node->right);

free(node->word);
free(node);

}

Is this done here?

If not, could it be
done here?

If so, between
which lines and
with what code?

23

24

13

25

Binary Tree: Simple Tests Case

This main() demonstrates usage and offers a simple test of
creating, setting printing and freeing tnode.

void main(void)
{ struct tnode *root;
root = talloc("joel");
root->left = talloc("cool");
root->right = talloc("inspirational");

printf("node: %s (L)=%s, (R)=%s\n", root->word,
root->left->word, root->right->word);

freeSubtree(root);
root = NULL; //"Best practice" (no effect on valgrind)

}

26

Binary Tree: No Leaks Are Possible

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

struct tnode
{ //fields
};

char *strCopyMalloc(char *source)
{ //body
}

node: joel (L)=cool, (R)=inspirational
==24066== HEAP SUMMARY:
==24066== in use at exit: 0 bytes in 0 blocks
==24066== total heap usage:

6 allocs, 6 frees, 120 bytes allocated
==24066==
==24066== All heap blocks were freed -- no leaks are possible

struct tnode *talloc(char *newWord)
{ //body
}

void freeSubtree(struct tnode *node)
{ //body
}

void main(void)
{ //body
}

25

26

14

27

Tree Traversal

Depth First Traversal: From the root, finds as far as possible along each

branch. Nodes are visited on backtrack: "aid", "all", "come", "for",

"good", "is", "men", "now",...

Breath First Traversal: Begins at the root node, then visits each of the

root's the children. Then visits all of the roots grandchildren...."now",

"is", "the", "for", "men", "of", "time", "all",...

now

is the

for men of
time

all good
their to

aid come   

 

   

 

 

27

