
1

2/2/2017

CS 351
Design of Large Programs
Cellular Automaton: Conway's Life

Instructor:

Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Office: Farris Engineering
Center (FEC) room 319

Quiz: Collections Video

In the assigned Lynda video on collections, describe
one of the following:

1) Something the narrator said that was incorrect in
substance or by omission.

2) Somethings that was poorly stated: either
because it confused you or because it was about
something you already knew and you can see
how someone who did not know what you do
would likely be confused by what was said.

2

2

Abstraction

 In computer science, what is abstraction?

 What are some examples of abstraction?

 What are some programming languages that use
more abstraction and less abstraction than Java?

 What are advantages and disadvantages of
abstraction?

 In Java, what is an example of when it is best
practice to use more abstraction? What is an
example of when it is best to use less
abstraction?

3

A Cellular Automaton

 A discrete model consisting of a regular grid of cells, each in one
of a finite number of states at any discrete time.

 The grid can be in any finite number of dimensions.

 The state of a cell changes discretely at each time step and is a
function of the states within a finite neighborhood of cells.

 All cells have the same definition of a neighborhood and use the
same set of rules for transitioning from one state to another.

 A "generation" is the state of all cells in the grid after the transition
rules have been applied to all cells in the grid.

 Cellular Automaton are studied in
 Computability Theory
 Mathematics
 Theoretical Biology
 Microstructure Modeling

4

3

Conway's Game of Life

 The Game of Life is a cellular automaton
devised by the British mathematician John
Horton Conway in 1970. It is the best-known
example of a cellular automaton.

 The Game of Life is a zero-player game,
meaning that its evolution is determined by its
initial state, needing no input from human
players. One interacts with the Game of Life by
creating an initial configuration and observing
how it evolves.

5

Conway's Game of Life - Rules

 Finite two-dimensional grid of square cells.

 Each cell is in one of two possible states, Alive or Dead.

 Every cell interacts with its 8 adjacent neighbors.

 At each step in time, the following transitions occur:

1) Any alive cell with fewer than two live neighbors dies, as if by
loneliness.

2) Any alive cell with more than three live neighbors dies, as if by
overcrowding.

3) Any alive cell with two or three live neighbors stays alive.

4) Any dead cell with exactly three live neighbors comes alive, as if a
baby is born to one of the neighbors into the empty cell.

 The initial pattern constitutes the 'seed' of the system.

 The first generation is created by applying the above rules
simultaneously to every cell.

1 2 3

4 5

6 7 8

6

4

Conway's Game of Life - Example

1. Any alive cell with fewer than two live neighbors dies.

2. Any alive cell with more than three live neighbors dies.

3. Any alive cell with two or three live neighbors stays alive.

4. Any dead cell with exactly three live neighbors comes to life.

0 1 2 3 4

0 0 0 0 0 0

1 1 2 3 2 1

2 1 1 2 1 1

3 1 2 3 2 1

4 0 0 0 0 0

0 1 2 3 4

0

1

2

3

4
7

Synchronous Update: Two Copies of Grid

Synchronous update means that the update rules must be
implemented such that the result is the same as if all cells
were updated simultaneously.

Implementing synchronous update usually requires building
the next generation in a temporary grid.

For example, a cell that is dying on this update may also serve
as the neighbor count for a different cell that either dies or
that comes to life on the same update.

0 0 0 0 0

1 2 3 2 1

1 1 2 1 1

1 2 3 2 1
8

5

-9-

Data Structure for Game of Life

Use a boarder to avoid treating the edges as
special cases. 0 1 2 3 4 5 6

0 -1,-1 0,-1 +1,-1

1 -1,0 0,0 +1,0

2 -1,+1 0,+1 +1,+1

3

4

5

6

The boarder is
used when
counting
neighbors, but is
never updated.

This figure
shows a 55 grid
of cells in a 77
array.

9

Multi-Threaded Game of Life Requirements (1 of 5)

■ Implement the game of life on a 10,000  10,000 grid.

■ Fill inside window with cells zoomable (with mouse wheel)
from 1  1 pixels to 50x50 pixels.

■ Window must be resizeable.

■ User must be able to scroll window through full grid using
either click-&-drag or scroll bars (or both).

■ Seed with random values (each cell with 50% chance of
being alive at start).

■ When paused, user can click in a cell to toggle life.

■ Must run making good use of 1 to 8 cores with 1 to 8 threads
for workers plus one thread for GUI.10

6

■ Operation must be smooth and real-time.

■ Depending on your hardware capabilities and your
viewing window size, you may or may not get 30 to 60
frames per second.

■ GUI must remain responsive on all platforms.

■ GUI Controls:

■ Pause/play, next, reset, and 6 presets.

■ Number of worker threads (1 through 8). This could
be a popup that can only be set at startup or could be
in main window, but it is expected that changing this
would restart the board.

11

Multi-Threaded Game of Life Requirements (2 of 5)

■ JavaFX: For windows, containers and widgets.

■ Gridlines:

■ When cells are viewed at a size of 55 pixels, use one
pixel row and column for gridlines (Draw the cells 4x4).

■ Cells viewed larger than 55, *may* have wider gridlines.

■ When cells are less than 55, do not show gridlines.

12

Multi-Threaded Game of Life Requirements (3 of 5)

7

Age:
■ Cells in your implementation have 10 states: 0=dead,

1=born in the current generation, 2=born last generation, ...
10=born nine or more generations ago.

■ Each generation must have a different shade of the same
color with younger cells being more different from the
background.

13

Multi-Threaded Game of Life Requirements (4 of 5)

■ Presets (Must be selectable from drop-down menu):

1) All dead (for easy click building)

2) Random (50% alive)

3) Glider gun (of your choice). Gun in upper left, shooting
toward lower right.

4) All Alive except edges.

5) Upper-Right checkerboard
(see next slide)

6) Something you think is cool.
If you want, you are welcome
to add additional presets.

14

Multi-Threaded Game of Life Requirements (5 of 5)

8

Upper-Left Checkerboard Preset

15

Quiz: Derived Requirements

When software specifications do not provide all details
pertaining to a requirement, then the software engineer is
free to:

a) Ignore the requirement since, being underspecified, is
invalid.

b) Leave the unspecified details undone as they are not
requirements.

c) Do whatever she or he wants.

d) Choose between reasonable alternatives or ask

e) Assume the requirement author is an incompetent idiot
and respecify the project in his or her image.

16

9

Must be good brightness contrast between Live and dead cells.
For example,

■ Poor Brightness Contrast: bright green on white.

■ Good Brightness Contrast: medium or dark green on white.

17

Derived Requirements: Game of Life (1 of 5)

(128, 128, 128)
(255, 0, 0)

(0, 255, 0)
(255, 255, 255)

Poor
choices

Derived Requirements: Game of Life (2 of 5)

Zoom should zoom in and out while keeping either the curser
or display center fixed.
 Zooming should NOT move upper-left world to upper-left

window.

 Zooming should NOT be centered about the upper-left window.

Selecting a preset should reset and refresh display with
visible window showing interesting part of the preset. The
preset must be started in a location that allows it to work.

Pause should change something visible in the GUI to show
the GUI is paused and pending updates should be halted.

Console output should exist and be politely informative:
"loading preset X", ... MUST NOT run like diarrhea.18

10

Derived Requirements: Game of Life (3 of 5)

Do not crash or stream Errors: when the user drags the
mouse outside the window or other reasonable but
unspecified actions.

Window Resizing implies auto adjusting the GUI layout to fit
the new size. It is okay if your GUI looks stupid at stupid
sizes (i.e. 10 x 2000 pixels.)

Window Title: A window without a title looks unfinished.

19

Derived Requirements: Game of Life (4 of 5)

Good Use of up to 8 Cores implies:

 When run on 1 core, your program should be efficient:

 At least 1 frame/sec in lab on 10k  10k grid.

 Only one core should be maxed out and only one other
core should be working at ~25% doing GUI work (with
spikes when the user is scrolling).

 Your program should run 6 or 7 times faster on 8 cores
with 8 worker threads than on 1 core.

 When your program is paused, it should be using almost
zero CPU power.

20

11

Most Important Derived Requirement (5 of 5)

The patterns shown all over the Internet for Conway’s
Game of Life must work in your implementation.

21

These sequences are implied by the required game
rules.

Implementation Suggestions (1 of 2)

 Store game state on “board” that is 2D array of primitive
types (i.e. byte). A array of objects (on a 64-bit machine) will
use 10,000  10,000  8 = 800MB just to store the pointers to
all the grid objects!

 Use two game state boards total for the whole program: one
for reading the current generation, one for writing the next.

 Reading can be done by all threads sharing the same board.
It is ok if read areas overlap.

 Writing can be done by all threads sharing the same board,
as long as each thread’s write area is 100% disjoint.

 Access memory to leverage CPU cache and page size.

 Minimize computation of most common task: is this cell alive?

 Let background be cell boarders (rather than drawing a grid).22

12

Implementation Suggestions (2 of 2)

Use synchronized generationDone() method to control
synchronization between generations:

 Called when a thread finishes its generation.

 Decrement threadCount.

 If threadCount >0, return threadCount and worker sleeps
until notified.

 if threadCount == 0,
 Swap current grid with next generation grid (just swap global

pointers).

 Set threadCount to number of worker threads.

 Notify all threads to wake up and start working.

 Return 0 so thread that called this method knows not to sleep.
23

Implementation Suggestions (3 of 3)

24

This java built-in class does
much of what is outlined on
the previous slide

13

Grading Rubric (50 points total)

0 [Turn-in: -5 points]
0 [Code Style: -10 points] Repeated code, poor class structure...
5 Implement the game of life on a 10,000  10,000 grid.
2 Window resizeable, where larger window shows more cells.
3 Zoomable from 11 pixels to 5050 pixels per cell.
2 Age (with color as specified).
3 Scroll window through full grid.
1 Start up: Random 50% alive and paused.
4 When paused, user can click in a cell to toggle life.

14
Must run making good use of 1 to 8 cores with 1 to 8 threads for
workers plus GUI and main threads.

9 Operation must be smooth and real-time.
1 GUI Controls: Pause/play, next, reset.
2 GUI Controls: Number of worker threads (1 through 8).
2 GUI Controls: 6 presets
2 Gridlines

25

