
1

2/6/2019

CS 413  Introduction to Ray and Vector 

Graphics

Bare-Bones Ray Tracer

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Farris Engineering Center: 2110

Quiz

Let a and b be vectors were a = (2,0) and b = (0,1)

Draw a cartesian representation of a

Draw a cartesian representation of b

Draw a cartesian representation of a+b

Draw a cartesian representation of -1.5(a+b)

2

1

2

mailto:joel@unm.edu
http://cs.unm.edu/~joel/


2

Assignment 2: Antialiasing

◼ Due Wednesday, Feb 6: Read Chapter 4: Antialising

◼ Due Monday, Feb 11: Ray trace the function 4.1:

a) Render the range (x, y) [0,10.83]2 at 512×512 pixels in a parallel 

projection straight down the z-axis with each ray passing through the 

center of each pixel. Render f=0 black, f=1 white and grays between.

b) Experiment with different image resolutions.

c) Experiment with different antialiasing techniques. Examples might be:

o Cast multiple rays through each pixel and average the results.

o Cast multiple rays through each pixel and define the pixel's color by 

applying a weighted average based on the ray's nearness to the pixel 

center.

o Cast one ray through a uniformly distributed, random location in each 

pixel.

o Cast one ray through a normally or triangularly distributed random 

location of each pixel with probability decreasing for locations farther 

from the pixel center.3

𝑓(𝑥, 𝑦) =
1

2
(1 + sin( 𝑥2𝑦2))

Coding Style

◼ You will be held to the coding standards specified 1.10 of the 

textbook.

◼ Use { } placement, etc consistent with code examples in the 

textbook, 

Except.... All code blocks that extend beyond one line must 

have { }:

for (int y = 0; y < w->vp.vres; y += 16)

dc.DrawBitmap(tile, x, y, FALSE);

4

3

4



3

Questions from Chapter 3

3.1: Why is it unlikely that a ray will hit a curved 

implicit surface tangentially?

What is an implicit surface?

How is an implicit surface different from other 

surfaces?

What does it mean for "a ray to hit a curved 

implicit surface tangentially"?

5

3.2: Why don't we need to test for d = 0?

bool Sphere::hit(const Ray& ray, double& tmin, ShadeRec& sr) const {

Vector3D temp = ray.o - center;

double a = ray.d * ray.d;

double b = 2.0 * temp * ray.d;

double c = temp * temp - radius * radius;

double disc = b * b - 4.0 * a * c;

if (disc < 0.0) return(false);

else {

double e = sqrt(disc);

double denom = 2.0 * a;

double t = (-b - e) / denom;    // smaller root

if (t > kEpsilon) {

tmin = t;

sr.normal = (temp + t * ray.d) / radius;

sr.local_hit_point = ray.o + t * ray.d;

return (true);

} 

//continued.....

Class Ray {

Point3D o;  //origin

Vector3D d; //direction

5

6



4

3.2: Why don't we need to test for d = 0?

bool Sphere::hit(const Ray& ray, double& tmin, ShadeRec& sr) const

{

⁞

t = (-b + e) / denom;   // larger root

if (t > kEpsilon) {

tmin = t;

sr.normal = (temp + t * ray.d) / radius;

sr.local_hit_point = ray.o + t * ray.d;

return (true);

} 

}

return (false);

}
7

3.3: What is the maximum radius of a 

sphere that will just fit into the figure?

What data do you need to answer 

this question?

8

7

8



5

3.4: Build Functions

The build functions in Listings 3.11 and 3.18 illustrate how the 

world pointer is set in the tracer object by calling a tracer 
constructor with pointer this as the argument. The world is 

incomplete at this stage because the geometric objects haven't 

been constructed or added to it, but this does not matter. Why? 

9

void World::build (void) {

vp.set_hres(200); // view plane

vp.set_vres(200);

vp.set_pixel_size(1.0);

background_color = black;  

tracer_ptr = new SingleSphere(this);

sphere.set_center(0.0);

sphere.set_radius(85.0);

}

3.5: Why, in (a), does the intersection of the 

two spheres appear as a straight line?

10

(a) Ray-traced image of two spheres and a plane;

(b) side view of the spheres and plane, looking toward 

the origin, along the negative xw axis, with some rays. 

9

10



6

3.6: What happened?

11

(a) rendered at 200x200

(c) rendered at 300x300

Computational Efficiency is Important

double t = (point – ray.o) * a / M_PI;
12

What is wrong with these inner loop statements?

double distSqr = 

pow((x1-x2),2) + pow((y1-y2),2);

double dx=(x1-x2)

double dy= (y1-y2)

double distSqr = dx*dx + dy*dy

11

12



7

Consider Using References verses Pointers

int x; 

void Ptr(const int* p) { x += *p; } 

void Ref(const int& p) { x += p; }

No need to check that the reference is not NULL. (Creating a 

NULL reference is possible, but difficult).

References don't require the * dereference operator. Less 

typing. Cleaner code (both make the same machine code).

Pointers make it extremely difficult for a compiler to know 

when different variables refer to the same location. Often, this 

prevents the compiler from generating the fastest possible 

code. Since a variable reference points to the same location 

during its entire life, a C++ compiler can do a better job of 

optimization than it can with pointer-based code. 
13

Take Advantage of STL Containers
(C++ Standard Template Library)

◼ Not only is performance good today, it's only going to get 

better as STL vendors focus their efforts on optimization and 

compiler vendors improve template compilation.

◼ It's a standard. 

◼ It's already written. And debugged, and tested. No 

guarantees, but better than starting from scratch.

However: The STL is not the be-all end-all library of containers 

and algorithms. You can get better performance by writing your 

own specialized containers. For instance, the STL list object 

must be a doubly-linked list. In cases where a singly-linked list 

would be fine, you pay a penalty for using the STL list object. 

14

13

14



8

STL Container Usage

◼ When using an STL container, if several equivalent 

expressions have the same result, consider using the more 

general expression. For example:
a.empty() a.size() == 0

iter != a.end() iter < a.end() 

distance(iter1, iter2) iter2 - iter1

◼ The former expressions are valid for every container type, 

while the latter are valid only for some. 

◼ The former are also no less efficient than the latter and may 

even be more efficient. For example, to get the size of a 

linked list the list must be traversed, whereas to see that it is 

empty is a constant time operation.

15

Consider Inlined functions 

◼ If your compiler allows whole program optimization and 

automatic inline-expansion of functions, use such options 

and do not declare any functions inline. 

◼ If such compiler features are not available, declare suitable 

functions as inline in a header; suitable functions contain 

no more than three lines of code and have no loops.

◼ Inline function-expansion avoids the function call overhead. 

The overhead grows as the number of function arguments 

increases. In addition, since inline code is near to the caller 

code, it has better locality of reference. And because the 

intermediate code generated by the compiler for inlined

functions is merged with the caller code, it can be 

optimized more easily by the compiler.
16

15

16



9

Limitations of Inlined Functions 

◼ Every time a function containing substantial code is inlined

the machine code is duplicated and the total size of the 

program increases. These larger programs suffer from 

increased cache misses. 

◼ Inlined code is more difficult to profile. If a non-inlined

function is a bottleneck, it can be found by the profiler. But 

if the same function is inlined wherever it is called, its run-

time is scattered among many functions and the bottleneck 

cannot be detected by the profiler.

◼ For functions containing substantial amounts of code, only 

performance critical ones should be declared inline during 

optimization.

17

Accessing Memory in Nested Loops

When nested loops access memory, successive iterations 

often reuse the same word or use adjacent words that occupy 

the same cache block.

int array[1024][1024], x, y;

for(x=0; x<1024; x++)

{

for(y=0; y<1024; y++)

{ 

total += array[x][y];

}

}

In C++, will interchanging the loops improve spatial locality?

18

17

18



10

Quiz

1) After applying a linear transformation to a set of 

points that form two parallel lines, what types of 

shapes must the resulting points form?

2) After applying a linear transformation to the 

three basis vectors, Ƹ𝑖 (1,0,0), Ƹ𝑗 (0,1,0) and 
𝑘(0,0,1), their new coordinates become:      

(0,0,-2), (0,1,0) and (1, 0, 0).  Where will this 

transformation move the point (1,1,1)?

19

Implicit Plane

◼ We define a plane by specifying a point 𝒂 that lies on 

the plane and a normal 𝒏 to the plane.

◼ This defines the plane uniquely because there is only 

one plane that passes through a given point and has 

the orientation specified by the normal.

◼ The dot product two vectors is 0, iff they are ⊥.

◼ Let 𝒑 be an arbitrary point on the plane.

◼ Implicit equation (Vector):         𝒑 − 𝒂 ∙ 𝒏 = 0

◼ Implicit equation (Component): 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

20

19

20



11

Plane: Steps from Vector to Component form

◼ 𝒑 − 𝒂 ∙ 𝒏 = 0

◼ 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

◼ (x, y, z) – (ax, ay, az) * (nx, ny, nz) = 0

◼ (ax-x,    ay-y,     az-z)    *   (nx, ny, nz) = 0

◼ nx * (ax-x)     +     ny * (ay-y)     +     nz * (az-z) = 0

◼ nxax- nx x + nyay- ny y + nz az- nz z = 0

◼ -nx x - ny y - nz z         +      nxax+ nyay + nz az = 0

◼ Ax + By + Cz +      D = 0

21

Implicit Surface of a Sphere (spherical shell)

◼ Let 𝒄 = 𝑐𝑥, 𝑐𝑦, 𝑐𝑧 be a point called the center.

◼ Let 𝒑 = 𝑥, 𝑦, 𝑧 be any point on the spherical shell.

◼ Let r be a non-negative number called the radius. 

◼ Vector:          𝒑 − 𝒄 = 𝑟

◼ Component:

(𝑥 − 𝑐𝑥)
2+ (𝑦 − 𝑐𝑦)

2+ (𝑧 − 𝑐𝑧)
2−𝑟2 = 0

22

21

22



12

Equation of a Ray

◼ In common language, people often call any arbitrary, 

curved path that is fairly thin a “line”.

◼ In Vector Graphics, a line is straight, infinitely long and 

infinitely thin.

◼ Let 𝒄 = 𝑐𝑥, 𝑐𝑦, 𝑐𝑧 be a point in space (called the 

endpoint or origin or start or tail.

◼ Let 𝒅 = 𝑑𝑥, 𝑑𝑦 , 𝑑𝑧 be a unit vector (called the 

direction)

◼ Let t (called time) be a number where 𝑡 ∈ (−∞,+∞)

𝒑 = 𝒅𝑡 + 𝒄
23

23


