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1.38 The pumping lemma says that every regular language has a pumping lengrh p, such 
that every suing in the language can be pumped if it has length p or more. If p is 
a pumping length for language A, so is any length p' 2 p. The minimum pump- 
ing lengtb for -4 is the smallest p that is a pumping length for A. For example, if 
A = Ol*, the minimum pumping length is 2. The reason is, the string s = 0 E A 
of length 1 cannot be pumped, and any string in -4 of length 2 or more contains a 1 
and hence can be pumped by dividing it so that x = 0, y = 1, and z is the rest. 
For each of the following languages, give the minimum pumping length and justify 
your answer. 

a. 0001-. 
b. 0'1'. 
c. (Ol)*. 
d. 01. 

1.39 The construction in Theorem 1.28 shows that every GNFA is equivalent to a GNFA 
with only two states. We can show that an opposite phenomenon occurs for DFAs. 
Prove that for every k > 1 a language Ah {0,1)* exists that is recognized by a 
DFA with k states but not by one with only k - 1 states. 

* 1.40 If A is a set of natural numbers and k is a natural number greater than 1, let 

Bk(A) = {w(  w is the representation in base k of some number in A) 

Here, we do not allow leading 0s in the representation of a number. For example, 
B2({3.5)) = (11,101) and B3({3 .  5)) = {10,12). Give an example of a set A for 
which B2(A) is regular but BJ(A) is not regular, Prove that your example works. 

1.41 Lrt 

D = {w ( w contains an equal number of occurrences of the substings 01 and 10). 

Thus 101 E D because 101 contains a single 01 and a single 10, but 1010 @ D 
because 1010 contains two 10s and one 01. Show that D is a regular language. 

'1.42 If A is any language, let A+ be the set of all first halves of stings in A so that 

A1- = { X I  for some y ,  1x1 = Iyl and xy E A). 

Show that, if A is regular, then so is A+- .  

'1.43 If A is any language, let A 3 - 3 be the set of all strings in A with their middle thirds 
removed so that 

A , _ ~  = {sz/  forsome y, 1x1 = ly( = lzl andxyz E A}. 
5 3 

Show that, if A is regular, then A; _ 4 is not necessarily regular. 

'1.44 Give a family of languages En, where each E, can be recognized by an n-state NFA 
but requires at least cn states on a DFA for some constant c > 1. Prove that your 
languages have this property. 
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C O N T E X T - F R E E  

L A N G U A G E S  

In Chapter I we introduced two different, though equivalent, methods of de- 
scribing languages: jinite automata and regular exp~esrions. We showed that many 
languages can be described in this way but that some simple languages, such as 
{On 1" 1 n > 01, cannot. 

In this chapter we innoduce context-fieegrmmam, a more powerful method 
of describing languages. Such grammars can describe certain features that have 
a recursive structure which makes them useful in a variety of applications. 

Context-hee grammars were first used in the study of human languages. One  
way of understanding the relationship of terms such as noun, verb, and preposition 
and their respective phrases leads to  a natural recursion because noun phrases 
may appear inside verb phrases and vice versa. Context-free grammars can cap- 
ture important aspects of these relationships. 

An important application of context-free grammars occurs in the specification 
and compilation of programming languages. A grammar for a programming lan- 
guage often appears as a reference for people trying to  learn the language syntax. 
Designers o f  compilers and interpreters for programming languages ofcen start 
by obtaining a grammar for the language. Most compilers and interpreters con- 
tain a component called a prser that extracts the rneHning of a prior to  
generating the compiled code o r  performing the interpreted execution. A num- 
ber of methodologies facilitate the construction of a parser once a context-free 
grammar is available. Some tools even automatically generate the parser from 
the grammar. 
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The  collection of languages associated with context-free grammars are called 
the context-fie languages. They include all the regular languages and many ad- 
ditional languages. In this chapter, we give a formal definition of context-free 
grammars and study the properties of context free languages. W'e also introduce 
& b h n  automata, a class of machines recognizing the context-free languages. 
Pushdown automata are useful because they allow us to gain additional insight 
into the power of context-free grammars. 

CONTEXT-FREE GRAMMARS 

T h e  following is an example of a context-free grammar, which we'll call GI. 

A - OAl 
A - B  
B - - #  

A grammar consists of a collection of subdtution rules, also called prodzu- 
tions. Each rule appears as a line in the grammar and comprises a symbol and a 
suing, separated hy an arrow. The  symbol is called a variabk. The smng consists 
of variables and other symbols called tenninalr. The variable symbols often are 
represented by capital letters. The  terminals are analogous to the input alphabet 
and often are represented by lowercase letters, numbers, or special symbols. One 
variable is designated the start variabk. I t  usually occurs on the left-hand side of 
the topmost rule. For example, grammar G1 contains three rules. GI's variables 
are A and B, where A is the start variable. Its terminals are 0, 1, and #. 

You use a grammar to describe a language by generating each suing of that 
language in the following manner. 

I. Write down the start variable. It  is the variable on the left-hand side of the 
top rule, unless specified otherwise. 

2. Find a variable that is written down and a rule that starts with that variable. 
Replace the written down variable with the right-hand side of that rule. 

3. Repeat step 2 until no variables remain. 

For example, grammar G1 generates the string 000#1ll. The sequence of 
substitutions to obtain a smng is called a derivation. A derivation of smng 
000#111 in grammar G1 is 

You may also represent the same information in a more pictorial way using aparse 
tree. An example of a parse tree appears in the following figure. 

FIGURE 2.1 
Parse tree for 000#111 in grammar G1 

All strings generated in this way constitute the language of thegrammar. We 
write L(G1) for the language of grammar GI. Some experimentation with the 
grammar GI shows us that L(G1) is {On#l" I n 2 0). .Any language that can be 
generated by some context-free grammar is called a context-fee language (CFL). 
For convenience when presenting a context-free grammar, we abbreviate several 
rules with the same left-hand variable, such as A -, OAi and A - B, into a 
single line A - OA 1 I B, using the symbol " I " as a n  "or." 

The following is a second example of a context-free grammar called G2, which 
describes a fragment of the English language. 

(SENTENCE) --, (NOUN-PHRASE)(VERB-PHRASE) 
(NOUN-PHRASE) --, (CMPLX-NOUN) I (CMPLX-NOUN) (PREP-PHR.\SE) 

(VERB-PHRASE) --, (CMPLX-VERB) ( (CMPLX-VERB)(PREP-PHRASE) 
(PREP-PHRASE) --, (PREP)(C,ZIPLX-NOUN) 

(CMPLX-NOUN) --, (ARTICLE)(NOUN) 
(CMPLX-VERB) --t (VERB) I ( \ 7 ~ ~ ~ ) ( ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ )  

(ARTICLE) --, a ( t h e  
(NOUN) * boy 1 g i r l  1 flower 

(VERB) --, touches 1 l i k e s  1 sees  
(PREP) --, with 

Grammar G2 has ten variables (the capitalized grammatical terms written in- 
side brackets); 27 terminals (the standard English alphabet plus a space charac- 
ter); and eighteen rules. Strings in L(G2) include the following three examples. 

a boy sees  
t he  boy sees  a flower 
a g i r l  with a flower l i k e s  t h e  boy 

Each of these smngs has a derivation in grammar G2. The following is a deriva- 
tion of the first string on this list. 
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(SENTENCE) J (NOUN-PHRASE) (VERB-PHRASE) 

=. (CMPLX-NOUN)(VERB-PHRASE) 
+ (ARTICLE) (NOUN) (VERB-PHRASE) 

+ a (NOLTN)(VERB-PHRASE) 

+ a b o y  (VERB-PHR-4SE) 

+ a b o y  (CMPLX-VERB) 

+ a b o y  (VERB) 

* a b o y  sees 

S ~ ( < ) S  \ >  m \ , . & , J ~ C  - 1. n e i  tj.aJ 
?.*a< . C Sfrc\t 

FORMAL DEFINITION OF A CONTEXT-FREE GRAMMAR 

Let's formalize our notion of a context-free grammar (CFG). 

DE,=l,qlTloN 2.1 ........................................................................................................................ 

A context-fiee grammar is a +tuple (V,  C. R, S ) ,  where 

1. V is a finite set called the variables, 
2. C is a finite set, disjoint from V, called the terminals, 
3. R is a finite set of rules, with each rule being a variable and a string of vari- 

ables and terminals, and 
4. S E V is the start variable. 

If U ,  u, and u! are strings of variables and terminals, and A 4 u! is a rule of 
the grammar, we say that uAuyieldr uwv, written uAu + uuw. Write u u if 
u = v or if a sequence u1, uz, ..., UI; exists for k 2 0 and Y) 

C 

3' 
and C = {a,  b ,  c; . . . ,  z ,  " "1. The symbol " "is the blanksymbol, placed invisibly . 

0 - 
The  Ianguage of the grammar is {u! E C' ( S 5 w). 

4 

F 
In grammar GI,  V = {A,  B ) ,  C = {O, 1, #), S = A, and R is the collection of 

the three rules appearing on page 92. In grammar Gz, -* 

after each word (a, boy,  etc.), so the words won't run together. t 
Often we specify a grammar by writing down only its rules. We can identify ,r-i 

the variables as the symbols that appear on the left-hand side of the rules and 2 

' 

the terminals as the remaining symbols. By convention, the start variable is the 
variable on the left-hand side of the first rule. con*,& 

L 

EXAMPLES OF CONTEXT-FREE GRAMMARS 

Consider grammar G3 = ( { S ) ,  {a ,  b):  R, S ) .  The set of rules, R, is 

S - a S b  / SS I E .  

This grammar generates smngs such as abab, aaabbb, and aababb. You can 
see more easily what this language is if you think of a as a left parenthesis "(" 
and b as a right parenthesis '$1 ". Viewed in this way, L(G3) is the language of all 
smngs of properly nested parentheses. 

.............................................................................................................................. EXAMPLE 2.3 

Consider grammar G4 = (V, C ,  R. (EXPR)). 
V is {(EXPR),  (TERM), (FACTOR)) and C is {a,  +, x ,  (. )). The  rules are 

(EXPR) + (EXPR)+(TERM) I (TERM) 
(TERM) + (TERM) x (FACTOR) 1 (FACTOR) 

(FACTOR) + ( (EXPR) ) 1 a 

The two strings a + a x a  and (a'+a) x a  can be generated with grammar G4. The 
parse trees are shown in the following figure. 

FIGURE 2.2 
Parse trees for the strings a + a x a  and (a+a)  x a  

A compiler translates code written in a programming language into another 
form, usually one more suitable for execution. To do so the compiler extracts the 



meaning of the code to be compiled in a process called pammng. One represen- 
tation of this meaning is the parse tree for the code, in the context-free grammar 
for the programming language. We discuss an algorithm that parses context-free 
languages later in Theorem 7.14 and in Problem 7.38. 

Grammar Gq describes a fragment of a programming language concerned 
with arithmetic expressions. Observe how the parse trees in Figure 2.2 "group" 
the operations. The tree for a+axa groups the x operator and its operands 
(the second two a's) together as one operand of the + operator. In the tree for 
(a+a) x a, the grouping is reversed. These groupings fit the standard precedence 
of multiplication before addition and the use of parentheses to override the stan- 
dard precedence. Grammar G4 is designed to capture these precedence relations. 

DESIGNING CONTEXT-FREE GRAMMARS 

As with the design of finite automata, discussed on page 41 in Section 1.1, the 
design of context-free grammars requires creativity. Indeed, context-free gram- 
mars are even trickier to consuuct than finite automata because we are more 
accustomed to programming a machine for specific tasks than we are to describ- 
ing languages with grammars. The  following techniques are helpful, singly or in 
combination, when you're faced with the problem of constructing a CFG. 

First, many CFGs are the union of simpler CFGs. If you must consuuct a CFG 
for a CFL that you can break into simpler pieces, do so and then construct individ- 
ual grammars for each piece. These individual grammars can be easily combined 
into a grammar for the original language by putting all their rules together and 
then adding the new rule S - S1 / S2 / - . . 1 Sk ,  where the variables Si are the 
start variables for the individual grammars. Solving several simpler problems is 
often easier than solving one complicated problem. 

For example, toget a grammar for the language {Onln/n 2 0 ) ~ { l " O ~ ( n  2 O), 
first construct the grammar 

for the language {On 1" ( n 2 0) and the grammar 

for the language {1"0"( n 2 0) and then add the rule S - S1 I S2 to give the 
grammar 
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Second, constructing a CFG for a language that happens to be regular is easy if 
you can first construct a DFA for that language. You can convert any DFA into an 
equivalent CFG as follows. Make a variable R, for each state qi of the DFA. Add 
the rule R, - aRj  to the CFG if 6(qi, a )  = qj is a transition in the DFA. Add the 
rule R, - E if qi is an accept state of the DFA. Make & the start variable of the 
grammar, where qo is the start state of the machine. Verify on your own that the 
resulting CFG generates the same language that the DFA recognizes. 

Third, certain context-free languages contain strings with two substrings that 
are "linked" in the sense that a machine for such a language would need to re- 
member an unbounded amount of information about one of the substrings to 
verify that it corresponds properly to the other subsmng. This situation occurs 
in the language {Onlnl n > 0) because a machine would need to remember the 
number of 0s in order to verify that it equals the number of is. You can construct 
a CFG to handle this situation by using a rule of the form R -t uRu, which gen- 
erates strings wherein the portion containing the US corresponds to the portion 
containing the v's. 

Finally, in more complex languages, the strings may contain certain structures 
that appear recursively as part of other (or the same) suuctures. That situation 
occurs in the grammar that generates arithmetic expressions in Example 2.3. Any 
time the symbol a appears, an entire parenthesized expression might appear re- 
cursively instead. To achieve this effect, place the variable symbol generating the 
structure in the location of the rules corresponding to where that structure may 
recursively appear. 

AMBIGUITY 

Sometimes a grammar can generate the same string in several different ways. 
Such a string will have several different parse trees and thus several different 
meanings. This result may be undesirable for certain applications, such as pro- 
gramming languages, where a given program should have a unique interpreta- 
tion. 

If a grammar generates the same smng in several different ways, we say that 
the smng is derived ambiguourly in that grammar. If a grammar generates some 
sning ambiguously we say that the grammar is mb~pow. 

For example, let's consider grammar Gs: 

This grammar generates the string a+axa ambiguously. The  following figure 
shows the two different parse trees. 



(EXPR) (EXPR) 

1 

FIGURE 2.3 
The two parse trees for the string a+axa in grammar Gs 

This grammar doesn't capture the usual precedence relations and so may 
group the + before the x or vice versa. In contrast grammar G4 generates exactly 
the same language, but every generated smng has a unique parse tree. Hence Gq 
is unambiguous, whereas Gs is ambiguous. 

Grammar G2 on page 93 is another example of an ambiguous grammar. The 
sentence t he  g i r l  touches t h e  boy w i t h  t he  flower has two different 
derivations. In Exercise 2.8 you are asked to give the two parse trees and observe 
their correspondence with the two different ways to read that sentence. 

Now we formalize the notion of ambiguity. When we say that a grammar gen- 
erates a string ambiguously, we mean that the s h n g  has two different parse trees, 
not two different derivations. Two derivations may differ merely in the order in 
which they replace variables yet not in their overall structure. To concentrate on 
structure we define a type of derivation that replaces variables in a fixed order. A 
derivation of a smng w in a grammar G is a leftmost derivation if at every step 
the leftmost remaining variable is the one replaced. The  derivation on page 94 
is a leftmost derivation. 

A smng w is derived ambiguously in context-free grammar G if it has two or 
more different leftmost derivations. Grammar G is ambiguous if it generates 
some string ambiguously. 

Sometimes when we have an ambiguous grammar we can find an unambigu- 
ous grammar that generates the same language. Some context-free languages, 
however, can only be generated by ambiguous grammars. Such languages are 
called inherently ambiguous. Problem 2.24 asks you to prove that the language 
( 0 ~ 1 ~ 2 ~ 1  i = j or j = k) is inherently ambiguous. 

CHOMSKY NORMAL FORM 

When working with context-free grammars, it is often convenient to have them 
in simplified form. One of the simplest and most useful forms is called the Chom- 
sky normal form. We will find Chomsky normal form useful when we are giving 
algorithms for working with context-free grammars in Chapters 4 and 7. 
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A context-free grammar is in Cbomsky normal fonn if every rule is of the form 

where a is any terminal and A, B, and C are any variables--except that B and C 
may not be the start variable. In addition we permit the rule S + E, where S is 
the start variable. 

Any context-free language is generated by a context-free grammar in Chomsky 
normal form. 

PROOF IDEA We can convert any grammar G into Chomsky normal form. 
The  conversion has several stages wherein rules that violate the conditions are 
replaced with equivalent ones that are satisfactory. First, we add a new start sym- 
bol. Then, we eliminate all E rules of the form A + E. We also eliminate all unit 
ruks of the form A + B. In both cases the grammar is then patched up to be 
sure that it still generates the same language. Finally, we convert the remaining 
rules into the proper form. 

PROOF First, we add a new start symbol So and the rule So - S ,  where S was 

I the original start symbol. This change guarantees that the start symbol doesn't 
occur on the right-hand side of a rule. 

Second, we take care of all E rules. We remove an €-rule A - E, where A 
is not the start variable. Then for each occurrence of an A on the right-hand 

I side of a rule, we add a new rule with that occurrence deleted. In other words, 
if R - uAv is a rule in which u and v are smngs of variables and terminals, we 

I 
add rule R + uv. We do so for each occurrence of an A, so the rule R - uAvAw 
causes us to add R - uvAw, R + UAVW, and R - uvul. If we have the rule 

I R + A, we add R + E unless we had previously removed the rule R + e. We 
repeat these steps until we eliminate all E rules not involving the start variable. 

Third, we handle all unit rules. We remove a unit rule A + B. Then, when- 
ever a rule B + u appears, we add the rule A + u unless this was a unit rule 
previously removed. As before, u is a smng of variables and terminals. We re- 
peat these steps until we eliminate all unit rules. 

Finally, we convert all remaininfrules into the proper form. We replace each 
. . .  rule A - u1u2 uk where k 2 3 and each u, is a variable or terminal symbol, 

with the rules A + ulA1, A1 + u2A2, A2 - u3A3, . . . .  Ak-2 + uk-luk. 
The At's are new variables. If k 2 2, we replace any terminal u, in the preceding 
rule(?,) with the new variable U, and add the rule U, + u,. 
........................................................................................................................................................................ 
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Let G6 be the following CFG and convert it to Chomsky normal form by using the 
conversion procedure just given. The  following series of grammars illustrates the 
steps in the conversion. Rules shown in bold have been just added. Rules shown 
in gray have just been removed. 

1. The original CFG G6 is shown on the left. The result of applying the first 
step to make a new start symbol appears on the right. 

S -, ASAIaB 
A - B J S  
B -+ b ( ~  

2. Remove E rules B -t E, shown on the left, and A - E, shown on the right. 

so - s So ' S 
S + ASA ( aB ( a  S-,ASAIaB(aISAIAS(S 
A--t BISle A - B ( S : &  
B --t b ; €  B - b 

3a. Remove unit rules S + S, shown on the left, and So 4 S, shown on the 
right. 

So - S So + S i A S A ) a B I a / S A ) A S  
S-,ASA/aBIa/SAIASIS S-ASA(aBIa(SA1AS 
A - B ( S  A -t B ( S  
B - b  B - b  

3b. Remove unit rules A -+ B and A + S. 

So + ASA I aB ( a 1 SA I AS So -, ASA I aB 1 a / SA I AS 
S -ASA(aBja(SA1AS S+ASA(aBIaISAIAS 
A - U l S J b  A + S ( b l A S A l a B l a l S A ( A S  
B - b  B -t b 

4. Convert the remaining rules into the proper form by adding additional vari- 
ables and rules. The final grammar in Chomsky normal form is equivalent to G6 
and appears as follows. (Actually the procedure given in Theorem 2.6 produces 
several variables U, along with several rules U, + a. We simplified the resulting 
grammar by using a single variable U and rule U + a.) 
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PUSHDOWN AUTOMATA 

Ln this section we introduce a new type of computational model calledp~~hdou,n 
automata. These automata are like nondeterministic finite automata but have an 
extra component called a stack. The stack provides additional memory beyond 
the finite amount available in the control. The stack allows pushdown automata 
to recognize some nonregular languages. 

Pushdown automata are equivalent in power to context-free grammars. This 
equivalence is useful because it gives us two options for proving that a language is 
context free. We can give either a context-free grammar generating it or a push- 
down automaton recognizing it. Certain languages are more easily described in 
terms of generators, whereas others are more easily described in tenns of recog- 
nizers. 

The following figure is a schematic representation of a finite automaton. The  
control represents the states and transition function, the tape contains the input 

' suing, and the arrow represents the input head, pointing at the next input symbol 
to be read. 

1 c'''o~ pmTl input 

FIGURE 2.4 
Schematic of a finite automaton 

With the addition of a stack component we obtain a schematic representation 
of a pushdown automaton, as shown in the following figure. 
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I state 

y stack EJ 
FIGURE 2.5 
Schematic of a pushdown automaton 

A pushdown automaton (PDA), can write symbols on the stack and read them 
back later. Writing a symbol "pushes down" all the other symbols on the stack. 
At any time the symbol on the top of the stack can be read and removed. The  
remaining symbols then move back up. Writing a symbol on the stack is often re- 
ferred to as pushing the symbol, and removing a symbol is referred to aspopping 
it. Note that all access to the stack, for both reading and writing, may be done 
only at the top. In other words a stack is a "last in, first out" storage device. If 
certain information is written on the stack and additional information is written 
afterward, the earlier information becomes inaccessible until the later informa- 
tion is removed. 

Plates on a cafeteria serving counter illustrate a stack. The  stack of plates rests 
on a spring so that when a new plate is placed on top of the stack, the plates below 
it move down. T h e  stack on a pushdown automaton is like a stack of plates, with 
each plate having a symbol written on it. 

A stack is valuable because it can hold an unlimited amount of information. 
Recall that a finite automaton is unable to recognize the language {Onln( n 2 0)  
because it cannot store very large numbers in its finite memory. A PDA is able to 
recognize this language because it can use its stack to store the number of 0s it 
has seen. Thus the unlimited nature of a stack allows the PDA to store numbers of 
unbounded size. The following informal description shows how the automaton 
for this language works. 

Read symbols from the input. As each 0 is read, push it onto the stack. As 
soon as IS are seen, pop a o off the stack for each 1 read. If reading the input 
is finished exactly when the stack becomes empty of Os, accept the input. If 
the stack becomes empty while 1s remain or if the Is  are finished while the 
stack still contains 0s or if any 0s appear in the input following is, reject the 
input. 

As mentioned earlier, pushdown automata may be nondeterministic. This fea- 
ture is crucial because, in contrast with the finite automata situation, nondeter- 
minism adds power to the capability that pushdown automata would have if they 
were allowed only to be deterministic. Some languages, such as {Onlnl n > O), 
do not require nondeterminism, but others do. We give a language requiring 
nondeterminism in Example 2.1 1. 

FORMAL DEFINITION OF A PUSHDOWN AUTOMATON 

The  formal definition of a pushdown automaton is similar to that of a finite au- 
tomaton, except for the stack. The  stack is a device containing symbols drawn 
from some alphabet. The  machine may use different alphabets for its input and 
its stack, so now we specify both an input alphabet C and a stack alphabet T. 

At the heart of any formal definition of an automaton is the transition function, 
for that describes its behavior. Recall that CE = C U {E) and r, = r u {E). 
The  domain of the transition function is Q x Cc  x r,. Thus the current state, 
next input symbol read, and top symbol of the stack determine the next move of 
a pushdown automaton. Either symbol may be E causing the machine to move 
without reading a symbol from the input or without reading a symbol from the 
stack. 

For the range of the transition function we need to consider what to allow the 
automaton to do when it is in a particular'situation. It  may enter some new state 
and possibly write a symbol on the top of the stack. The  function 6 can indicate 
this action by returning a member of Q together with a member of r,, that is, a 
member of Q x r,. Because we allow nondeterminism in this model, a situation 
may have several legal next moves. T h e  transition function incorporates nonde- 
terminism in the usual way, by returning a set of members of Q x r,, that is, a 
member of P(Q x r,). Putting it all together, our transition function 6 takes the 
form 6: Q x C, x rE--P(Q x rE). 

A ~ b h n a u t m t o n  is a 6-tuple (Q, C, T, 6. qo. F), where Q, C, r, and F are 
all finite sets, and 

1. Q is the set of states, 
2. C is the input alphabet, 
3. r is the stack alphabet, 
4. 6: Q x C, x re+ P(Q x I?,) is the transition function, 
5. qo E Q is the start state, and 
6. F Q is the set of accept states. 

A pushdown automaton M = (Q. C, r? 6, qo, F) computes as follows. It ac- 
cepts input u1 if uT can be written as w = WI w2. - . w,, where each w, E C, and 
sequences of states ro? r l ,  . . . , r,, E Q and strings so. s l ,  . . . , s, E r* exist that 
satisfy the next three conditions. The smngs s, represent the sequence of stack 
contents that hf has on the accepting branch of the computation. 

1. ro = qo and so = E.  This condition signifies that Af starts out properly, in 
the start state and with an empty stack. 

2. For i = 0,.  . . . m - 1, we have (T ,+~ .  b) E 6(ri, uri+l,  a), where s, = at 
and s,+l = bt for some a, b E r, and t E r*. This condition states that M 
moves properly according to the state, stack, and next input symbol. 

3. r, E F. This condition states that an accept state occurs at the input end. 



EXAMPLES OF PUSHDOWN AUTOMATA 

EXAMPLE 2.9 .............................................................................................................................. 

The  following is the formal description of the PDA from page 102 that recognizes 
the language {O"lnJ n 2 0 ) .  Let 1111 be (Q, C,T. 6. q l .  F), where 

F = {q13q4), and 

6 is given by the following table, wherein blank entries signify 8. 

We can also use a state diagram to describe a PDA, as shown in the following 
three figures. Such diagrams are similar to the state diagrams used to describe 
finite automata, modified to show how the PDA uses its stack when going from 
state to state. M'e write "a,b + c" to signify that when the machine is reading 
an a from the input it may replace the symbol b on the top of the stack with a 
c. Any of a ,  b, and c may be E. If a is E ,  the machine may make this transition 
without reading any symbol from the input. If b is E, the machine may make this 
transition without reading and popping any symbol from the stack. If c is E, the 
machine does not write any symbol on the stack when going along this transition. 

FIGURE 2.6 
State diagram for the PDA M I  that recognizes {Onlnl n > 0 )  

E 

The formal definition of a PDA contains no explicit mechanism to allow the 
PDA to test for an empty stack. This PDA is able to get the same effect by initially 
placing a special symbol 5 on the stack. Then if it ever sees the $ again, it knows 
that the stack effectively is empty. Subsequently, when we refer to testing for an 
empty stack in an informal description of a PDA, we implement the procedure in 

1 the same way. 
Similarly, PDAs CaMOt test explicitly for having reached the end of the input 

smng. This PDA is able to achieve that effect because the accept state takes effect 
only when the machine is at the end of the input. Thus from now on, we assume 
that PDAs can test for the end of the input, and we know that we can implement 
it in the same manner. I 

1 Input: 

This example illustrates a pushdown automaton that recognizes the language 

0 
Stack: - 

a1 

{aibjckl i, j ,  k  2 0  and i = j or i = k ) .  

O J $ I  E I 0 I $ I E ~ O ~  $ I E 

{(q21 $)I 
Informally the PDA for this language works by first reading and pushing the a's. 
When the a's are done the machine has all of them on the stack so that it can 
match them with either the b's or the c's. This maneuver is a bit mcky because 
the machine doesn't know in advance whether to match the a's with the b's or 
the c's. Nondeterminism comes in handv here. 
Using its nondeterrninism, the PDA can guess whether to match the a's with the 
b's or with the c's, as shown in the following figure. Thiik of the machine as hav- 
ing two branches of its nondeterminism, one for each possible guess. If either of 
them match, that branch accepts and the entire machine accepts. In fact we could 
show, though we do not do so, that nondeterminism is essential for recognizing 
this language with a PDA. 

FIGURE 2.7 
State diagram for PDA M2 that recognizes 
{a'Wckl i. j ,  k > 0  and i = j or i = k )  



I 
EXAMPLE 2.1 1 .......................................................................................................................... 

In this example we give a PDA A13 recognizing the language {wwRI uf E {0,1)*). 
Recall that w R  means w written backwards. The  informal description of the PDA 
follows. 

Begin by pushing the symbols that are read onto the stack. At each point 
nondeterministically guess that the middle of the string has been reached 
and then change into popping off the stack for each symbol read, checking 
to see that they are the same. If they were always the same symbol and the 
stack empties at the same time as the input is finished, accept; otherwise 
reject. 

The  following is the diagram of this machine. 

FIGURE 2.8 
State diagram for the PDA hf3 that recognizes {wwR( w E { O , l ) ' )  

EQUIVALENCE WITH CONTEXT-FREE GRAMMARS 

In this section we show that context-free grammars and pushdown automata are 
equivalent in power. Both are capable of describing the class of context-free lan- 
guages. We show how to convert any context-free grammar into a pushdoun 
automaton that recognizes the same language and vice versa. Recalling that we 
defined a context-free language to be any language that can be described with a 
context-free grammar, our objective is the following theorem. 

THEOREM 2-12 ......................................................................................................................... 

A language is context free if and only if some pushdown automaton recognizes it. 

, 
As usual for "if and only i f '  theorems, we have two directions to prove. In this 

theorem, both directions are interesting. First, we do the easier forward direc- 
tion. 

If 3 language is context free, then some pushdown automaton reco_mizes it. 

........................................................................................................................................................................ 
PROOF IDEA Let A be a CFL. From the definition we know that A has a CFG, 
G, generating it. We show how to convert G into an equivalent PDA, which we 
call P. 

The PDA P that we now describe will work by accepting its input 1 0 ,  if G gen- 
erates that input, by determining whether there is a derivation for to. Recall that 

I a derivation is simply the sequence of substitutions made as a grammar generates 
a string. Each step of the derivation yields an intermediate string of variables 
and terminals. We design P to determine whether some series of substitutions 
using the rules of C can lead fro111 the start variable to ul. 

One of the difficulties in testing whether there is a derivation for ul is in fig- 
uring out which substitutions to make. Thc PDA's nondcterminism allows it to 

1 guess the sequence of correct substitutions. At each step of the derivation one 
I of the rules for a particular variable is selected nondeterministically and used to 

substitute for that variable. 
The PDA P begins by writing the start variable on its stack. It goes through a 

series of intermediate smngs, making one substitution after another. Eventually 

I it may arrive at a string that contains only terminal symbols, meaning that it has 
derived a smng using the grammar. Then P accepts if this string is identical to 
the string it has received as input. 

I 
Implementing this strategy on a PDA requires one additional idea. We need to 

see how the PDA stores the intermediate strings as it goes from one to another. 
1 Simply using the stack for storing each intermediate string is tempting. However, 
1 that doesn't quite work because the PDA needs to find the variables in the inter- 

mediate string and make substitutions. The PDA can access only the top symbol 
on the stack and that may be a terminal symbol instead of a variable. The way 

I around this problem is to keep onlyport of the intermediate string on the stack: ' the symbols starting with the first variable in the intermediate string. Any ter- 
minal symbols appearing before the first variable are matched immediately with 
symbols in the input string. The following figure shows the PDA P. 

control 
r A 

FIGURE 2.9 
P representing the intermediate string Ol,4lAO 



The  following is an informal description of P. 

1. Place the marker symbol $ and the start variable on the stack. 

2. Repeat the following steps forever. 

a. If the top of stack is a variable symbol A, n~ndeterministicall~ select 
one of the rules for A and substitute A by the string on the right-hand 
side of the rule. 

b. If the top of stack is a terminal symbol a,  read the next symbol from 
the input and compare it to a. If they match, repeat. If they do not 
match, reject on this branch of the nondeterminism. 

PROOF We now give the formal details of the construction of the pushdown 
automaton P = ( Q .  C: r, 6, q l ,  F). To make the consmction clearer we use 
shorthand notation for the transition function. This notation provides a way to 
write an entire string on the stack in one step of the machine. We can simulate 
this action by introducing additional states to write the string one symbol at a 
time, as implemented in the following formal construction. 

Let q and r be states of the PDA, and let a be in C, and s be in I?,. Say that 
we want the PDA to go from q to r when it reads a and pops s. Furthermore we 
want it to push the entire string u = ul . . . ul on the stack at the same time. We 
can implement this action by introducing new states q l ,  . . . , ql-1 and setting the 
transition function 

2.2 PUSHDOWN AUTOMATA 

FIGURE 2.10 
Implementing the shorthand ( r ,  xyz) E 6(q.  a .  s )  

6 ( q .  a, 5 )  to contain (q l  , ul ) .  

6 ( 9 1 . ~ , ~ )  = ( (q2 ,ul -1) ) .  

6 (qz ,  a. E )  = { ( q ~ .  "1-2)). 

c. If the top of stack is the symbol $, enter the accept state. Doing so 
accepts the input if it has all been read. 

We use the notation (r. u )  E 6 ( q ,  a, s )  to mean that when q is the state of the 
automaton, a is the next input symbol, and s is the symbol on the top of the stack, 
the PDA may read the a and pop the s ,  then push the string u onto the stack and 
go on to the state r .  The following figure shows this implementation pictorially. 

The states of P are Q = {q,,,, qlmp, qaccept) U E, where E is the set of states 

we need for implementing the shorthand just described. The start state is q,,,. 
The only accept state is qaCcep,. 

The transition function is defined as follows. We begin by initializingthe stack 
to contain the symbols $ and S, implementing step 1 in the informal description: 

€ , A - w  formleA-u! 

a,  a-E for terminal a 

6(qs,,, E ,  E )  = { ( q w p r  53)). Then we put in transitions for the main loop of 
step 2.  

First, we handle case (a) wherein the top of the stack contains a variable. Let 
E ,  A) = {(g,,,, w)J where A -t w is a rule in R). 

Second, we handle case (b) wherein the top of the stack contains a terminal. 
Let 6(qlwp, a, a )  = { ( ~ l w p ,  ')I. 

Finally, we handle case (c) wherein the empty stack marker $ is on the top of 
the stack. Let 6(qoop, € 7  $1 = {(qaccepr, €1). 

The state diagram is shown in the following figure. 

FIGURE 2.1 1 
State diagram of P 
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t 
Stack 
height 

Input suing - 
FIGURE 2 .13  
PDA computation corresponding to the rule A,, -+ A,,A,, 

t 
Stack 
height 

Input suing 
+ 

generated 
by Ars 

FIGURE 2.14 
PDA computation corresponding to the rule Am -+ aA,,b 

Now we prove that this construction works by demonstrating that A,, gener- 
ates x if and only if (iff) x can bring P from p  with empty stack to q  with empty 
stack. We consider each direction of the iff as a separate claim. 

2 - 1 6  .................................................................................................................................. 

If A,, generates x, then x can bring P from p  with empty stack to q  with empty 
stack. 

We prove this claim by induction on the number of steps in the derivation of 
x from A,,. 

Basis: The  derivation has 1 step. 
A derivation with a single step must use a rule whose right-hand side contains no 
variables. The only rules in G where no variables occur on the right-hand side 
are A,, -t E .  Clearly, input E takes P from p  with empty stack to p  with empty 
stack so the basis is proved. 

Induction step: Assume true for derivations of length at most k, where k 2 1, 
and prove true for derivations of length k + 1. 
Suppose that A,, 2 x with k + 1 steps. The  first step in this derivation is either 
A,, + aA,,b or  A,, * A,,A,,. We handle these two cases separately. 

In the first case, consider the portion y of x that A,, generates, so x = ayb. 
Because A,, 2 y with k steps, the induction hypothesis tells us that P can go 
from T on empty stack to s on empty stack. Because A, -t aA,,b is a rule of G, 
6 ( p ,  a ,  E )  contains ( r ,  t )  and 6(s,  b, t) contains ( q ,  E ) .  Hence, if P starts at p  with 
an empty stack, after reading a it can go to state T and push t on the stack. Then 
reading string y can bring it to s and leave t on the stack. Then after reading b 
it can go to state q  and pop t off the stack. Therefore x can bring it from p  with 
empty stack to q with empty stack. 

In the second case, consider the portions y and z of x that A,, and A,, respec- 
tively generate, so x = yz. Because A,, y in at most k steps and A,, 5 z in at 
most k steps, the induction hypothesis tells us that y can bring P from p  to T ,  and 
z can bring P from r  to q,  with empty stacks at the beginning and end. Hence x 
can bring it from p  with empty stack to q  with empty stack. This completes the 
induction step. 

.................................................................................................................................. I CLAIM 2. 1 7 
i 

! If x can bring P from p  with empty stack to q  with empty stack, A,, generates x. 

We prove this claim by induction on the number of steps in the computation 
of P that goes from p  to q  with empty stacks on input x. 

Basis: The computation has 0 steps. 
If a computation has 0 steps, it starts and ends at the same state, say, p. So we 
must show that A,, % x. In 0 steps, P only has time to read the empty string, 
so x = E. By construction, G has the rule A,, -t E ,  so the basis is proved. 

Induction step: Assume true for computations of length at most k, where k 2 0, 
and prove true for computations of length k + 1. 
Suppose that P has a computation wherein x brings p  to q with empty stacks in 
k + 1 steps. Either the stack is empty only at the beginning and end of this com- 
putation, or it becomes empty elsewhere, too. 

In the first case, the symbol that is pushed at the first move must be the same as 
the symbol that is popped at the last move. Call this symbol t. Let a be the input 
read in the first move, b be the input read in the last move, r  be the state after the 
first move, and s be the state before the last move. Then 6 ( p ,  a ,  E )  contains ( T ,  t )  
and 6 ( s ,  b, t )  contains (q,  E ) ,  and so rule A,, -+ aArsb is in G. 



Let y be the portion of x without a and b, so x = ayb. Input 31 can bring P 
from r to s without touching the symbol t that is on the stack and so P can go 
from r with an empty stack to s with an empty stackon input y. We have removed 
the first and last steps of the k + 1 steps in the original computation on x so the 
computation on y has (k + 1)  - 2 = k - 1 steps. Thus the induction hypothesis 
tells us that A,, & y. Hence A,, & x. 

In the second case, let r be a state where the stack becomes empty other than 
at the beginning or end of the computation on x. Then the portions of the com- 
putation from p to r and from r to q each contain at most k steps. Say that y is 
the input read during the first portion and z is the input read during the second 
portion. T h e  induction hypothesis tells us that A,, & y and A,, & z. Because 
rule A,, + A,, A,, is in G ,  A,, 3 x, and the proof is complete. 

That  completes the proof of Lemma 2.15 and of Theorem 2.12. ........................................................................................................................................................................ 

We have just proved that pushdown automata recognize the class of context- 
free languages. This proof allows us to establish a relationship between the reg- 
ular languages and the context-free languages. Because every regular language 
is recognized by a finite automaton and every finite automaton is automatically a 
pushdown automaton that simply ignores its stack, we now know that every reg- 

\ 

ular language is also a context-free language. 

Every regular language is context free. 

/ context-free 

FIGURE 2.15 
Relationship of the regular and context-free languages 
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NON-CONTEXT-FREE LANGUAGES 

In this section we present a technique for proving that certain languages are not 
context free. Recall that in Section 1.4 we introduced the pumping lemma for 
showing that certain languages are not regular. Here we present a similar pump- 
ing lemma for context-free languages. It states that every context-free language 
has a special value called the pumping length such that all longer strings in the 
language can be "pumped." This time the meaning ofpumped is a bit more com- 
plex. It  means that the string can be divided into five parts so that the second and 
the fourth parts may be repeated together any number of times and the resulting 
string still remains in the language. 

THE PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES 

Pumping lemma for context-free languages If A is a context-free language, 
then there is a number p (the pumping length) where, if s is any string in A of 
length at least p, then s may be divided into five pieces s = uvxyz satisfying the 
conditions: 

1. For each i 3 0, uv"xy'z E A, 
2. 1uyl > 0, and 
3. jz?xyl <_ p. 

When s is being divided into UVXYZ, condition 2 says that either v or y is not 
the empty string. Otherwise the theorem would be trivially true. Condition 3 
states that the pieces v, x, and y together have length at most p. This technical 
condition sometimes is usehl in proving that certain languages are not context 
free. 

........................................................................................................................................................................ 
PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must 
show that any sufficiently long strings in A can be pumped and remain in A. The 
idea behind this approach is simple. 

Let s be a very long string in A. (We make clear later what we mean by "very 
long.") Because s is in A, it is derivable from G and so has a parse tree. The 
parse tree for s must be very tall because s is very long. That is, the parse tree 
must contain sorne long path from the start variable at the root of the tree to 
one of the terminal symbols at a leaf. On  this long path some variable symbol R 
must repeat because of the pigeonhole principle. As the following figure shows, 
this repetition allows us to replace the subtree under the second occurrence of 
R with the subtree under the first occurrence of R and still get a legal parse tree. 



Therefore we may cut s into five pieces uvxyz as the figure indicates, and we may 
repeat the second and fourth pieces and obtain a string still in the language. In 
other words, uu'xy'z is in A for any i 2 0. 

FIGURE 2.16 
Surgery on parse trees 

Let's now turn to the details to obtain all three conditions of the pumping 
lemma. We also show how to calculate the pumping length p. 

PROOF Let G be a CFG for CFL A. Let b be the maximum number of symbols 
in the right-hand side of a rule. We may assume that b >_ 2. In any parse tree 
using this grammar we know that a node can have no more than b children. In 
other words at most b leaves are 1 step from the start variable; at most b2 leaves 
are at most 2 steps from the start variable; and at most bh leaves are at most h 
steps from the start variable. So, if the height of the parse tree is at most h, the 
length of the string generated is at most bh. 

Let IV( be the number ofvariables in G. We set p to be blvl+2. Because b >_ 2, 
we know that p > blv1+l, so a parse tree for any string in A of length at least p 
requires height at least IVI t 2. 

Suppose that s is a smng in A of length at least p. We now show how to 
pump s. Let r be a parse tree for s. If s has several parse trees, we choose r to 
be a parse tree that has the smallest number of nodes. As Is1 2 p, we know that 
r has height at least IVI + 2, so the longest path in r has length at least IVI + 2. 
This path must have at least /VI + 1 variables because only the leaf is a terminal. 
W ~ t h  G having only J V J  variables, some variable R appears more than once on 
the path. For convenience later, we select R to be a variable that repeats among 
the lowest I V1+ 1 variables on this path. 
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We divide s into uvzyz according to Figure 2.16. Each occurrence of R has 
a subtree under it, generating a part of the suing s. The upper occurrence of R 
has a larger subtree and generates wry, whereas the lower occurrence generates 
just x with a smaller subtree. Both of these subtrees are generated by the same 
variable, so we may substitute one for the other and still obtain a valid parse tree. 
Replacing the smaller by the larger repeatedly gives parse trees for the strings 
uv'xyiz at each i > 1. Replacing the larger by the smaller generates the string 
uxz. That establishes condition 1 of the lemma. We now turn to conditions 2 
and 3. 

To get condition 2 we must be sure that both v and y are not E .  If they were, 
the parse tree obtained by substituting the smaller subtree for the larger would 
have fewer nodes than r does and would still generate s. This result isn't possible 
because we had already chosen r to be a parse tree for s with the smallest number 
of nodes. That is the reason for selecting r in this way. 

In order to get condition 3 we need to be sure that vxy has length at most p. 
In the parse tree for s the upper occurrence of R generates vxy. We chose R so 
that both occurrences fall within the bottom JV1+ 1 variables on the path, and we 
chose the longest path in the parse tree, so the subuee where R generates vzy  is 
at most (VI + 2  high. A tree of this height can generate a smng of length at most 
blvl+2 = p. 

For some tips on using the pumping lemma to prove that languages are not 
context free, review page 80 where we discuss the related problem of proving 
nonregularity with the pumping lemma for regular languages. 

Use the pumping lemma to show that the language B = {anbncnl n 2 0) is not 
context free. 

We assume that B is a CFL and obtain a contradiction. Let p be the pumping 
length for B that is guaranteed to exist by the pumping lemma. Select the suing 
s = aPbPcp. Clearly s is a member of B and of length at least p. The  pumping 
lemma states that s can be pumped, but we show that it cannot. In other words, 
we show that no matter how we divide s into uvxyz, one of the three conditions 
of the lemma is violated. 

First, condition 2 stipulates that either v or y is nonempty. Then we consider 
one of two cases, depending on whether substrings v and y contain more than 
one type of alphabet symbol. 

1. When both v and y contain only one type of alphabet symbol, 2, does not 
contain both a's and b's or both b's and c's, and the same holds for y. In this 
case the smng uv2xy2z cannot contain equal numbers of a's, b's, and c's. 
Therefore it cannot be a member of B. That violates condition 1 of the 
lemma and is thus a contradiction. 



contain equal numbers of the three alphabet symbols but won't contain 
them in the correct order. Hence it cannot be a member of B and a con- 
tradiction occurs. 

One of these cases must occur. Because both cases result in a contradiction, a 
contradiction is unavoidable. So the assumption that B is a CFL must be false. 
Thus we have proved that B is not a CFL. 

Let C = {a1W ck ( 0 < i 5 j 5 k). We use the pumping lemma to show that C 
is not a CFL. This language is similar to language B in Example 2.20, but proving 
that it is not context free is a bit more complicated. 

Assume that C is a CFL and obtain a contradiction. Let p be the pumping length 
given by the pumping lemma. We use the strings = aPbPcP that we used earlier, 
but this time we must "pump down" as well as "pump up." Let s = uvxyz and 
again consider the two cases that occurred in Example 2.20. 

1. When both v and y contain only one type of alphabet symbol, v does not 
contain both a's and b's or both b's and c's, and the same holds for y. Note 
that the reasoning used previously in case 1 no longer applies. The  reason 
is that C contains strings with unequal numbers of a's, b's, and c's as long 
as the numbers are not decreasing. We must analyze the situation more 
carefully to show that s cannot be pumped. Observe that because 21 and 
y contain only one type of alphabet symbol, one of the symbols a, b, or c 
doesn't appear in v or y. We further subdivide this case into three subcases 
according to which symbol does not appear. 

a. The a's do not appear. Then we try pumping down to obtain the 
string uvOxyOz = 11x2. That contains the same number of a's as s 
does, but it contains fewer b's or fewer c's. Therefore it is not a mem- 
ber of C, and a contradiction occurs. 

b. The b's do not appear. Then either a's or c's must appear in v or y be- 
cause both can't be the empty smng. If a's appear, the smng uv2xy2z 
contains more a's than b's, so it is not in C. If c's appear, the smng 
uvoxyOz contains more b's than c's, so it is not in C. Either way a 
contradiction occurs. 

c. The c's do not appear. Then the string uz~zxyZz contains more a's or 
more b's than c's, so it is not in C, and a contradiction occurs. 

2. When either v or y contain more than one type of symbol, uv2xy2z will 
not contain the symbols in the correct order. Hence it cannot be a member 
of C, and a contradiction occurs. 

Thus we have shown that s cannot be pumped in violation of the pumping lemma 
and that C is not context free. 

Let D = {wwl w E {0,1)'}. Use the pumping lemma to show that D is not a CFL. 
Assume that D is a CFL and obtain a contradiction. Let p be the pumping length 
given by the pumping lemma. 

This time choosing string s is less obvious. One possibility is the smng 
OP1OP1. It is a member of D and has length greater than p, so it appears to be 
a good candidate. But this smng can be pumped by dividing it as follows, so it is 
not adequate for our purposes. 

Let's uy another candidate for s. Intuitively, the smng OPIPOPIP seems to cap- 
ture more of the "essence" of the language D than the previous candidate did. In 
fact, we can show that this smng does work, as follows. 

We show that the smng s = OPIPOPIP cannot be pumped. This time we use 
condition 3 of the pumping lemma to resmct the way that s can be divided. It  
says that we can pump s by dividing s = uvxyz, where Ivxyl 5 p. 

First, we show that the subsmng vxy must straddle the midpoint of s. Other- 
wise, if the subsmng occurs only in the first half of s, pumping s up to uvZxy2z 
moves a 1 into the first position of the second half, and so it cannot be of the form 
ww. Similarly, if vxy occurs in the second half of s, pumping s up to uv2xyZz 
moves a 0 into the last position of the first half, and so it cannot be of the form 
ww. 

But if the subsmng vxy straddles the midpoint of s, when we try to pump s 
down to uxz it has the form OP 1'03 iP, where i and j cannot both be p. This s t ing  
is not of the form ww. Thus s cannot be pumped, and D is not a CFL. 

EXERCISES 

2.1 Recall the CFG Gd that we gave in Example 2.3. For convenience, let's rename its 
variables with single letters as follows. 

Give parse trees and derivations for each smng. 
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2.2 a. Use the languages A = {ambncn) m, n > 0) and B = {anb"cmI m, n > 0) 
together with Example 2.20 to show that the class of context-free languages 
is not closed under intersection. 

b. Use part (a) and DeMorgan's law (Theorem 0.10) to show that the class of 
context-free languages is not closed under complementation. 

2.3 Answer each part for the following context-free grammar G: 

R - XRX ( S  
S + aTb IbTa 
T +  X T X ( X / e  
X -- a ( b  

a. What are the variables and terminals of G? Which is the start variable? 
b. Give three examples of smngs in L(G). 

c. Give three examples of smngs not in L(G). 

d. True or False: T + aba. 
e. True or False: T & aba. 
f. True or False: T T. 

g. True or False: T T. 

h. True or False: X X X  $ aba. 
i. True or False: X > aba. 
j. True or False: T $ X X .  

k. True or False: T 2 XXX.  
1. True or False: S > E .  

m. Give a description in English of L(G). 

2.4 Give context-free grammars that generate the following languages. In all parts the 
alphabet C is {0,1). 

a. {wI w contains at least three Is) 
b. {wI w starts and ends with the same symbol) 
c. {w( the length of w is odd) 
d. {w) the length of w is odd and its middle symbol is a 0) 
e. {wl w contains more 1s than 0s) 
f. {wl w = wa, that is, w is a palindrome) 
g. The empty set 

2.5 Give informal descriptions and state diagrams of pushdown automata for the lan- 
guages in Exercise 2.4. 

2.6 Give context-free grammars generating the following languages. 

a. The set of snings over the alphabet {a,b) with twice as many a's as b's. 
b. The complement of the language {anbn 1 n 2 0). 
c. {w#z( wa is a subsmng of z for w , z  E {0,1)*). 
d. { z ~ # z z # .  . . # a (  k > 1, each z,  E {a, b)', and for some i and j ,  z, = z;). 

2.7 Give informal English descriptions of PDAs for the languages in Exercise 2.6. 
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2.8 Show that the smng the  g i r l  touches the  boy v i t h  the  flover has two 
different derivations in grammar G2 on page 93. Describe in English the two dif- 
ferent meanings of this sentence. 

2.9 Give a context-free grammar that generates the language 

A = {a'blck( i, j ,  k 2 0 and either i = j or j = k ) .  

Is your grammar ambiguous? Why or why not? 

2.10 Give an informal description of a pushdown automaton that recognizes the lan- 
guage A in Exercise 2.9. 

2.1 1 Convert the CFG G4 given in Exercise 2.1 to an equivalent PDA using the procedure 
given in Theorem 2.12. 

2.12 Convert the CFG G given in Exercise 2.3 to an equivalent PDA using the procedure 
given in Theorem 2.12. 

2.13 Let G = (V, C ,  R, S )  be the following grammar. V = {S, T, U); C = (0, #); and 
R is the set of rules: 

S - T T I U  
T - O T ) T O I #  
u - ow00 I # 

a. Describe L(G) in English. 
b. Prove that L(G) is not regular. 

2.14 Convert the following CFG into an equivalent CFG in Chomsky normal form, using 
the procedure given in Theorem 2.6. 

PROBLEMS 

2.1 5 Show that the class of context-free languages is closed under the regular operations, 
union, concatenation, and star. 

2.16 Use the result of Problem 2.15 to give another proof that every regular language is 
context free, by showing how to convert a regular expression directly to an equiva- 
lent context-free grammar. 

2.17 a. Let C be a context-free language and R be a regular language. Prove that the 
language C n R is context free. 

b. Use pan (a) to show that the language A = {wl w E {a, b, c)' and contains 
equal numbers of a's, b's, and c's) is not a CFL. 

2.18 Use the pumping lemma to show that the following languages are not context free. 

a. {OnlnOnln( n 2 0) 
b. {0n#02n#03n1 2 0)  
C. {w#z( w is a substring of z, where w, z E {a, b)'). 
d. {zl#z2#...#zkI k L 2, eachz, E {a,b)', and for some i # j, z,  = z,). 

2.19 Show that, if G is a CFG in Chomsky normal form, then for any smng w E L(G) 
of length n 2 1, exactly 2n - 1 steps are required for any derivation of w. 
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2.20 Let G be a CFG in Chomsky normal form that contains b variables. Show that, if G 
generates some string using a derivation with at least 2b steps, L(G) is infinite. 

'2.21 Let G = (V, C. R, (ST~MT)) be the following grammar. 

(STMT) - (ASSIGN) ( (IF-THEN) 1 (IF-THEN-ELSE) I (BEGIN-END) 
(IF-THEN) - i f  condition then (STM-r) 

(IF-THEN-ELSE) - i f  condition then (STMT) e l s e  (STMT) 
(BEGIN-END) - begin (STMT-LIST) end 
(STMT-LIST) - (STMT-LIST)(STMT) ( (STMT) 

(ASSIGN) - a : = l  

C = { i f ,  conditioqthen, e l s e ,  begin, end, a :  =I}. 

IT = {(STMT), (IF-THEN), (IF-TIIEN-ELSE), (BEGIN-END), (STMT-LIST), 

(ASSIGN)} 

G is a natural-looking grammar for a fragment of a programming language, but G 
is ambiguous. 

a. Show that G is ambiguous. 
b. Give a new unambiguous grammar for the same language. 

2.22 Consider the language B = L(G), where G is the grammar given in Exercise 2.1 3. 
The pumping lemma for context-free languages, Theorem 2.19, states the existence 
of a pumping length p for B. What  is the minimum value of p that works in the 
pumping lemma? Jusdfy your answer. 

2.23 Give an example of a language that is not context free but that does satisfy the three 
conditions of the pumping lemma. Prove that your example works. (See the anal- 
ogous fact for regular languages in Problem 1.37.) 

'2.24 Show that the language A in Exercise 2.9 is inherently ambiguous. 

'2.25 Let CFG G be 
S .+ aSb I b Y  I Ya 
Y -4 b Y  1 aY I E 

G i v e m p l e  description of L(G) in English. Use that description to give a CFG 
for L(G),  the complement of L(G). 

'2.26 Let C = {x#yl x, y E {0,1}' and x # y}. Show that C is a context-free language. 

'2.27 Let D = {xylx, y E {0,1)' and 1x1 = lyl butx # Y}. Show that D isa context-free 
language. 

'2.28 Prove the following snonger form of the pumping lemma, wherein we require both 
pieces v and y to be nonempty when the smng s is broken up. 

If A is a context-free language, then there is a number k where, if s is any smng in 
A of length at least k, then s may be divided into five pieces, s = uvxyz, satisfying 
the conditions: 

a. For each i 2 0, uv'xy'z E A, 

b. v # E and y # E ,  and 
c. Ivxy( I. k. 
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