CS 351

Design of Large Programs
Java and Socket Communication

Instructor:
Joel Castellanos

e-mail: joel@unm.edu

4/6/2017

Transmission Control Protocol

® The Transmission Control Protocol (TCP) is one of the
core protocols of the Internet protocol suite (IP).

®m TCP provides reliable, ordered and error-checked delivery
of a stream of octets between programs running on
computers connected to a local area network, intranet or
the public Internet.

m Web browsers use TCP when they connect to servers on
the World Wide Web, and it is used to deliver email and
transfer files from one location to another.

m HTTP, HTTPS, SMTP, POP3, IMAP, SSH, FTP, Telnet
and a variety of other protocols are typically encapsulated
in TCP.

TCP/IP Abstraction Layers

Application Layer where the higher level protocols such
Data as SMTP, FTP, SSH, HTTP, etc. operate.
Transport Layer: responsible for end-to-end message
transfer independent of underlying network, along
TCP|TCP with any error control, segmentation, congestion
header| data control & application addressing (via port numbers).
1P IP dats Internet layer: Host addressing and identification via
header hierarchical IP addressing system and packet routing
Frame Frame
header game data footer

Link layer: protocols used to describe the local network topology and the
interfaces needed to effect transmission of Internet layer datagrams to next-
3 neighbor hosts without intervening routers.

What is a Socket?

m TCP (Transmission Control Protocol) provides a reliable,
point-to-point communication channel that client-server
applications on the Internet use to communicate with
each other.

® To communicate over TCP, a client program and a
server program establish a connection to one another.

®m Each program binds a socket to its end of the
connection.

—— B To communicate, the client and the server each reads
from and writes to the socket bound to the connection.

®m A socket is one end-point of a two-way communication
link between two programs running on the network.

TCP Connection Establishment

TCP uses a three-way handshake:

m Server must first bind to and listen at a port. This is called a
passive open.

®m Once the passive open is established, a client may initiate
an active open.

SYN: Client sends SYN to server. The client sets the segment's
sequence number to a random value, A.

SYN-ACK: Server replies with acknowledgment number set to
one more than the received sequence number (A+1), and
another random number, B.

ACK: Finally, the client sends an ACK back to the server. The
sequence number is set to the received acknowledgement
value (A+1), and the acknowledgement number is set to one
more than the received sequence number (B+1).

User Datagram Protocol (UDP)

® When more speed is needed for data being
transferred using TCP, can some speed be
gained by using UDP instead?

® | would tell you a UDP joke, but you might not
get it.

Client/Server Socket Connections

Normally, a server runs on a specific computer and has a socket that is
bound to a specific port number. The server just waits, listening to the
socket for a client to make a connection request.

A prospective client must know the hostname of the machine on which
the server is running and the port number on which the server is listening.

To make a connection request, the client needs to identify itself to the
server (hostname and local port number).

If the server accepts the connection, the server creates a new socket
bound to the same local port and also has its remote endpoint set to the
address and port of the client. It needs a new socket (running on a new
thread) so that it can continue to listen to the original socket for
connection requests while tending to the needs of the connected client.

On the client side, if the connection is accepted, a socket is successfully
created and the client can use the socket to communicate with the server.

Client and server can now write to or read from their sockets.

Thneed Store

®m Everyone needs a Thneed.

® Isn't about time we created o h‘fi’vjf,
a way to buy and sell Thneeds?

m For this lab we will be creating a client/server
program that uses socket communication to track
the purchase and sales of Thneeds.

® The server is the central office/warehouse.

®m Each client is a remote sales / buyer
representative of the central office.

Four Public Classes

9

ServerMaster: Manages connections. There is only 1
instance of this class.

ThneedStore: Manages Inventory. There is only 1
instance of this class.

ServerWorker: Manages communications with 1 client.
There is 1 instance of ServerWorker per client.

Client: Connection between user and ServerWorker.
There is 1 instance per user.

Partly working versions of 3 of these classes are available
on the website. Feel free to use, modify or rewrite
these as you see fit.

ServerMaster. java

10

The ServerMaster is the server side entry point (main) and runs
in a single thread.

The ServerMaster instantiates a ThneedStore. Then it listens for
new clients requesting to be added to the network. Since it
runs in a single thread, it cannot do anything else while
listening for a new client.

The ServerMaster creates a ServerWorker thread for each client
connection request.

— The ServerMaster must have a public method that the

ThneedStore can call to broadcast a message to all clients.
Therefore, the ServerMaster must maintain a list of
connected clients. Since clients may connect and disconnect,
jJava.util_LinkedList is a good structure for this.

ThneedStore. java

1

The ThneedStore tracks the inventory of Thneeds.

The ThneedStore is not a thread. Rather, it has
synchronized accessor methods which can be called by
any of the ServerWorker threads.

Each accessor must complete a full transaction before
returning.

If a client requests to sell more than the current inventory, then
the request fails.

If a client request fails, the accessor must send a denial
message to the client.

If a client request succeeds, the accessor must call a method
in the ServerMaster to broadcast the updated inventory.

ServerWorker. java

12

ServerWorker extends Thread.

Each ServerWorker thread listens for requests from its client
(to buy or sell Thneeds).

Each ServerWorker thread blocks while listening for a
message from its client.

When a ServerWorker thread receives a buy or sell request
from its client, the ServerWorker calls a accessor method
in the ThneedStore.

If the request is successful, the ServerWorker thread returns
to listening for messages from its client.

If the request failed, the ServerWorker forwards the fail
message to its client, then returns to listening.

Client. java

The Client class is the client side entry point (main).

When Client starts, opens a socket connection to
ServerMaster.

After connecting, Client must run in two threads:

1. One thread blocks while listening for input form the user
(use java.util.Scanner).

2. The other thread blocks while listening to the socket
connection it opened. Both ServerMaster and the thread's
ServerWorker can send messages on this socket
connection.

13

ServerMaster Main Thread

—_— ServerMaster

Instantiate >

ThneedStore

Listen for Add CIient?
new client

ServerWorker ServerWorker ServerWorker
Thread Thread Thread

14

ServerWorker Thread

ServerWorker Thread

Blocking Wait
for client msg \ Forward Fail :
to Client
8,
v,

Client S@//

Disconnect Fail

ServerMaster ThneedStore

Success
Remove | [Client Broadcast g

15

Client Threads

ya N
Client User Listener Thread

— Connect to Server Discgnnect 0 serverMaster,

Blocking Wait
for user ServerWorker
\ Buy / Sell ~ Thread
Fail \1,

Client Copy ThneedStore
I f Inventor
g y Success ¢,

Client Socket Liskkner #hread ServerMaster
—lCIient Broadcast |

Blocking Wait J
16

Initial State

At creation, the central office (thneedStore), has:
1) An inventory of zero thneeds.

2) A treasury balance of $1000 dollars.

3) No connected clients.

“ _7\ 5-
" .— ;
, ,
, \

Y
,
Y
=

17

User Commands (1 of 2)

The client must accept and correctly process the following
user commands when input at the console:

® buy: quantity unitPrice

m sell: quantity unitPrice

® quit:

® inventory:

quantity must be a positive integer.

price must be a dollar amount in the form n.dd where n is non-
negative integer and each d is a digit character.

The buy command attempts to add quantity to the store's

inventory and subtract quantityxprice from the store's

treasury. The sell command acts in reverse.
18

User Commands

: EXAMPLE INPUT

19

inventory:
buy: 30 10.23
buy: 50 9.10

sell: 20 18.95
buy: 100 8.12
sell: 10 20.25
sell: 15 21.95
inventory:
sell: 10 20.25
sell: 15 21.95
inventory:
quit:

User Commands (2 of 2)

20

The quit command must sent a disconnect message to the
server and terminate the Client program. The server must
not attempt to broadcast to client after it has received a
disconnect message from that client.

The 1nventory Sends a message the server. It must display

the result and update its local values.

10

Legal State of the Server

®m Neither the Server's inventory nor its treasury may
at any time between transactions be negative.

m All transactions must be atomic:

1) Either all of a transaction is rejected or all of it is
accepted.

2) No transaction may begin reading or writing the
state of the inventory or treasury while another

transaction is in progress.

21

Server Broadcast Messages

® Immediately after each transaction, the server must
broadcast an identical message to each client holding an
open socket connection.

®m The format and content of the message must be:
time: Inventory=quantity : treasury=dollars

time must be the number of seconds, showing three decimal
places, elapsed since the server first started through the
end of the transaction.

Each token in this broadcast message may be separated
with zero or more whitespace characters.

quantity: must be numeric characters that parse to an int.
29 dollars: d[d[d[...11] -dd, where d is a numeric character.

11

Eclipse: Setting Command Line Arguments

If you want to test from Eclipse, set the command line arguments for the
Client by selecting:
Project — Properties — Run/Debug Settings — Client — Edit... —

Arguments
and entering the command line arguments in the "Program arguments"”
field. ol
type fiter text Run/Debug Settings e .
I ;.IE:C?;:'SWE mnﬁemmmmm:mmmmummdmm
JAautodoc ‘current resource,
Then, do the same s g
for the ServerMaster. ¢ =ecoms Tievereme S
e o ln
Project References = - =
:: mxm 1 Eg:‘ La]ua?:?p;gfnlaauration properties @
Name: | Dlent
[@ Main ¢+ Arguments . JRE -, Classpath| - Source i Environment| T} Common|
+ Program arguments:
kenvorth,cs.unm.edu 5555 =
=l
Variables...
~VM arguments:
23 | 4

Running Two Processes in Eclipse

m For early testing, you may want to run both the server and the client
on the same computer. To do this:

1) Right-click on the ServerMaster class in the Navigator and select
"Run as Java Application".

2) Set the client's run configuration arguments to "localhost" and
the same port number specified in the ServerMaster arguments.
Then, Right-click on Client class in the Navigator and select
"Run as Java Application".

B This will start two separate JVMs. ek e
B All threads in a single JVM output to the same console. to switch
m Different JVMs output to different consoles. JUM
consoles
Clicking "stop" will only stop the selected JVM
I#] Problems @ Javadoc (2, Declaration < Search [Console 83 =M = LB /I BB~y ~=08

S- @ [J12 Cient [Java Application] C:\Program Files\Java\jdk1.7.0_51\bin\javaw.exe (Feb 22, 2015, 9:41:16 PM)
CITent(): Starting Iistener = : Thread[Thread-0,5,main]
24 Sneeds in Inventory = @

Ch [311 ServerMaster [Java Application] C:\Program Files\Java\jdk1.7.0_51\bin\javaw.exe (Feb 22, 2015, 9:41:12 PM) I

12

Grading Rubric

25

[-5 Points]: If the server does not run from the command line with
the command:
jJava ServerMaster portNumber

[-5 Points]: If the client does not run from the command line with the
command:
jJava Client hostname portNumber

[-5 Points]: If client or server displays a GUI or extraneous output.

[-5 Points]: If code doesn't adhere to the CS-351 coding standard.
This includes adding comments as required in the standard to
any instructor supplied code that you use.

[+10 Points]: Program passes slow speed command/response tests.

[+10 Points]: Program passes high speed command/response tests.

Turning in the Lab:

26

B Submit this assignment in Blackboard Learn as a .jar or .zip
with the three .java files.

® Do NOT place your classes in a package.

® No need to create an executable .jar as they are being run
by specifying java ServerMaster and java Client .

® Your code will be tested at HIGH SPEED (1000s of
transactions per second with 3+ client instances each
running on different machines). This is done as in CS-241,
by redirecting a file to standard in. Your code will "think" it is
reading from the keyboard, but it will actually get high speed
input from a file.

13

Quiz

1) What is the Decorator Pattern?

2) Give a real example in the Java APl where the
Decorator Pattern is used.

27

14

