
1

11/21/2019

CS 241
Data Organization using C
Project 3: Tron Fall 2019

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Tron Fall 2019: Project Outline (1 of 4)

1) The game takes place on
an nm grid with the
minimum and maximum
defined in tron.h. The
Tourney take place on the
maximum grid size.

2) In each game, there are 2
teams. Each team is
controlled by one
student's code or by the
instructor's code.

3) Each team starts with 10
Lightcycles in a triangular
“bowling pin” formation:

2

G H I J

D E F

B C

A

1

2

mailto:joel@unm.edu
http://cs.unm.edu/~joel/

2

Tron: Project Outline (2 of 4)

4) The north team’s cycles are ‘A’ through ‘J’ and the south team’s ‘K’
through ‘T’. North being at the top of the display.

5) Each turn, each cycle must move in one of the cardinal directions.

6) Every place where a cycle moves it leaves a trail.

7) If a cycle moves into a space with a trail it explodes.

8) If a cycle does not move it explodes.

9) If a cycle moves into the grid perimeter, it explodes.

10) If a cycle moves into the same space as another cycle, the team with
the greater total CPU time explodes (in the case of the times being the
same, which of the cycles entering the same space explodes is
random).

3

Tron Project Outline (3 of 4)

11) Once during the game, each cycle
may jump one cell.

12) When a cycle explodes, it and its
trail is instantly removed from the
game.

4

13) A cycle's trail is the set of spaces from its most recent move
back its starting point. Note: due to the jump mechanic this
path may be discontinuous at one location.

14) Each team’s formation starts centered on either the north or
south edge of the board with the row of four cycles being three
cells from edge and the row of one cycle nearest the center.

15) No AI may ever call srand(). The MCP calls srand() with an
optional user argument.

3

4

3

Tron: Project Outline (4 of 4)

16) Each turn, the MCP tells each
player the current location of all
cycles.

17) Each turn, each team tells the MCP
where it moves each of its cycles.

5

18) If a team fails to give its move instructions before the timeout,
then all cycles of that team explode.

19) Timeout for the first turn is 5 seconds.

20) Timeout for each other turn is 0.1 seconds average (not
counting turn 1).

21) Walls in the center of the court are given to the player by the
_init() function.

MCP / Player Interface

1) Each player has 3 "public" functions:
_init(), _move(), and _getName()

2) At the start of a new game, the MasterControlProgram (MCP)
calls each team's _init() function giving it the game
configuration:
a) Each team's name and color.
b) Each team's initial cycle coordinates.

3) Each timestep, the MCP will call team's _move()
◼ Telling each team the current location of all cycles.
◼ Telling each team the total CPU time of each team.
◼ Asking each player where it wants to move each of its cycles.

6

5

6

4

Fall 2019: Game Rules

1) Only the MCP may call a player's _init(), _move(),
or _getName() functions.

2) Any player that causes the program to exit with a runtime error
is disqualified.

3) Any invalid moves cause the cycle to explode.

4) Player code that can trick the MCP without causing the program
to crash might be able to give itself an advantage.

7

Grading Rubric (75 points total)

[+15 Points]: Your AI wins 3 out of 3 games vs RandomBot.

[+5 Points]: Your AI wins 3 out of 10 games vs LineBot.

[+5 Points]: Your AI wins 5 out of 10 games vs LineBot.

[+5 Points]: Your AI wins 6 out of 10 games vs LineBot.

[+5 Points]: Your AI wins 7 out of 10 games vs LineBot.

[+5 Points]: Your AI wins 8 out of 10 games vs LineBot.

[+5 Points]: Your AI wins 9 out of 10 games vs LineBot.

[+15 Points]: Your AI wins 5 out of 10 games vs LookBot.

[+15 Points]: Your AI wins 9 out of 10 games vs LookBot.
8

7

8

5

Tron Spring 2017: Extra Credit

+10 Points: Tournament Finalist (including
Special Shapes Award).

+25 Points: Bronze tournament Winner.

+50 Points: Silver tournament Winner.

+75 Points: Gold tournament Winner.

9

Tourney
Thursday

December 12
3:00 - 5:00

CEC Basement
Lab

Snacks will be
served

10

Interface between MCP and AI

Each student must implement the three, non-
static ("public") functions:

char* firstname_lastname_getName()

void firstname_lastname_init(struct InitData *data)

void firstname_lastname_move(struct MoveData *data)

Important: Do not save the addresses:
struct InitData *data
struct MoveData *data

The memory will be freed after your function returns.
Any *values* you want to save must be copied value-by-value to
static local or static file-scope variables or structures.

9

10

6

11

Cycle Move Order

After all teams have returned from _move(struct MoveData *data),
the MCP collects and executes the moves. The AI with the lowest total
CPU time is moved first. Within a team, cycles are moved in order of
the linked list of cycles in the MoveData structure.

Usually, an AI will not care which of their cycles is moved first, but in rare
cases it may matter. For example, one of your cycles destroys itself to
clear its path for another of your cycles to enter.

In such cases, reorder the given linked list so that the cycle you want to
be moved before another is before that other in the linked list.

12

tron.h: _getName

char* firstname_lastname_getName()

Returns a pointer to a character array containing your player name.

The returned name may contain any non-whitespace, printable ASCII
character (base-10 codes 33 through 126).

If more than one student in the class returns a particular name, the MCP
will force each to be unique by appending numbers.

A player's _getName() function must always return the same name.

When _getName() returns, the MCP will copy the name into its own
storage and never again use the returned pointer.

No more than MAX_PLAYER_NAME_LEN characters (not including the
terminating '\0') will be copied from the returned pointer.

Name must be NULL-terminate.

11

12

7

Compiling Tron

1) Place your AI code in the file:
tron_yourFirstName_yourLastName.c

2) In a clean directory with your source code, copy from the class
website the files tron.h, libmcp.a (the MCP library), and
classFunctions.c.

3) Edit classFunctions.cby commenting out each _getName(),
_init() and _move()method with you name.

4) Compile all .c files in the directory and link with the static MCP
library, libmcp.a:

gcc *.c -L. -lmcp -lm -lpthread `sdl-config --libs` -lSDL_ttf -o tron

This compiles all .c files in the directory, links with libmcp.a and
creates a stand-alone executable with the name tron.

13

Running the MCP with your AI

◼ After you have compiled your code and linked with the MCP,
run by entering the command:

./tron

◼ With no arguments, tronwill display a usage screen telling you
what arguments to use to specify the, an optional random
number seed, which players are to compete, etc.

◼ Running tron with a graphics display will show a realtime SDL
(Simple DirectMedia Layer) window.

14

13

14

8

Representing Direction

15

0001
NORTH

0

0010
EAST
1

0100
SOUTH
2

1000
WEST
3

Given a variable, dirBits, with
some bits 1 through 4
turned on if and only if it is
possible to move in that
direction.

How can you remove a bit?

You can subtract, if you first
make sure the bit is set.

You can safely flip the bits of
the direction you want to
remove, then bitwise AND:

dirBits = dirBits & (~bit)

Representing Direction

#define NORTH 1
#define EAST 2
#define SOUTH 4
#define WEST 8

By using powers of 2, one integer variable can represent more than one
direction. For example:

static int getDirBits(int x, int y)
{

int dirBits = 15; //All 4 flags on: =N|E|S|W
if (grid[x][y-1] != WHITE) dirBits -= NORTH;
if (grid[x][y+1] != WHITE) dirBits -= SOUTH;
if (grid[x-1][y] != WHITE) dirBits -= EAST;
if (grid[x+1][y] != WHITE) dirBits -= WEST;
return dirBits;

}16 Why not use if, else if, else?

given in tron.h

15

16

9

Use Many Small Helper Functions

It is often useful to know the number of choices into which a
particular cell may.

static int getNumberOfOpenDirections(int dirBits)
{
int openCount = 0;
if (dirBits & UP) openCount++;
if (dirBits & DOWN) openCount++;
if (dirBits & LEFT) openCount++;
if (dirBits & RIGHT) openCount++;
return openCount;

}

17

Unit Test your Helper Functions

static void test_getNumberOfOpenDirections()
{

// 1) Clear the grid.
// 2) Set, using a short series of assignment statements,
// a **few** specific walls and player colored cells
// showing in a small area of the grid.
// 3) Call getNumberOfOpenDirections() on the
// various cases and print results.
// 4) Verify your results with hand drawing on graph paper.

}

18

17

18

10

Test Small

19

◼ When developing your AI, change the grid size to something you
can print out and actually read.

◼ After you have the bugs worked out on a small size, THEN try the
full size.

◼ When you find a bug on a full size grid, go back to
a small size
and try to
reproduce it.

C keyword: static

◼ In C, a variable declared as static in a function is initialized
once, and retains its value between function calls.

◼ The default initial value of an uninitialized static variable is
zero.

◼ If a function or variable is declared static, it can only be
accessed in that file.

20

Use static to protect your
variables and function calls

from other teams.

19

20

11

Suggested Structure for Grid

Create a file scope grid that includes the boundary wall.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Your file scope variables
will not be visible to
the Master Control
Program nor to other
student's code.

Shown is a 7x7 grid which
includes the boundary
wall cells shown in
gray.

21

Suggested Data Structure for Cycle Trails

static int grid[MAX_GRID_WIDTH][MAX_GRID_HEIGHT];

22

File scope Sized for the biggest possible grid.

■ Cycle path must persist between calls to _move.

■ The locations of the boundary

■ Empty cells must be identifiable.

■ Cells containing lightcycle trails must be identifiable.

■ When a cycle is terminated, there must be a way of removing its
path without disturbing other lightcycle trails.

How will you represent, access and update this information?`

21

22

12

Strategies

◼ Deep look-ahead (dead ends, open path to far wall, …).

◼ Attack (nearest, or only within direct sight, or within 10 cells).

◼ Leave gaps to escape

◼ Team Formations.

◼ Trap Building.

◼ Maximizing open space.

◼ Efficient Fill.

◼ Maintaining a goal direction or
location through a perturbation.

23

Viable Choices and Atari

In the Tron game, each cycle as at most 7 choices (counting jump
move) of where to move.

It is often useful to know the number of viable choices.

You may, for example, have an expensive look-ahead algorithm.
However, if a cycle is in atari (only one path to survival), there
is no need to run expensive AI code.

24

23

24

13

Helper: getCycleIndex

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "tron.h"

static int getCycleIndex(char cycleName)
{ int cycleIdx = cycleName – 'A';

if ((cycleIdx < 0) || (cycleIdx >= CYCLE_COUNT))
{

printf("JoelRobot.c: ***ERROR*** getCycleIndex(%d)\n",
cycleIdx);

exit(0);
}
return cycleIdx;

}

25

■ What might “cycleIdx" be used for?

■ How am I defining it?

■ Why am I defining it in this way?

■ Is it needed?

■ Are there other ways to define it?

Gotta Love That printf

static void printGrid(void)
{ int x, y;

for (y=0; y<gridHeight; y++)
{ for (x=0; x<gridWidth; x++)
{

printf("%3d ", grid[x][y]);
}
printf("\n");

}
}26

Prints up to a 2020 grid within a single, default size PuTTY
window.
Try printing your grid just before and just after a cycle crash.

25

26

14

Gotta Love That printf

27

256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
256 0 0 0 64 64 1 0 2 0 0 0 0 0 256
256 0 0 0 0 64 1 2 2 0 0 0 0 0 256
256 0 0 0 0 64 1 3 0 0 0 0 0 0 256
256 0 0 0 0 64 64 3 0 0 0 0 0 0 256
256 0 0 0 0 0 64 3 0 0 0 0 0 0 256
256 64 64 64 64 64 64 3 8 8 8 8 8 8 256
256 32 32 32 32 32 32 3 8 0 0 0 0 0 256
256 32 0 0 0 0 32 3 8 0 0 0 0 0 256
256 0 0 0 0 0 32 3 8 0 0 0 0 0 256
256 0 0 0 0 0 32 3 8 0 0 0 0 0 256
256 0 0 0 0 0 32 3 0 0 0 0 0 0 256
256 0 0 0 0 0 32 3 0 0 0 0 0 0 256
256 0 0 0 0 0 32 0 0 0 0 0 0 0 256
256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

Cell encodes enter direction

27

