
3/25/2019

CS 413 Introduction to

Ray and Vector Graphics

Chapter 8: Perspective Viewing

Instructor: Joel Castellanos

e-mail: joel@unm.edu

Web: http://cs.unm.edu/~joel/

Farris Engineering Center: 319

mailto:joel@unm.edu
http://cs.unm.edu/~joel/

Ray Tracer IV: Perspective Viewing

Implement a pinhole camera and use the objects in figure 9.9

of the book for testing: an olive sphere, a teal triangle and an

orange rectangular solid on an infinite gray and white

checkerboard floor in black world. Allow the user to:

a) Independently move the sphere’s center, the triangle’s

normal vector and the triangle’s centroid.

b) Specify an arbitrary camera location.

c) Specify an arbitrary view direction.

d) Specify an arbitrary up vector.

e) Specify a view plane distance.

f) Specify at least two different sampling techniques.

g) Specify total sample points.

2

Notes on Ray Tracer IV

◼ Hit functions for axis-aligned boxes and triangles are in

chapter 19.

◼ Your program must not crash on singularities, but may, for

now, not correctly render.

◼ Implement the roll angle as described in section 9.8

◼ Your image is not yet expected to have shading or

shadows.

◼ Object sizes:

◼ Circle: radius=1 meter

◼ Triangle: sides = 2, 2, and 1 meter.

◼ Rectangular solid: 0.5 x 1.5 x 2 meters.
3

Perspective Projection

4

Frustum

In computer graphics, the viewing frustum is the

three-dimensional region which is visible on the

screen which is formed by a clipped pyramid.

5

Properties of Perspective Projection

Property 1: The perspective projection of an

object becomes smaller as the object gets

farther away form the center of projection.

What are some non-obvious, and interesting

effects of this?

6

Properties of Perspective Projection

Property 2: As an object is rotated, its projected

width becomes smaller. This is known as

foreshortening.

7

Properties of Perspective Projection

Property 3: Perspective projections preserve

straight lines.

8

Properties of Perspective Projection

Property 4: Sets of parallel lines that are parallel to the

view plane remain parallel when projected onto the

view plane.

Property 5: Sets of parallel lines that are not parallel to

the view plane converge to a vanishing point on the

view plane.

9

Axis-Aligned Perspective Projection

Straight down Y-Axis

◼ Eye: (0, 10, 0)

◼ One Point on View Plane: (xvp, 5, zvp)

10

(0, 10, 0)

)(eyetViewPlanePdeyeray −+=

−

−

−

+

=

0

105

0

0

10

0

0

vp

vp

hit

hit

z

x

d

z

x

)(

)(0

)105(100

vpeye

eye

eyevpeye

yy

y
d

yydy

d

−
=

−+=

−+=

)(

)(

eyevpeyehit

eyevpeyehit

zzdzz

xxdxx

−+=

−+=

Chapter 9: A Practical Viewing System

◼ The virtual pinhole camera implements perspective

viewing with the following features:

◼ An arbitrary eye point.

◼ An arbitrary view direction (The view plane is defined as

being perpendicular to the view direction and centered

on the ray from the eye point).

◼ An arbitrary orientation about the view direction.

◼ An arbitrary distance between the eye point and the

view plane.

11

Physical Pinhole Camera

12

Clear inverted image with small pinhole

Fuzzy out-of-focus image with larger hole

Lens Aperture

13

Aperture Shutter

Aperture

Shutter

Why color

reflections?

Large aperture lenses are expensive

Canon, Prime 50mm f/1.8 USM Lens: $125.00

Canon, Prime 50 mm f/1.4 USM Lens: $399.00

Canon, Prime 50 mm f/1.2 USM Lens: $1,549.00
14

Depth of Field

15

Circle of Confusion

16

Real lenses do not

focus all rays

perfectly.

Thus, at best

focus, a point is

imaged as a spot

rather than a point.

The smallest such

spot that a lens

can produce is

often referred to

as the circle of

least confusion.

Perspective Views of Boxes (figure 9.10)

◼ How many vanishing points are there in each image?

◼ In each image, does the view direction point up or down or

is it horizontal? How can you tell when it's horizontal?

17
a b c

Quiz

1) What is an orthonormal basis (ONB)?

2) In the equation:

, and are vectors. This means they have

both magnitude and direction. What can be

said about the magnitude and direction of ?

18

cbcba

= /

a

b

a

c

Virtual Pinhole-Camera Viewing System

19

User Input:

◼ The eye point, e.

◼ The look-at point, l.

◼ The up vector, up.

◼ The view-plane distance d.

Primary-Ray Calculation

The (xv,yv) coordinates of a sample point p on the pixel in

row r and column c are:

20

)2/(

)2/(

yresv

xresv

pvrsy

phcsx

+−=

+−=

wdvyuxd vv

−+=The primary-ray direction d is:

uwv

wupwupu

lelew

=

=

−−=)(

w

v

v

Pinhole Camera: Fields

A pinhole camera is simple: all rays pass through a single

point (unlike a lens where rays pass through the lens surface).

Camera Object:

◼ Class Fields:

◼ Vector3 position

◼ Vector3 viewDirection

◼ Vector3 upVector (0,1,0)

◼ double viewDistance

or

double angleOfView (In the vertical view plane.

◼ double nearClipDistance

◼ double farClipDistance

21

Pinhole Camera: Render Loop Algorithm

1) Set all pixels to the background color.

2) Loop for i=0 through numberOfRays.

3) Sample a row and column in screen pixel space,

4) Calculate a primary ray from the camera (eye) location

through some location in the chosen pixel.

5) Calculate minimum and maximum time along that ray within

the frustum.

6) Set the minimumHitTime to the max time of the frustum.

7) Loop through each object in the scene and call its hit

function, updating minimumHitTime.

8) After looping through each object, if minimumHitTime is less

than the max time of the frustum, render the pixel (if multiple

rays are cast through the same pixel, merge before render).22

Pinhole Camera Step 3: Coordinate System

In this project, we are working with 3 coordinate systems:

◼ Doubles (x, y, z): a point in the global world coordinate

system.

◼ Integers (col, row): a point in screen pixels.

◼ Doubles (viewX, viewY): a point in view plane coordinates.

To avoid distortion, choose view bounds with the same

aspect ration as the pixel window. For example, if the pixel

window is 1000x500 and the viewX range is 10 meters, then

the viewY range should be 5 meters.

23

Pinhole Camera Step 3: View plane Points

Given pixel (col, row), the view plane coordinates (viewX, viewY)

of a random point within a pixel are given by:

𝑣𝑖𝑒𝑤𝑋 = 𝑝𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒 ∗ 𝑐𝑜𝑙 + 𝑟1 + 𝑣𝑖𝑒𝑤𝑀𝑖𝑛𝑋
𝑣𝑖𝑒𝑤𝑌 = 𝑝𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒 ∗ 𝑡𝑜𝑡𝑎𝑙𝑅𝑜𝑤𝑠 − 𝑟𝑜𝑤 − 𝑟2 + 𝑣𝑖𝑒𝑤𝑀𝑖𝑛𝑌

Where

𝑝𝑖𝑥𝑒𝑙𝑆𝑖𝑧𝑒 =
𝑣𝑖𝑒𝑤𝑀𝑎𝑥𝑋 − 𝑣𝑖𝑒𝑤𝑀𝑖𝑛𝑋

𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑙

r1 and r2 are random doubles in range [0,1).

Note: to avoid distortion choose the view bounds so that,
𝑣𝑖𝑒𝑤𝑀𝑎𝑥𝑋−𝑣𝑖𝑒𝑤𝑀𝑖𝑛𝑋

𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑙
=

𝑣𝑖𝑒𝑤𝑀𝑎𝑥𝑌−𝑣𝑖𝑒𝑤𝑀𝑖𝑛𝑌

𝑡𝑜𝑡𝑎𝑙𝑅𝑜𝑤

24

Pinhole Camera Step 3: Ray Direction

Each primary ray starts at the eye.

Each primary ray’s direction is:

𝒅 = 𝑣𝑖𝑒𝑤𝑋 𝒖 + 𝑣𝑖𝑒𝑤𝑌 𝒗 − 𝑣𝑖𝑒𝑤𝑃𝑙𝑎𝑛𝑒𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝒘)

Normalized: 𝒅 =
𝒅

𝒅

Where:

𝒘 = 𝒆𝒚𝒆 − 𝒗𝒊𝒆𝒘𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏 / 𝒆𝒚𝒆 − 𝒗𝒊𝒆𝒘𝑫𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏

𝒖 = 𝒖𝒑 × 𝒘/ 𝒖𝒑 × 𝒘
𝒗 = 𝒘 × 𝒖
𝒖𝒑 = (0,1,0)

25

Pinhole Camera Step 3: Efficiency Note

◼ Given an equation of a normalized vector such as:

𝒖 = 𝒖𝒑 × 𝒘/ 𝒖𝒑 × 𝒘

◼ The same calculation appears in the numerator and the

denominator. However, do not calculate the same thing

twice. Rather first calculate the non-normalized vector. Then

call the normalize function of Vector3D.

26

Pinhole Camera Step 6: Hit Function (1 of 2)

The hit function has the form:

▪ hit(Ray& ray, double& tmin, ShadeRec& sr)

▪ When an object’s hit function returns true, if the returned
tmin is less than the current ray’s minimumHitTime, AND

the tmin is greater than the frustum minimum time, then:

1) Update minimumHitTime to equal the object’s tmin.

2) Save a reference to the object whose hit function

returned true. Overwrite any reference saved with a
larger tmin. Only the nearest object is important.

3) Save the DATA in the returned ShadeRec (or save the

pointer if each object has a unique ShadeRec).

ShadeRec is used to color (shade) the point.

27

Pinhole Camera Step 6: Hit Function (2 of 2)

Note 1: In this project, the only field of ShadeRec we

care about is hit_point and we only care about

it for the checkerboard object. All other objects

have only a single color and we are not using

lighting or other shading effects).

Note 2: The value of t in ShadeRec is the same as

the value returned in tmin.

28

Pinhole Camera Step 7: Render

▪ After looping through each object, if minimumHitTime is

less than the max time of the frustum, convert the view

plane point, p, to screen coordinates and render the point.

▪ To render a point, a color is needed.

▪ I suggest adding to Sphere.cpp, Plane.cpp, Rectangle.cpp

and Checkerboard.cpp the function:

getColor(double x, double y, double z)

▪ For now, all our objects, except for the checkerboard have

only one color, so for those objects getColor will always

return the same color regardless of the values of x, y and z.

If each Shpere.cpp object has an instance field, color, then

each instance of Sphere.cpp can have a different color.

29

Equation of a Checkerboard pseudo code

//Infinite checkerboard of unit squares in x-z plane.
public Color getColor(double x, y, z)

{

if (abs((floor(x)))%2 == abs((floor(z)))%2)

return Color.BLACK;

return Color.WHITE;

}

Note: This is NOT a hit function. It is called after a hit has been
found and is given the values x, y and z of the hit from
ShadeRec.hit_point

For the hit function, make Checkerboard extend the book’s plane
object and use the plane’s hit function.

30

