
1

2/2/2017

CS 351
Design of Large Programs
Introduction to Multi-Threaded Programming
in Java

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Office: Farris Engineering
Center (FEC) room 319

Quiz: Creating Threads In Java

 In Java, there are two ways to have a class be able to
start a new thread. What are they?

 In what situation would the one be used and in what
situation would the other?

2

extends Thread
Software Engineering Principle: If you want a thread,
default to extending Thread unless your class already
extends something. This makes it clear to someone reading
the code that the class is an instance of Thread.

implements Runnable
Personal Project Principle: If you want a thread, default to
implementing runnable. That way, if later you want the class
to extend something, there are less changes.

2

There is No Space in README

 For your personal files never to be moved from your
own computer, it is fine to use spaces in file names.

 For any files you produce for school, work or
sharing across computers, DO NOT USE SPACES
IN THE FILE NAMES.

 Most command line programs (on Windows, Linux
and MacOS) use spaces to delimit arguments.

 Many programs that move data from one system to
another do not correctly handle file names with
spaces.

3

Static

 Static fields DO NOT get "instantiated".

 Static is not "better" than an instance field, nor is an
instance field "better" than a static field - any more than a
tire is "better" than a clutch.

 Both static and instance fields can be public or private.

 A static initializer does NOT run when ever it is called from
anywhere in the program.

 Static initializers are NOT called when the program is run.

 static  final. Static variables can be changed (unless they
are also final).

4

3

Dining Philosophers Problem

5

Each philosopher must
alternately think and eat.
A philosopher requires both a left
and right fork to eat.

What can go wrong with:
1) Think until the left fork is

available; Then, pick it up.

2) Think until the right fork is
available; Then, pick it up.

3) When both forks are held, eat
for a fixed amount of time.

4) Then, put the right fork down;

5) Then, put the left fork down;

6) Think for a while then goto 1.

Superscalar Processor

A superscalar processor is a CPU that implements a form
of parallelism called instruction-level parallelism within a
single processor.

A superscalar processor can execute more than one
instruction during a clock cycle by simultaneously
dispatching multiple instructions to different execution units
on the processor.

Each execution unit is not a separate processor (or a core if
the processor is a multi-core processor), but an execution
resource within a single CPU such as an Arithmetic Logic
Unit, an Instruction Fetch Unit, a Memory Access Unit, and a
Register Write Back Unit.

6

4

Superscalar and Vector Processor

A vector processor allows an array of numbers to be
processed in different steps of a single processing unit.

Compared to a scalar processor with the same clock rate
and the same number of circuit steps in a given operation,
any particular instruction takes the same amount of time to
complete (has the same latency).

7

However, like an assembly
line, superscalar and vector
CPUs can process an entire
batch of operations much
faster.

Full Adder

8

Threads versus Processes

 Threads and Processes are both methods of parallelizing.

 Processes are independent execution units that contain
their own state information, use their own address spaces,
and only interact via interprocess communication:
 Sockets,
 TCP/IP,
 Pipes,
 Files (disk files, RAM files, hardware shared memory)
 High-level, Remote Procedure Call (RPC) systems.

 Threads within a single process share the same address
space. Hence, they can access the same global variables.

 Threads have shared heaps, but separate stacks.

5

9

Processes/Threads - Heavy/Light

 Spawning a processes is heavy:

 Start up has significant overhead.

 Interprocess communication has significant overhead.

 A spawned process can continue to run after the original
process is killed.

 Spawning a thread is relatively light:

 It is often efficient to spawn a thread for a short-term task
such as performing a complex mathematical computation
using parallelism or initializing a large matrix.

 In Java, calling System.exit(0) in any thread, causes all
threads running in that process to exit.

10

Native Threads Versus Green Threads

Two main ways of implementing threads:

 Native threads are implemented by the kernel.
 Heavier because context switching at the kernel

level is comparatively expensive.
 Can take advantage of multiple processers.
 Modern Java, C, C++, Matlab.

 Green threads are implemented at the interpreter
or virtual machine level.
 Lighter weight.
 Can't take advantage of multiple CPUs.
 MzScheme, Haskell, Smalltalk, Python.

6

11

Threads: Concurrent versus Swapped

With native threads, when there are more processors than
threads, each runs concurrently.

When there are more threads than processors, the threads are
swapped in an out of control. Swapping requires overhead.

12

Categories of Thread Applications

1. A single, computationally intensive problem that can be
divided into independent parts where each part
requires significant CPU time.
 Only makes sense on multiprocessor machine.

2. A computationally intensive problem that has a GUI or
some other component that needs to be able to
interrupt the main computation.
 Used with single and multiprocessors.

3. A task that spends most of its time waiting for some
resource.
 Used with single and multiprocessors.

7

13

java.lang.Thread: Sleep and Yeild

These static methods can be use from any Java program
without creating a Thread object.

 public static void sleep(long millis)
throws InterruptedException

Causes the currently executing thread to sleep (temporarily
cease execution) for the specified number of
milliseconds (millis). The thread does not lose
ownership of any monitors.

 public static void yield()

Causes the currently executing thread object to temporarily
pause and allow other threads to execute.

14

Work Thread: Keeping GUI Response

public static void main(String[] args)
{ ...

WorkerThread worker = new WorkerThread();
worker.start();

}

public class WorkerThread extends Thread
{ ...

public void run()
{ for (;;)
{ if (myGuiPanel.isPaused())
{ try {Thread.sleep(500);}
catch (InterruptedException e){}

}
else
{ ...
}

}
}

}

Significant work,
but less than 500
milliseconds.

Must NOT
override start()

Simple Polling

Starts a new thread
and calls the
thread's .run().

Do NOT call
.run() directly.

8

15

Volatile Keyword

In Java, declaring a volatile variable means:

 The value of this variable will never be cached thread-
locally: all reads and writes will go straight to "main
memory"

 A volatile variable never holds a lock. Volatile is not
suitable for cases where read-update-write must be atomic.

public class GUI_Panel extends JPanel
{ ...
public volatile boolean

paused = true;
...
public boolean isPaused() return paused;

}

16

Race Condition:

a=f(a)

print a

a=f(a)

print a

Solutions:

Polling: "Hay, are you done yet?"

Lock: "I am blocked until the lock is released."

Notify: "I will sleep. Wake me when you are done".

thread 1 thread 2

9

17

Quiz 1-3: Race Condition

In this loop, which calculations can be preformed
in different threads without a race condition?

for (int i=0; i<1000000; i++)
1 { c = f(a) + f(c);
2 d = f(d+c);
3 e = f(e) + f(a) + f(e+a);
4 b = g(d);

}

a) 1 and 2 b) 1 and 3
c) 1 and 4 d) 2 and 4

18

"None of the Above"

for (int i=0; i<1000000; i++)
1 { c = f(a) + f(c);
2 d = f(d+c);
3 e = f(e) + f(a) + f(e+a);
4 b = g(d);

}

Running line 3 in parallel with 1, 2 and 4 requires
the independence of calls to methods f and g.

It requires that method f does not access global
variables or other resources written to by f or g.

10

19

Java: Synchronized Method

public synchronized double foo()
{
a=f(a);
return a;

}

When thread 2's program counter enters foo(), thread 2
obtains a lock on foo().

If thread 1 calls foo() while thread 2's program counter is in
foo(), then thread 1 will be blocked until thread 2's
program counter leaves foo.

20

1) public synchronized void
2) copyP(Point destination)
3) {
4) destination.x = p.x;
5) destination.y = p.y;
6) }
7)
8) public synchronized void addP(int n)
9) {
10) p.x += n;
11) p.y += n;
12) }

The two methods both use the instance to store the lock.

After thread 1 has read p.x on line 4, and before it reads p.y on
line 5, without synchronized, thread 2 could write to p.y.

Both a read and a write.
+= is NOT atomic.

Synchronized Access

a

b

c

11

21

Java: Synchronized Block

1) public void copyP(Point destination)
2) { synchronized(p)
3) { destination.x = p.x;
4) destination.y = p.y;
5) }
6) }
7)
8) public void addP()(int n)
9) { synchronized(p)
10) {
11) p.x += n;
12) p.y += n;
13) }
14)}

When thread 1 executes line 3, it
obtains a lock on instance variable p.
If thread 2 reaches line 10, it will block
until thread 1 releases the lock at line 6.

Synchronized Methods

Placing the synchronized
keyword in the method header
behaves identically to
surrounding the code inside
the method with a
synchronization block on ‘this’.

A lock is stored in an object
instance.

A lock is held by a thread.

22

12

23

Not all Java JIT Compilers are Equal

 All must meet Java Language specifications.

 Some have much better optimization.

 IBM's Java JIT compiler performs particularly high.

for (int i=0; i<1000000; i++)
1 { c = f(a) + f(c);
2 d = f(d+c);
3 e = f(e) + f(a) + f(e+a);
4 b = g(d);

} Assuming it can be verified that f
and g have no side effects, a good
optimizer would parallelize line 3.

24

Quiz 1-4: Race Condition #2

Assuming it can be verified that function calls have no side
effects, In this loop, which calculations can be preformed
in different threads without a race condition?

for (int i=0; i<1000000; i++)
1 { x = g(x) + f(w);
2 y = k(y+w);
3 z = f(y) + h(v) + f(y+v);
4 v = g(d);

}

a) 1 and 2 b) 2 and 3
c) 3 and 4 d) 2 and 4

13

The Key to Using Locks

25

Just because you use a
lock does not mean your
code is thread safe!

Lab 2: Threads of a Fibonacci Walk

 Simple, 15 Point lab

 Due: Midnight, Monday, January 30.

 Some of you will finish this in lab class. At most,
it should take a few extra hours.

 Attach executable JAR in Blackboard Learn

26

14

Threads of a Fibonacci Walk (specs 1 of 5)

 Main thread of program must start up two worker threads.

 Each worker thread must independently walk the Fibonacci
sequence (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...).

 Each thread must keep track of the following:
private final String NAME; //Name of thread
private long step = 0; //Steps since start.
private long z; // fib(step)
private long y = 1; // fib(step-1)
private long x = 1; // fib(step-2)

 if (z == 7540113804746346429L)
{ x = 1;
y = 1;

}27

Threads of a Fibonacci Walk (specs 2 of 5)

 Implement in single file (public class and inner class).

 Every 2 seconds the main thread must print:

 Each worker thread’s name,

 Each worker thread’s step number

 Each worker thread’s three active sequence values (x, y
and z).

 The info about x, y and z must be printed form the main
thread The point of this is to verify that the main thread
can access a consistent set of the data from each of the
worker threads.

 In this context, what identifiable properties must a
consistent set of data have?28

15

Threads of a Fibonacci Walk (specs 3 of 5)

Do not confuse thread with class:

 Code in different classes, can execute in the same thread.

 Similarly, code in the same class can execute in different
threads.

 For example, a class that extends java.lang.Thread might
have a public accessor method:

 If that accessor is called from the child thread, then it runs
in the child thread.

 However, if that same accessor is called from the parent
thread then it runs in the parent thread.

 Indeed, the same accessor can be called by many threads
at the same time.29

Threads of a Fibonacci Walk (specs 4 of 5)

 Every 2 seconds the main thread must print each worker
thread’s name, step number and x, y z values.

 After 10 loops of the main thread, (20 seconds), the main thread
must tell each of the workers (via a method you create) that they
should exit. It will take some (short) time for each of the threads
to notice they should exit, to print a short message such as
"This is thread X signing out", and to actually exit. This message
MUST print from the worker thread's run() method (NOT from
whatever method main calls to tell the worker it should exit).

 Meanwhile, the main thread should be polling each thread's
.isAlive() method. When .isAlive() returns false for both threads,
then main must print "Program Exit" and call System.exit().

30

16

Threads of a Fibonacci Walk (specs 5 of 5)

 Note that each Fibonacci walk, even if started at almost the
same time, will, in general, not be on the same step: they are
running on different processors that are also running other
stuff such as your e-mail, whatever webpages you have
open, the operating system, various services such as Adobe
checking for updates, ... You should expect that sometimes
one thread is ahead of the other and sometimes the other
thread is a head.

 While the Fibonacci numbers get reset to 1, 1, after reaching
the end of the sequence, the step number must continue
counting +1 for each step.

 On the first cycle through the Fibonacci numbers, step 1 is
when z=2. Step 2 is when z=3. Step 3 is when z=5, ...

31

Grading Rubric (out of 15)

-5: Code does not follow the CS-351 standard.

+10: Program correctly uses thread synchronization so
that no thread is waiting when there is no need
for it to be waiting AND printing an consistent set
of values is guaranteed.

+5: The each thread of the program exits after printing
a goodbye message and the main thread calls
System.exit() as specified.

32

17

Java's final

 The specs for the Fibonacci Walk, say:

 Each thread must keep track of the following:
private final String NAME; //Name of thread.

 How is it possible for:

a) This one class to be used for different threads,

b) Each thread to be given a different name,

c) AND for that different name to be final?

33

Wrong!

 I did not specify an output format. That means you are
free to choose the output format.

 However, the below output is wrong. Why?

34

Step 0:
Thread 1: x = 1, y = 1, z = 2
Thread 2: x = 1, y = 1, z = 2

(2 second pause)

Step 1:
Thread 1: x = 1, y = 2, z = 3
Thread 2: x = 1, y = 2, z = 3

18

Example Correct Output

35

A (88618483) 308061521170129, 498454011879264, 806515533049393
B (88539684) 17711, 28657, 46368

A (242799173) 20365011074, 32951280099, 53316291173
B (242609894) 267914296, 433494437, 701408733

A (336637159) 5527939700884757, 8944394323791464, 14472334024676221
B (336406692) 55, 89, 144

A (489495460) 39088169, 63245986, 102334155
B (489226550) 4807526976, 7778742049, 12586269025

Main thread waiting for workers to die....
B Dies gracefully on step=1413066869
A Dies gracefully on step=1413648142
All workers are dead. Goodbye.

By random chance, B
printed before A.

Above, A and B were printed
in main. Therefore, the print
order was deterministic.

=154,180,690
=154,070,210

= 93,837,986
= 93,796,798

=152,858,301
=152,819,858

Properties of the Output:

I did not specify an output format - which means you are free
to deliver any reasonable format.

1) The step numbers must be strictly increasing.

2) The probability that the two worker threads, when polled,
will be on the same step is near 0.

3) The step number for the two worker threads should be on
same order of magnitude.

4) Each difference between step numbers printed on
consecutive two second intervals should be on same order
of magnitude.

5) Each worker thread must report being done followed by
main reporting done.36

19

jdk1.8.x\bin\jvisualvm.exe

 VisualVM provides detailed information about Java
applications while they are running on the Java
Virutal Machine (JVM). VisualVM's graphical user
interface enables you to quickly and easily see
information about multiple Java applications.

 Watch video on
https://visualvm.java.net/gettingstart
ed.html?Java_VisualVM

 VisualVM (or some similar tool of your choice) will
be strongly needed for the Game of Live Lab.

37

Java VisualVM

38

Run of Fibonacci Lab
with 20 sec sleep
before starting workers.

Digging into the
panels, verify that
the worker threads:
1) Only sleep every

2 seconds.

2) Sleep for very
short periods.

3) Never both sleep
at the same
time!

20

Example: Parallelism in Traffic Sim

 Segment by times of day: No Synchronization

 Segment by location (grid) OR system (trains, roads, ...):

 Transitions within section, no synchronization. Transitions
between sections do require synchronization.

 How could this be optimized?

 Path-finding: Each timestep, when an agent comes to an
intersection, it must use some intelligence to decide which
way to go. In general, this requires global information.

 Synchronization of simulation state: read only.

 Synchronization of search state: each thread has
personal copy.

39

