
Contact us / Contactez nous: nparc.cisti@nrc-cnrc.gc.ca.  

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=fr

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. 

NRC Publications Record / Notice d'Archives des publications de CNRC:
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5763742&lang=en

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5763742&lang=fr

Access and use of this website and the material on it  are subject to the Terms and Conditions set forth at

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en

NRC Publications Archive

Archives des publications du CNRC

On the Effectiveness of Test-first Approach to Programming
Erdogmus, Hakan

http://web-d.cisti.nrc.ca/npsi/jsp/nparc_cp.jsp?lang=fr
http://web-d.cisti.nrc.ca/npsi/jsp/nparc_cp.jsp?lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5763742&lang=fr


National Research

Council Canada

Institute for

Information Technology

Conseil national

de recherches Canada

Institut de technologie

de l'information  
 
 
 
 

 
 

On the Effectiveness of Test-first Approach to 
Programming* 
 
Erdogmus, H. 
March 2005 
 
 
 
 
 
 
 
 
 
* published in the Proceedings of the IEEE Transactions on Software Engineering, 31(1). 

January 2005. NRC 47445.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Copyright 2005 by 

National Research Council of Canada 

 

Permission is granted to quote short excerpts and to reproduce figures and tables from this report, 

provided that the source of such material is fully acknowledged. 

 

 



On the Effectiveness of the
Test-First Approach to Programming
Hakan Erdogmus, Maurizio Morisio, Member, IEEE Computer Society, and

Marco Torchiano, Member, IEEE Computer Society

Abstract—Test-Driven Development (TDD) is based on formalizing a piece of functionality as a test, implementing the functionality

such that the test passes, and iterating the process. This paper describes a controlled experiment for evaluating an important aspect of

TDD: In TDD, programmers write functional tests before the corresponding implementation code. The experiment was conducted with

undergraduate students. While the experiment group applied a test-first strategy, the control group applied a more conventional

development technique, writing tests after the implementation. Both groups followed an incremental process, adding new features one

at a time and regression testing them. We found that test-first students on average wrote more tests and, in turn, students who wrote

more tests tended to be more productive. We also observed that the minimum quality increased linearly with the number of

programmer tests, independent of the development strategy employed.

Index Terms—General programming techniques, coding tools and techniques, testing and debugging, testing strategies, productivity,

Software Quality/SQA, software engineering process, programming paradigms.
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1 INTRODUCTION

TEST-DRIVENDevelopment [1], [2], or TDD, is an approach

to code development popularized by Extreme Program-

ming [3], [4]. The key aspect of TDD is that programmers

write low-level functional tests before production code. This

dynamic, referred to as Test-First, is the focus of this paper.

The technique is usually supported by a unit testing tool,
such as JUnit [5], [6].

Programmer tests in TDD, much like unit tests, tend to

be low-level. Sometimes they can be higher level and cross-

cutting, but do not in general address testing at integration

and system levels. TDD relies on no specific or formal

criterion to select the test cases. The tests are added

gradually during implementation. The testing strategy

employed differs from the situation where tests for a

module are written by a separate quality assurance team

before the module is available. In TDD, tests are written one

at a time and by the same person developing the module.

(Cleanroom [7], for example, also leverages tests that are

specified before implementation, but in a very different

way. Tests are specified to mirror a statistical user input

distribution as part of a formal reliability model, but this

activity is completely separated from the implementation

phase.)
TDD can be considered from several points of view:

. Feedback: Tests provide the programmer with
instant feedback as to whether new functionality
has been implemented as intended and whether it
interferes with old functionality.

. Task-orientation: Tests drive the coding activity,
encouraging the programmer to decompose the
problem into manageable, formalized programming
tasks, helping to maintain focus and providing
steady, measurable progress.

. Quality assurance: Having up-to-date tests in place
ensures a certain level of quality, maintained by
frequently running the tests.

. Low-level design: Tests provide the context in which
low-level design decisions are made, such as which
classes and methods to create, how they will be
named, what interfaces they will possess, and how
they will be used.

Although advocates claim that TDD enhances both

product quality and programmer productivity, skeptics

maintain that such an approach to programming would be

both counterproductive and hard to learn. It is easier to

imagine how interleaving coding with testing could

increase quality, but harder to imagine a similar positive

effect on productivity. Many practitioners consider tests as

overhead and testing as exclusively the job of a separate

quality assurance team. But, what if the benefits of

programmer tests outweigh their cost? If the technique

indeed has merit, a reexamination of the traditional coding

techniques could be warranted.
This paper presents a formal investigation of the

strengths and weaknesses of the Test-First approach to

programming, the central component of TDD. We study

this component in the context in which it is believed to be

most effective, namely, incremental development. To

undertake the investigation, we designed a controlled
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experiment in the winter of 2002-2003 and conducted the

experiment in an academic setting in the spring of 2003.
The paper is organized as follows: Section 2 reviews the

background work, sets the context, and motivates the study.

Section 3 explains the goals and hypotheses and describes

the experimental design. Section 4 analyzes the data and

presents the results. Section 5 discusses threats to validity.

Finally, Section 6 revises the theory to better explain the

results and Section 7 presents conclusions.

2 BACKGROUND AND RELATED WORK

2.1 Previous Studies

Table 1 provides a summary of previous empirical studies

about TDD. The table reports, from left to right, the authors

for each study, the type of the study, the type of the subjects

used, the scope of the study (whether or not conducted

within the larger scope of Extreme Programming (XP)),

whether the focus was on the Test-First aspect, whether the

control subjects were required to write tests, whether the

experiment tasks defined interfaces to comply with, and

whether the study was conducted strictly within the context

of incremental development. The last two columns report

the differences observed between the TDD group and the

control group in terms of the quality and productivity

measurements taken. The last row characterizes the current

study for comparison purposes.
Based on subjective evaluations, Müller and Tichy [8]

reported that students considered TDD as the best

technique at the end of a university course on Extreme

Programming. Later, Müller and Hagner [9] conducted a

controlled experiment on TDD in an academic setting. They

concluded that TDD neither accelerated development nor

produced better quality programs, although it enhanced
program understanding.

Maximilien and Williams [10] observed in an industrial
case study that, with TDD, professional programmers were
able to achieve a 40-50 percent improvement in code quality
without any significant impact on their productivity. TDD
programmers were compared with the company baseline
where programming involved ad hoc unit testing. These
observations are similar to those reported by Edwards [11]
based on a classroom case study: Students applying TDD
scored higher on their programming assignments while
producing code with 45 percent fewer defects. George and
Williams [12] later conducted a formal TDD experiment
with professional pair programmers. They reported that the
TDD pairs’ product quality was on average 18 percent
higher than that of the non-TDD pairs, while their
productivity was 14 percent lower.

2.2 Rationale and Comparison with
Previous Studies

We could locate only two published controlled experiments
on TDD [9], [12] with different results. Our experiment
focuses essentially on the same dependent variables
(product quality and programmer productivity) as these
experiments, but has a different design. The rationale of our
design is explained next.

Müller and Hagner [9] supplied the subjects with
method stubs with empty bodies from an existing graphic
library and asked the subjects to reimplement the method
bodies. While an experiment task with predefined interfaces
facilitates assessing the quality of the delivered programs, it
could significantly constrain the solution space, making it
difficult to reveal the differences between the techniques
under study. Our design avoids this pitfall by supplying
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only high-level requirements (in terms of user stories) with
the experiment task. We overcame the difficulty regarding
quality assessment by using a robust black-box acceptance
testing approach.

In George and Williams’ experiment [12], the control
group followed a waterfall-like process, with all testing
pushed to the end. As a consequence, most control subjects
dropped testing altogether. The result was an apparent,
short-term productivity disadvantage for the group that
incurred the testing overhead. Writing tests requires time,
and when testing is not interleaved with programming,
productivity benefits will not be realized in the short-term.
Similar effects were also observed in other studies [10], [12],
where testing did not play a significant role, was ad hoc, or
interpreted as optional by the control subjects. To avoid this
bias, we provided the subjects with the same experiment
task as that of George and Williams, but decomposed it into
a series of features to be implemented in a specific order.
The features built on one another and, sometimes, late
features modified earlier ones, thus emulating an environ-
ment where requirements are incremental and changing.
This approach has the advantage that testing and writing
production code are easily interleaved, mitigating the risk
of deferring testing indefinitely. The objective of our design
is not to evaluate the effect of the presence of testing, but
compare alternative techniques involving opposite testing
dynamics.

Additional differences with previous studies concern the
measures. While Müller and Hagner [9] addressed internal
quality in terms of test coverage and program under-
standing in terms of usage of existing libraries, we focused
on external aspects. The only internal aspect we studied
was the amount of tests produced by the programmers. We
adopted a productivity measure based on functionality
delivered per unit effort according to well-defined, objec-
tive criteria. This measure is similar to the one used by
Maurer and Martel in their Extreme Programming case
study [13], but had an explicit minimum quality require-
ment. When the productivity measure is not linked to the
delivered external functionality or does not satisfy a
minimum acceptable quality criterion, any observed pro-
ductivity gains risk being superfluous. For example, when
productivity is measured for a fixed-scope task in terms of

problem-solving time alone [9], [10], [12] and for a variable-
scope task in terms of a size metric alone, the observed
nominal productivity may be high, but real productivity
that provides value may be low. In our study, the
experiment task had a variable scope (the subjects im-
plemented as many features as possible from a list), and we
measured both delivered scope and problem solving time to
determine real rather than nominal productivity.

2.3 Test-First versus Test-Last Development

The main characteristics of TDD are incremental develop-
ment, definition and coding of unit tests by the program-
mer, frequent regression testing, and writing test code, one
test case at a time, before the corresponding production
code. Since the last characteristic—writing tests before
production code—is most central to TDD, we isolate it in
our investigation. Therefore, the reference technique that
represents conventional practice for the purpose of the
investigation also involves incremental development, defi-
nition and coding of tests by the programmer, and frequent
regression testing, but the programmer writes all the tests
for a new system feature after the corresponding production
code for that feature. From now on, we will refer to the
technique under investigation simply as Test-First and the
reference technique to which Test-First is compared as
Test-Last. Table 2 summarizes the similarities and differ-
ences between these alternative techniques.

The top part of Fig. 1 illustrates the differences in terms
of the underlying processes. Test-First advances one test at
a time, resulting in an additional inner loop for each user
story (a story in TDD represents an end-user feature,
specified in an informal way). In Test-Last, tests are written
in a single burst for a story. Although both techniques apply
a similar incremental process above the story level,
Test-First is finer grained due to the additional inner loop.

Test-First works as follows:

1. Pick a story.
2. Write a test that expresses a small task within the

story and have the test fail.
3. Write production code that implements the task to

pass the test.
4. Run all tests.
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5. Rework production code and test code until all tests
pass.

6. Repeat 2 to 5 until the story is fully implemented.

Test-Last works as follows:

1. Pick a story.

2. Write production code that implements the story.

3. Write tests to validate the whole story.

4. Run all tests.
5. Rework production code and test code until all tests

pass.

The bottom part of Fig. 1 provides an example story that

requires two tasks, A and B. The programmer first writes a
test for task A, say Test A, runs this test to watch it fail,

then codes the corresponding functionality and runs Test A

again. If Test A still fails, then the programmer reworks the

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005
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code until Test A passes. When Test A passes, task A is
complete. Then, the programmer writes a test for task B,
say Test B, and codes the corresponding functionality such
that both Test A and Test B pass. Thus, at the end of the
second cycle, the story has effectively been completed. The
Test-Last programmer first writes the production code to
implement the whole story, then writes the functional tests.
The tests are run, and the programmer reworks the code
until all tests pass.

3 EXPERIMENTAL DESIGN

This section first presents the goals and hypotheses, then
gives a description of the experiment following the guide-
lines of the American Psychological Association [14].

3.1 Goals

The goal of the experiment, expressed according to Wohlin
et al.’s template [15], is to compare Test-First programming
with Test-Last programming for the purpose of evaluating

. external quality and

. programmer productivity

in the context of

. incremental development and

. undergraduate object-oriented programming course.

3.2 Hypotheses

Testing is critical to quality assurance and, in TDD
functional, unit-level tests play a special role since they
steer the coding activity. Several sources [1], [2], [6], [12]
claim that programmers applying a test-first strategy
faithfully will tend to write as much test code as they write
production code. Such a high ratio of test-code-to-production-
code is considered uncommon with traditional techniques.
Thus, our first expectation is that Test-First programmers
write more tests per unit of programming effort. This
expectation constitutes hypothesis 1T.

An increased emphasis on testing should increase
quality. Most TDD studies support this effect on quality
[11], [12]. Since testing plays a more crucial role than in
Test-Last and is enforced in Test-First, we expect Test-First
programmers to produce higher quality programs. This
expectation constitutes hypothesis 1Q.

Long-term productivity benefits of testing with tradi-
tional quality assurance are well recognized: maintaining
high quality through testing reduces future effort [16].
Although testing creates additional overhead in the short
term, it pays back in the long term. TDD advocates take this
argument one step further: They claim that incremental
testing increases both long-term and short-term productiv-
ity. When testing is interleaved with coding in a fine-
grained process, the programmer can maintain focus and
receives frequent feedback. The tight feedback loop makes
it easier to revise existing functionality and implement new
features. Therefore, we expect Test-First programmers to be
more productive overall. This expectation constitutes
hypothesis 1P.

These hypotheses assume a direct effect between the
independent variable and the dependent variables.

However, in some cases, a direct effect can be hard to
detect because of the presence of an intermediate variable.
A multistage model allows for a deeper analysis by
decomposing the predicted effects into a chain of more
elementary components, each of which can be studied in
relative isolation. In a chain effect, a variable A depends on
an intermediate variable B, which, in turn, depends on a
third variable C. The noise introduced in the middle of the
chain results in loss of information, making it more difficult
to infer a causal relationship between C and A and
requiring experimental designs with higher power.

Since tests play such a central role, it is possible that the
effectiveness of Test-First hinges on the extent to which the
strategy encourages programmers to back up their work
with test assets. The more tests are written, the more
effective the technique becomes. Therefore, we identify the
number of tests written by the programmer as an inter-
mediate variable and extend the theory using a two-stage
model. The extended model allows us to address the
following questions:

. Is the number of tests important in determining
productivity and quality regardless of the technique
applied?

. Is Test-First more effective because it encourages
programmers to write lots of tests?

The extended model is illustrated in Fig. 2. Stage 1
investigates the direct effects between the independent
variable (the coding technique used) and dependent
variables (productivity and quality). Stage 2 involves the
intermediate variable, number of tests per unit effort,
shown in the middle (the bubble labeled “Tests”), and
two new hypotheses, 2Q and 2P. The new hypotheses
suggest a causal relationship between the number of tests
and quality and productivity, respectively (represented by
dashed lines).

. 2Q: Writing more tests improves quality.

. 2P: Writing more tests increases productivity.

If the hypotheses 1T and 2Q(P) are accepted and the size
of the effect [17] in 1Q(P) is compelling, we can infer that
Test-First leads to better quality (productivity) because it
encourages programmers to write more tests.

ERDOGMUS ET AL.: ON THE EFFECTIVENESS OF THE TEST-FIRST APPROACH TO PROGRAMMING 5
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3.3 Experiment Design

We used a standard design with one factor and two
treatments [15]. The treatments correspond to the two
techniques, Test-First (experiment group) and Test-Last
(control group), described in Section 2.4. The assignment of
subjects to groups was performed first by stratifying the
subjects with respect to their skill level and then assigning
them randomly to one of the two treatment groups.

3.4 Subjects

Subjects were third-year students following an eight-week
intensive Java course at Politecnico di Torino. The course
was part of the Computer Science degree program.

During the course, all students learned about object
orientation, Java programming, basic design concepts
(including UML), and unit testing with JUnit [5]. The final
exam involved a hands-on programming task in the lab.

3.5 Apparatus and Experiment Task

The computer laboratory was equipped with over 40 perso-
nal computers. All computers had an internet connection
and a standard disk image that was refreshed every week.
The image contained a Web browser and Eclipse IDE [18]
with the JUnit [5] plugin and CVS [19] client built in. Each
student had a confidential CVS account with a private
repository.

The experiment task consisted of Robert Martin’s
Bowling Score Keeper problem that was also used by
George and Williams in their TDD study [12]. However, in
our experiment, we organized the problem in several small
stories, each describing a unique feature of the end product
to be delivered by the student.

Each story was externally testable and had a specific set
of black-box acceptance tests written by the authors. These
acceptance tests were not revealed to the subjects. We wrote
a total of 105 black-box acceptance test methods consisting
of over 350 JUnit assert statements. The acceptance tests
were based on regular expression searches on the screen
output of a program. They were robust in their ability to
verify requirements concerning form and content sepa-
rately. At the end of the experiment, these acceptance tests
were automatically run on each subject’s program.

As part of the experiment task, subjects wrote their own
unit tests using JUnit, as prescribed by the technique
assigned to them. We refer to the tests written by us to
derive the quality and productivity measures as acceptance
tests and the tests written by the subjects as part of their
experiment task as programmer tests.

The programming increments (stories) in the experiment
task were fine grained to be able to accept and accurately
evaluate partially completed programs. A possible caveat of
a small granularity is reduced realism due to increased
testing overhead in both treatments.

3.6 Procedure

Subjects in both groups received general instruction on low-
level functional testing, as well as the principles and use of
JUnit in particular. In addition to traditional unit testing,
they were taught a specific JUnit pattern for directly testing
external functionality through the command line user
interface of a program. The subjects used this pattern

exclusively during the experiment task. The use of this
pattern allowed to eliminate the role that low-level design
plays in TDD, thereby isolating the Test-First aspect.

After having been assigned to the two groups, subjects
were trained on the two techniques to follow (Test-First and
Test-Last as described in Section 2.4). Training was
administrated in separate concurrent sessions.

The subjects were asked to implement the stories over
several lab sessions following the programming technique
assigned to them. They followed a similar protocol for all
programming assignments, including the experiment task.
The descriptions of the assignments were published online
and an empty project was created for each assignment in
each student account. In the beginning of a lab session or
whenever they wanted to work on an assignment, the
subjects first checked out the corresponding project from
their private CVS repository. Before they left the lab or
when they wanted to stop, they committed the local version
of their project back into the CVS repository. They worked
on the same assignment over several lab sessions.

Students were encouraged to perform all programming
assignments and the experiment task in the computer
laboratory during dedicated hours, although they were not
forbidden to work outside the laboratory hours. Students
received approximately four hours of hands-on experience
per week, split into two sessions.

The subjects in both groups tackled the experiment task
incrementally, implementing the stories one at a time and in
the given order. They were not given any stubs or interfaces
to comply with, but were free to use utility classes and
patterns from previous assignments. The stories had
various difficulty levels and built on top of each other.
The end product required only a command-line interface
and simple design (it was possible to implement it with a
few classes).

The subjects filled in two questionnaires: one before the
experiment to assess their experience and skills (the
prequestionnaire) and one after the experiment to assess the
level of acceptance of the techniques, process conformance,
and total programming effort (the postquestionnaire).

Students were informed of the goals of the study and the
procedures before the experiment, but the hypotheses were
not revealed. Data was collected only from students who
signed an informed consent form. The instructors could not
differentiate between participating and nonparticipating
students. All students received instruction of equivalent
educational value regardless of whether they participated
in the experiment and regardless of their assigned group.
After the experiment, the class was debriefed and the
students were taught the other group’s technique.

To address ethical considerations, the following precau-
tions were taken: Participation to the experiment was
voluntary and subjects were free to drop out at any point
without any consequences. Confidentiality of the data was
guaranteed.

3.7 Experiment Variables and Formalized
Hypotheses

The main independent variable of the experiment is group
affiliation. It indicates whether a subject belongs to the
experiment (Test-First) or control (Test-Last) group. The
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other independent variable measures the skill level of a

subject based on the subject’s prequestionnaire responses,

but this variable does not appear in the hypotheses. It was

used for balancing the groups.
The main dependent variables are programmer tests per

unit effort (TESTS), productivity (PROD), and quality

(QLTY).
Productivity is defined as output per unit effort. The

number of stories is well-suited for measuring output: For
our purpose, it is a superior measure of real output than
program size (e.g., lines of code) in that it constitutes a more
direct proxy for the amount of functionality delivered. It is
still an objective measure since we can compute it
automatically based on black-box acceptance tests. If a
story passed at least 50 percent of the assert statements from
the associated acceptance test suite, then the story was
considered to be delivered. The number of stories delivered
was normalized by total programming effort to obtain the
productivity measure PROD.

The variable TESTS measures the number of program-
mer tests written by a subject, again, per unit of program-
ming effort. A programmer test refers to a single JUnit test
method. Through visual inspection of the subjects’ test
code, we filtered out ineffective tests, such as empty test
methods, duplicated test methods, and useless test methods
that passed trivially. Because subjects were free to work as
many hours as they wanted, the variation in total program-
ming effort was large (ranging from a few hours to as many
as 25 hours). Hence, it was necessary to normalize the
number of tests by the total effort expended.

The measure of quality is based on defects, counted on a

story-by-story basis. We considered only the stories

delivered by a subject. The quality of a story is given by

the percentage of assert statements passing from the

associated acceptance test suite. The quality of each story

is then weighted by a proxy for the story’s difficulty based

on the total number of assert statements in the associated

acceptance test suite. Finally, a weighted average is

computed for each subject over all delivered stories, giving

rise to the measure QLTY. By construction, the range of this

variable is 0.5 (50 percent) to 1 (100 percent).
Total programming effort (or program solving time) was

obtained from the postquestionnaire on which the subjects

reported the total number of hours worked on the

experiment task. Their responses were cross-validated by

their CVS logs. No significant discrepancies were found. In

four cases, the missing values could be reliably estimated

from the CVS logs.

Other variables define the context. The context variables
are of importance for replication purposes. These are
summarized in Table 3.

Table 4 presents the experiment hypotheses formally in
terms of the dependent variables. In the table, TF refers to
Test-First (experiment group) and TL refers to Test-Last
(control group).

4 DATA ANALYSIS

4.1 Characterization of Groups

Thirty-five subjects participated in the study. Eleven

subjects dropped out or did not check in the final version

of their program. Therefore, we retained data from

24 subjects. Eleven of those subjects were in the Test-First

(TF) group and 13 in the Test-Last (TL) group. We found no

statistically significant difference between the two groups in

terms of both average skill rating and average total effort.

However, skill rating could not be used as a blocking

variable because some cells did not contain enough data

points after mortality (see Table 5).

4.2 Stage 1 Hypotheses (1T, 1Q, 1P)

Fig. 3 shows the boxplots of the variables TESTS, QLTY, and
PROD that underlie the hypotheses 1T, 1Q, and 1P,
respectively. In the figures, the dots anchored by the
horizontal line mark the medians, the floating dots mark
the means, the limits of the boxes mark the top and the
bottom 25 percent limits, and the whiskers mark the outlier
limits. Outliers are indicated by the stars. Table 6 gives the
mean and the median values for each group.

For TESTS, both the median and the mean of the

TF group are considerably higher (100 percent and

52 percent, respectively) than those of the TL group. (Two

subjects in the TL group did not write any tests. When these

subjects are excluded, the TF average is still 28 percent

higher). For QLTY, the means are very close (the TL mean is

2 percent higher than the TF mean), but the TL median is

slightly (10 percent) higher than that of the TF group.

Surprisingly, the TL group appears to enjoy a mild quality

advantage. For PROD, both the median and the mean of the

TF group are markedly higher (21 percent and 28 percent,

respectively).
Upon inspecting the 25 percent and 75 percent limits, we

observe an apparent advantage for the TF group for the
variable TESTS. For PROD, the 75 percent limit of the
TF group is much higher, but the 25 percent is slightly
lower. For QLTY, both TF limits are lower, suggesting a
slight advantage for the TL group. The TF group has a
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higher variation in both TESTS and PROD, but a lower
variation in QLTY.

None of the variables were normally distributed accord-
ing to standard normality tests (although they appeared
lognormal). To verify the three Stage-1 hypotheses, we
applied the Mann-Whitney U-test [20], which is a robust,
nonparametric test. Since all of our hypotheses are direc-
tional, we applied the one-tailed version of this test. Because
of the small sample size, we set the alpha level to 10 percent.
The results of the Mann-Whitney U-test are shown in
Table 6 along with the descriptive statistics. The size of the
effect is gauged by Cohen’s d statistic [17].

Hypothesis 1T predicts an improvement in the variable
TESTS, the number of tests per unit effort, for the TF group
relative to the TL group. The effect is in the predicted
direction, the effect size is small [17], but remarkable, and
the Mann-Whitney U-test is statistically significant. We
therefore reject the null hypothesis.

Hypothesis 1Q predicts a higher quality—as measured
by QLTY—for the TF group. The effect is in the opposite
direction and the effect size is not meaningful [17]. Thus, we
must use a two-tailed test in this case. The test is not

statistically significant. We cannot reject the null hypothesis

and, therefore, we conclude that there are no significant

quality differences between the two groups.
Hypothesis 1P predicts a higher productivity—as

measured by the variable PROD, the number of delivered

stories per unit effort—for the TF group. The effect size is

small [17] and in the predicted direction, but, according

to Mann-Whitney U-test, it is not statistically significant.

At this point, we cannot reject the null hypothesis.

However, the apparently large differences between the

means and particularly the 75 percent limits warrant a

deeper investigation, which is undertaken in Stage 2.

4.3 Stage-2 Hypotheses (2Q, 2P)

Hypothesis 2Q predicts a linear relationship between

TESTS and QLTY independent of the group. The scatter-

plot, shown in Fig. 4, however, suggests that the relation-

ship is not linear. The Spearman correlation is low and

statistically insignificant. We cannot reject the null hypoth-

esis in its present form. However, remarkably, all data

points lie approximately on or above a diagonal line

(dashed line in Fig. 4). Although a few tests can still

achieve a high level of quality, writing more tests increases

the minimum quality achievable. Analytically, the relation-

ship between TESTS and QLTY can be expressed by the

following inequality:

QLTY 0.1*TESTS + 0.55

Hypothesis 2P predicts a linear relationship between
TESTS and PROD. The linear trend is visible in the
scatterplot of Fig. 5. The Spearman coefficient is highly
statistically significant (0.587 with a p-value of 0.003).
Linear regression results in the model:

PROD = 0.255 + 0.659*TESTS
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TABLE 4
Formalized Hypotheses

TABLE 5
Distribution of Subjects



The variable TESTS explains a large part of the
variation in the variable PROD (adjusted R

2
¼ :60), and

the regression coefficient (�1) is highly statistically
significant with a p-value of less than 0.001. When the
control and experiment groups are analyzed separately,
the slope �1 of the regression line fluctuates only slightly
and remains statistically significant. Therefore, we reject
the null hypothesis and accept the alternative hypothesis

2P that the number of tests can predict productivity
independent of the group.

5 THREATS TO VALIDITY

Process conformance. As with most empirical studies, an
important threat is represented by the level of conformance
of the subjects to the prescribed techniques. We took the
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TABLE 6
Results of Stage 1



following precautions to improve process conformance: The

subjects were informed of the importance of following the

proper procedures. In the postquestionnaire, we asked the

subjects whether they applied the technique assigned and

we discarded those data points for which the subject

answered “No” to this question. The questionnaires were

anonymous and confidentiality was guaranteed. In addi-

tion, we applied a formal criterion to gauge conformance in

the experiment group: Subjects who did not write any tests

for at least half the time (i.e., for half the stories they

implemented) were deemed nonconformant. In the final

analysis, four data points (three based on the postques-

tionnaire responses and one based on the formal criterion)

were discarded.
Mono-operation bias. Only one task was used in the

experiment, and the task was small and had unique

technical characteristics. Although we designed the task to

specifically fit in the target context (incremental develop-

ment), it is not clear to what extent we can generalize the

results to programming tasks with a larger scope, different

technical characteristics, and requiring a different incre-

mental process. In particular, the fine-grained incremental

process enforced through the use of artificially small stories

could have presented a bias. Small increments tend to

increase the overhead of testing. If the technique employed

affects the testing overhead to different extents, the results

could have been skewed by this design choice. The impact

of this extra cost, particularly on productivity, is as yet

unclear.
Moreover, we deliberately isolated an aspect of TDD that

we consider both central and unique (the Test-First

dynamics) at the expense of others (for example, we

controlled for the role of unit tests as a substitute for

up-front design by encouraging the subjects to adopt a

particular functional testing pattern).
External validity. The external validity of the results could

be limited since the subjects were students. Runeson [21]

compared freshmen, graduate, and professional developers

and concluded that similar improvement trends persisted

among the three groups. Replicated experiments by Porter

and Votta [22] and Höst et al. [23] suggest that students may

provide an adequate model of the professional population.

However, not in all contexts are the trends similar among

populations representing different skill and professional

maturity levels. For example, Arisholm and Sjøberg [24]

reported opposite trends for students and professionals

when evaluating an advanced object-oriented design

technique. While junior students performed worse with

the advanced technique, professionals performed better

with it. Senior students were in the middle. The authors

concluded that the effectiveness of the technique depended

to a large extent on skill. A possible explanation is that

advanced techniques require advanced levels of mastery

and, thus, higher-skill people are better at leveraging an

advanced technique. This effect is certainly also observed in

our study: The productivity improvement in students with

higher skill ratings were, on average, more dramatic than

the productivity improvement in students with lower skill

ratings. This observation works to our advantage. The

general perception of TDD and test-first programming is

that its effective application requires mastery and disci-

pline. If junior students can effectively apply it with little

experience and exposure, then experienced students and

professionals could potentially achieve more dramatic

improvements.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 1, JANUARY 2005

Fig. 5. Regression analysis of TESTS vs. PROD.



6 DISCUSSION AND THEORY BUILDING

The results of the experiment support an alternative theory
of the Test-First technique that is mainly centered on
productivity rather than on quality. We now revise the
theory to better explain the results.

6.1 Quality

Why did more testing by Test-First subjects not result in a
proportional increase in quality? When the programming
task is small, the scope is limited, and the requirements are
predecomposed into small, well-articulated features, then
ad hoc strategies may compensate for lack of automated,
low-level functional tests. Programmers could just as easily
get equivalent feedback by visually inspecting the output of
their program.

A second explanation is also plausible. As seen in Fig. 4,
the quality level attained for a given range of tests has a
high variation when the number of tests is low. Here, skill is
a possible factor. Students who wrote few programmer tests
achieved varying degrees of quality, from very low to very
high, possibly depending on their skill level. Perhaps skill
could compensate for lack of testing to a certain extent and
higher skilled programmers wrote more effective tests. If
these postulates hold, Fig. 4 suggests that skill should
become less and less influential in determining quality as
the number of tests increase.

Programmer tests nevertheless still play a central role in
quality assurance. Although the amount of tests did not
predict quality in absolute terms with student subjects, it
could predict minimum quality.

6.2 Productivity

Testing and programming are tightly integrated activities
that support incremental development. Incremental devel-
opment allows for demonstrating real, rather than nominal,
productivity benefits of Test-First. We believe that the
observed productivity advantage of Test-First subjects is
due to a number of synergistic effects:

. Better task understanding. Writing a test before
implementing the underlying functionality requires
the programmer to express the functionality
unambiguously.

. Better task focus. Test-First advances one test case at a
time. A single test case has a limited scope. Thus, the
programmer is engaged in a decomposition process
in which larger pieces of functionality are broken
down to smaller, more manageable chunks. While
developing the functionality for a single test, the
cognitive load of the programmer is lower.

. Faster learning. Less productive and coarser decom-
position strategies are quickly abandoned in favor of
more productive, finer ones.

. Lower rework effort. Since the scope of a single test is
limited, when the test fails, rework is easier. When
rework immediately follows a short burst of testing
and implementation activity, the problem context is
still fresh in the programmer’s mind. With a high
number of focused tests, when a test fails, the root
cause is more easily pinpointed. In addition, more
frequent regression testing shortens the feedback

cycle. When new functionality interferes with old
functionality, this situation is revealed faster. Small
problems are detected before they become serious
and costly.

Test-First also tends to increase the variation in produc-
tivity. This effect is attributed to the relative difficulty of the
technique, which is supported by the subjects’ responses to
the post-questionnaire and by the observation that higher-
skill subjects were able to achieve more significant
productivity benefits.

7 CONCLUSIONS AND FUTURE WORK

We evaluated an important component of Test-Driven
Development (TDD) through a controlled experiment
conducted with undergraduate students. The evaluation
focused on the Test-First aspect of TDD, where program-
mers implement a small piece of functionality by writing a
unit test before writing the corresponding production code.
Since Test-First is essentially an incremental strategy, we
designed the experiment to fit in an incremental develop-
ment context.

Our main result is that Test-First programmers write
more tests per unit of programming effort. In turn, a higher
number of programmer tests lead to proportionally higher
levels of productivity. Thus, through a chain effect, Test-
First appears to improve productivity. We believe that
advancing development one test at a time and writing tests
before implementation encourage better decomposition,
improves understanding of the underlying requirements,
and reduces the scope of the tasks to be performed. In
addition, the small scope of the tests and the quick
turnaround made possible by frequent regression testing
together reduce debugging and rework effort.

Test-First programmers did not achieve better quality on
average, although they achieved more consistent quality
results. We attribute the latter observation to the influence
of skill on quality, which Test-First tended to dampen.
Writing more tests improved the minimum quality achiev-
able and decreased the variation, but this effect does not
appear to be specific to Test-First.

In summary, the effectiveness of the Test-First technique
might very well hinge on its ability to encourage program-
mers to back up their code with test assets. Future
experiments could focus on this ability.

Extra care must be taken before attempting to generalize
these observations to other contexts. Many factors pertain-
ing to the experimental setting could have biased the results
(see Section 5).

The study can benefit from several improvements before
replication is attempted. The most significant one is
securing a larger sample size to guarantee a high-power
design in order to tolerate the observed mortality rate of
30 percent. Next important, improvement concerns better
support for instrumentation and process conformance. New
tools should help with this latter issue [25].
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