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Abstract
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OVERVIEW

This Working Paper presents an agent-based computational model of

civil violence.  The model is very much a work in progress, and this

preliminary report is intended to stimulate discussion, garner feedback, and

foster refinement.  For an introduction to the agent-based modeling

technique, see Epstein and Axtell (1996).  We present two variants of the

Civil Violence Model.  In the first, a central authority seeks to suppress

decentralized rebellion.  Where we use the term “revolution,” we do so

advisedly, recognizing that no political or social order is represented in the

model.  Perforce, neither is the overthrow of an existing order, the latter

being widely seen as definitive of revolutions properly speaking.  The

dynamics of decentralized upheaval, rather than it’s political substance, is the

focus here.  In the second model, a central authority seeks to suppress

communal violence between two warring ethnic groups.   And, as in Model I,

we are interested in generating certain characteristic phenomena and core

dynamics; we do not purport to reconstruct any particular case in detail,

though—as discussed in Appendix B—that is an obvious long-term objective.

CIVIL VIOLENCE MODEL I:

GENERALIZED REBELLION AGAINST CENTRAL AUTHORITY

This model involves two categories of actors.  "Agents" are members of

the general population, and may be actively rebellious or not.  "Cops" are the

forces of the central authority, who seek out and arrest actively rebellious

agents.  Let us describe the agents first.  As in all agent-based models, they

are heterogeneous in a number of respects.  The attributes and behavioral

rules of the agents are as follows:



3

The Agent Specification

First, in any model of rebellion, there must be some representation of

political grievance.  Our treatment of grievance will be extremely simple, and

will involve only two highly idealized components which, for lack of better

terminology, we will call Hardship and Legitimacy.  Their definitions are as

follows:

H:  The agent's perceived hardship.  In the current model, this is

exogenous.  We assume it to be heterogeneous across agents.  Lacking further

data, each individual's value is simply drawn from U(0,1), the uniform

distribution on the interval (0,1).  Of course, perceived hardship alone does

not a revolution make.  As noted in the Russian revolutionary journal,

Narodnaya Volya, "No village ever revolted merely because it was hungry."

(Quoted in Kuran, 1989 and deNardo, 1985).  Another crucial factor is:

L:  The perceived legitimacy of the regime, or central authority.  In the

current model, this is exogenous, is equal across agents, and in the runs

discussed below, will be varied over its arbitrarily defined range of 0 to 1.

The level of grievance any agent feels toward the regime is assumed to

be based on these variables.  Of the many functional relationships one might

posit, we will assume:

G = H(1-L).

Grievance is the product of perceived hardship (H) and perceived

"illegitimacy," if you will (1-L).  The intuition behind this functional form is

simple.  If legitimacy is high, then hardship does not induce political

grievance.  For example, the British government enjoyed unchallenged

legitimacy (L=1) during World War II.  Hence, the extreme hardship

produced by the blitz of London did not produce grievance toward the

government.  By the same token, if people are suffering (high H), then the
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revelation of government corruption (low L) may be expected to produce

increased levels of grievance.

Of course, the decision to rebel depends on more than one's grievance.

For example, some agents are simply more inclined to take risks than others.

Accordingly, we define

R:  The agent's level of risk aversion.  Heterogeneous across agents,

this (like H) is assumed to be uniformly distributed across agents.  Each

individual's level is drawn from U(0,1) and is fixed for the agent’s lifetime.

All but the literally risk neutral will estimate the likelihood of arrest

before actively joining a rebellion.  This estimate is assumed to increase with

the ratio of cops to already rebellious--so-called "active"--agents within the

prospective rebel's vision.  To model this, we define:

v: The agent's vision.  This is the number of lattice positions (north,

south, east, and west of the agent's current position) that the agent is able to

inspect.  It is exogenous and equal across agents.  As in most agent-based

models, vision is limited; information is local.  Letting (C/A)v denote the cop-

to-active ratio within vision v, we assume the agent's estimated arrest

probability P to be given by

P = 1-exp[-k(C/A)v].

The constant k is set to ensure a plausible estimate (of P=.9) when C=1 and

A=1.  Notice that A is always at least 1, since the agent always counts

himself as active when computing P.  He is asking, "How likely am I to be

arrested if I go active?"  This functional form makes P a legitimate

probability density.  Again, the intuition is very simple.  Imagine being a

deeply aggrieved agent considering throwing a rock through a bank window.

If there are 10 cops at the bank window, you are much more likely to be

arrested if you are the first to throw a rock (C/A=10) than if you show up
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when there are already 29 rock-throwing agents (C/A=1/3).  For a fixed level

of cops, the agent's estimated arrest probability falls the more actives there

are.  This simple idea will play an important role in the analysis.

Clearly, in considering whether or not to rebel, a risk neutral agent

won't care what the estimated arrest probability is, while a risk averse agent

will.  It will therefore prove useful to define

N = RP: The agent's net risk--the product of his risk aversion and

estimated arrest probability.  (This can be considered the special, α =0, case

of N RPJ= α where J is the jail term, discussed below).  These ingredients in

hand, the agent's behavioral rule is summarized in the Table below.

       Table. Agent State Transition

    State               (    G - N    )           State Transition   
    Q                   >T                     Q⇒A
    Q                   ≤T                     Q⇒Q
    A                    >T                    A⇒A
    A                    ≤T                    A⇒Q

If, for an agent in state Q, the difference G-N exceeds some non-negative

threshold T--which could be zero--then that quiescent agent goes active.

Otherwise, he stays quiescent.  If, for an agent in state A, the difference

exceeds T, then that active agent stays active.  Otherwise, he goes quiescent.

In summary, the agent's simple local rule is:

Agent Rule A:  If  G-N>T  be Active;  Otherwise, be Quiet.

This completes the agent specification.

Bounded Rationality

It is natural to interpret this rule as stipulating that the agent take

whichever binary action (Active or Quiescent) maximizes expected utility
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where, in the spirit of Kuran (1989), G-N is the expected utility of publicly

expressing one's private grievance, and T is the expected utility of not

expressing it (i.e., of preference falsification, in Kuran's terminology).

Typically, we set T at some small positive value.  Notice, however, that if it

takes negative values, like -G (i.e., the frustration level associated with

preference falsification equals the grievance level itself), agents may find it

rational to rebel knowing that they will suffer negative utility.  It’s simply

worse to "sit and take it anymore."  Agents weigh expected costs and benefits,

but they are not hyper-rational.  One might say (pace  Olsen, 1965) that

individual rationality is "local" also, in the sense that the agent's expected

utility calculation excludes  any estimate of how his isolated act of rebellion

may effect the social order.  Notice, very importantly, that deterrence is local

in this model and depends on the local (individually visible)--not the global--

ratio of cops to actives, which is highly dynamic in this spatial model with

movement.

The Cop Specification

The cops are much simpler than prospective rebels.  Their attributes

are as follows:

v*:  The cop vision.  This is the number of lattice positions (north,

south, east, and west of the cop's current position) that the cop is able to

inspect.  It is exogenous and equal across cops.  The cops' v* need not equal

the agent's v, but will typically be small relative to the lattice size: cop vision

is local also. The cops, like the other agents, have one simple rule of behavior:

Cop Rule C: Inspect all sites within v* and arrest a random
Active Agent.

Cops never defect to the revolution in this model.
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Movement and Jail Terms

Though the range of motion will vary depending on the numerical

values selected for v and v*, the syntax of the movement rule is the same for

both agents and cops:

Movement Rule M: Move to a random site within your vision.

Regarding jail terms for arrested actives, these are exogenous and set

by the user.  Specifically, the user selects a value for the maximum jail term,

J_max.  Then, any arrested active is assigned a jail term drawn randomly

from U(0, J_max).  J_max will affect the dynamics in important ways by

removing actives from circulation for various durations.  However, for the

present version of the model with alpha implicitly set to zero (see discussion

above), there is no deterrent effect of increasing the jail term.  Setting alpha

to a positive value would produce a deterrent effect.  In addition to having no

deterrent effect, we also assume agents leave jail exactly as aggrieved as

when they entered.

Measurement

 It is important to state forthrightly that we make no pretense to

measuring model variables such as perceived hardship or legitimacy.  The

immediate question is whether this highly idealized model is sufficient to

generate recognizable macroscopic revolutionary dynamics of fundamental

interest.  If not, then issues of measurement are moot.  So, the first issue is

whether the model produces interesting output.  In addition to data

generated by the model, run-time visualization of output is very useful.  Our

graphical strategy is as follows.



8

Graphics

Events transpire on a lattice.  Agents and cops move around this space

and interact.  We are interested in the dynamics of grievance and--quite

separately--in the dynamics of revolutionary action.   The point of separating

these private and public spheres is to permit illustration of a core point in all

research on this topic: public order may prevail despite tremendous private

opposition to--feelings of grievance toward--a regime.  Given this important

distinction between private grievance and public action, we will show two

screens (see Figure 1).

            Figure 1.  Action and Grievance Screens

On the right screen, agents are colored by their private level of

grievance.  The darker the red, the higher the level of grievance.  On the left

screen, agents are colored by their public action: Blue if quiescent; Red if

active.  Cops are colored black on both screens.  Simply to reduce visual

clutter, all agents and cops are represented as circles on the left screen and

squares on the right.  Unoccupied sites are gray colored on both screens.
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Runs

To begin each run of the model, the user sets L, J, V, V*, and the

initial cop and agent densities. To ensure replicability of our results, input

assumptions for all runs are provided in Appendix A.  Agents are assigned

random values for H and R, and cops and (initially) quiescent agents are

situated in random positions on the lattice.  The model then simply spins

forward under the Rule set: {A,C,M}.  An agent or cop is selected at random

(asynchronous activation) and, under Rule M, moves to a random site within

his vision, where he acts in accord with Rule C (if a cop) or A (if an agent).

The model simply iterates this procedure until the user quits or some

stipulated state is attained.  What can one generate in this extremely simple

model?  We present 5 Runs.

Run 1.  Individual Deceptive Behavior

Despite their manifest simplicity, the agents do something we had not

anticipated.  This behavior is displayed below in two snapshots from

Animation 1.

   Animation 1.  Deceptive Individuals

Focus then on the circled agent in the left frame.  Though not shown,

this agent’s grievance level is high.  However, there are two cops within his

vision and he is Blue (Quiescent).  But, he turns Red (Actively rebellious) the

moment these cops move away, as shown in the right frame.  In short, the
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agents exhibit unexpected deceptive behavior: privately aggrieved agents

turn Blue (as if they were non-rebellious) when cops are near, but then turn

Red (actively rebellious) when cops move away.  They are reminiscent of

Mao's directive that revolutionaries should "swim like fish in the sea,"

making themselves indistinguishable from the surrounding population.  Ex

post facto, the behavior is easily understood: the cop's departure reduces the

C/A ratio within the agent's vision, reducing his estimated arrest probability,

and with it his net risk, N, all of which pushes G-N over the agent's

activation threshold, and he turns Red.  But it was not anticipated.

Moreover, it would probably not have been detected without a spatial

visualization; individual deception would not be evident in a time series of

total rebels, for example.  With both cops and agents in random motion, more

interesting dynamics emerge.

Run 2.  Free Assembly Catalyzes Rebellious Outbursts

With both agents and cops in random motion, it may happen that high

concentrations of actives arise endogenously in zones of low cop density.  This

can depress local C/A ratios to such low levels that even the mildly aggrieved

find it rational to join.  This catalytic mechanism is illustrated in Animation

2.
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Animation 2. Local Outbursts  
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Random spatial correlations of activists catalyze local outbursts.  This is why

freedom of assembly is the first casualty of repressive regimes.  Relatedly, it

is also the rationale for curfews.  The mechanism is that local activist

concentrations reduce local C/A (cop-to-active) ratios, reducing (via the

equation for P above) the risk of joining the rebellion.  To be the first rioter,

one must be either very angry or very risk neutral, or both.  But to be the

4000th--if the mob is already big, relative to the cops--the level of grievance

and risk taking required to join the riot is far lower.  This is how, as Mao Tse

Tung liked to say, "A single spark can cause a prairie fire."  (Quoted in

Kuran, 1989).  Coincidentally, the Bolshevik newspaper founded by Lenin

was called Iskra--the spark!  The Russian revolution itself provides a

beautiful example of the chance spatial correlation of aggrieved agents.  As

Kuran (1989; 63) recounts,

On February 23, the day before the uprising,

many residents of Petrograd were standing

in food queues, because of rumors that food

was in short supply.  20,000 workers were

in the streets after being locked out of a large

industrial complex.  Hundreds of off-duty

soldiers were outdoors looking for distraction.

And, as the day went on, multitudes of women

workers left their factories early to march

in celebration of Women's Day.  The

combined crowd quickly turned into

a self-reinforcing mob.  It managed

to topple the Romanov dynasty within

four days."

A random coalescence of aggrieved agents depresses the local C/A ratio,

quickly emboldening all present to openly express their discontent.
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A time series of total rebels is also revealing.  It displays one of the

hallmarks (Young 1998) of complex systems: punctuated equilibrium.  Long

periods of relative stability are punctuated by outbursts of rebellious activity.

   Figure 2.  Punctuated Equilibrium

And indeed, many major revolutions (e.g., East German) are episodic in fact.

The same qualitative pattern of behavior—punctuated

equilibrium—persists indefinitely, as shown in Figure 3, which plots the data

over some 20 thousand iterations of the model.
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   Figure 3.  Punctuated Equilibrium Persists

Waiting Time Distribution   

Is there any underlying regularity to these complex dynamics?  For

many complex systems, it turns out to be of considerable interest to study the

distribution of waiting times between outbursts above some threshold.  In

this analysis, we set the threshold at 50 actives.  An outburst begins when

the number of actives exceeds 50 and ends when it falls below 50.  We are

interested in the time between the end of one outburst and the start of the

next.  Sometimes, we have to wait a long time (e.g., 100 periods) until the

next outburst.  Sometimes, the next outburst is nearly immediate (e.g., a gap

of only 2 periods).  The frequency distribution of these inter-outburst waiting

times, for 100,000 iterations of the model, is shown in Figure 4.
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   Figure 4.  Waiting Time Distribution   

In the complexity literature, one often encounters the notion of an “emergent

phenomenon.”  I have argued elsewhere (Epstein, 1999) that substantial

confusion surrounds this term.  However, if one defines emergent phenomena

simply as “macroscopic regularities arising from the purely local interaction

of the agents,” (Epstein and Axtell, 1996), then this waiting time distribution

surely qualifies.   It was entirely unexpected, and would have been quite hard

to predict from the underlying rules of agent behavior.  For instance, Figure 4

suggests a Weibull or Lognormal distribution.  While rigorous identification

is a suitable topic for future research, these data are clearly not uniformly
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distributed.  But all distributions used in defining the agent population—the

distribution of Hardship and Risk Aversion—are uniform.  In a uniform

waiting time distribution, one is just as likely to wait 100 cycles as 50; that is

not the case in our model, at least for these parameters.  The mean of these

data—the average duration between outbursts--is 60.1   Clearly, most of the

probability density is concentrated around this value: this means that we are

much more likely to get successive outbursts within 60 cycles than within

100.

If one is willing to truncate this distribution—throwing out the most

high frequency events (waiting times less than 30 cycles), the remaining

distribution is well fit by the negative exponential. In particular, the logged

truncated data are shown on Figure 5.

             Figure 5.  Logged Data (Truncated)

                                                  
1 The standard deviation is 55.
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Ordinary Least Squares regression yields an R-squared of 0.98 with slope

–0.07 and intercept 3.5.    The negative exponential distribution is ubiquitous

in the analysis of failure rates—the rates at which electrical and mechanical

systems break down.  It would be interesting if “social breakdowns” followed

a similar distribution.  Another obvious issue is the sensitivity of this

distribution to variations in key parameters.  For example, how would an

increase in the jail term deform the distribution? One might conjecture that,

by removing rebellious agents from circulation for a longer period, increasing

the jail term would “flatten” the distribution and raise its mean.   All of these

issues could be fruitfully explored in the future.  For the moment, the core

point is that a powerful statistical regularity underlies the model’s

punctuated equilibrium dynamics.

Outburst Size Distribution

A second natural statistical topic is the size distribution of rebellious

outbursts.  To study this, we use the same parameterization as above and

adopt the same threshold: 50 actives.  But there are numerous ways to

measure outburst size for statistical purposes.  For example, imagine a flare-

up lasting five days with the following number of actives per day: 60, 100,

120, 95, and 80.  This outburst has a peak active level of 120.  It has average

(daily) activation of 100, and total activation (the sum) of 500.  The size

distribution of outbursts using the total activation measure is shown in

Figure 6.
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   Figure 6. Total Activation Distribution

The mean and standard deviation are, respectively, 708 and 230. The

distributions using the peak and average data are qualitatively similar. As in

the case of the waiting time distribution, one could conduct further analysis

to identify the best fit to Figure 6.  But the point to emphasize here is not

which distribution is best, but that some macroscopic regularity emerges.  A

major strength of agent models is that they generate a wealth of data

amenable to statistical treatment.
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Turning to another topic, we often speak of a society as being "ripe for

revolution."  In using this terminology, we have in mind a high level of
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this in an illuminating way?  As a first cut, we noted earlier that society can

be bright red on the right screen (indicating a high level of grievance) while

being entirely Blue on the left (indicating that no one is expressing, or

"venting," their grievance).  So, if this combination of high average grievance

G  on the right and high frequency of Blues B  on the left were the best

indicator of high tension, a reasonable "ripeness" index would be simply their

product: G B .  This, however, ignores the crucial question, why are agents

Blue?  If they are inactive simply because they are risk averse and have no

inclination to go active, then they are not truly frustrated in the inactive Blue

state.  So, for fixed G  and B  a good tension index should increase as average

risk aversion falls (more agents want to act out, but are nonetheless staying

blue).  Hence, a better simple measure is: G B / R , where R  is average risk

aversion.  In Figure 7, we plot this against a curve of actives designed to

exhibit high volatility.   It is clear that a buildup of tension precedes each

outburst.

   Figure 7.  Tension and Actives

In fact, on close inspection, our tension curve dips just at the outset of major

explosions.  The true warning indicator is this pronounced dip.  Notice,

moreover, that—like any good indicator—it is usefully insensitive.  It does
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not give false alarms (i.e., there are no dips) for the minor eruptions at

periods 20 or 45 for instance.

We turn now to a comparison of two runs involving reductions in

legitimacy.  Both runs begin with legitimacy at a high level.  In the first, we

execute a large absolute reduction (from L=.9 to L=.2) in legitimacy, but in

small increments (of a percent per cycle).  In the second, we reduce it far less

in absolute terms (form L=.9 to L=.7), but do so one jump.  Which produces

the more volatile social dynamics, and why?

Runs 3 and 4.  Salami Tactics of Corruption.  

Figure 8 shows the results when we reduce legitimacy in small

increments.  It displays three curves.  The downward sloping upper curve

plots the steady incremental decline in legitimacy over time. (To make these

graphs clear, we actually plot 1000 L). The horizontal red curve just above

the time axis shows the number of actives in each time period.  Even though

legitimacy declines to zero, there is no red spike, no explosion, since—as

discussed earlier—each new active is being picked off in isolation, before he

can catalyze a wider rebellion.  And this is why the middle

curve—representing the total jailed population—rises smoothly over time.
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Figure 8. Large Legitimacy Reduction In Small Increments  

The same variables are plotted in Figure 9.  However, the scenario is

different.  We hold legitimacy at its initially high level (of 0.90) for 77 periods.

Then, in one jump, we reduce it to 0.70, where it stays.   The upper legitimacy

curve is a step function.  Even though the absolute legitimacy reduction (of

0.30) is far smaller than before, there is an explosion of actives, shown by the

red spike. And, in turn, there is a sharp rise in the jailed population, whose

absolute size exceeds that of the previous run.
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Figure 9.  Small Legitimacy Reduction In One Jump t=77

The spatial situations in the two runs are compared in Figure 10.

Each snapshot is for t=77, the time of the one-shot legitimacy reduction

above.
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Figure 10. Large Incremental (Upper) and Small One-Shot

(Lower) Legitimacy Reductions compared at t=77.

Now, why the difference?  In the incremental legitimacy reduction scenario,

the potentially catalytic agents at the tail of the grievance distribution are

being picked off in isolation, before they can stimulate a local contagion.  The

sparks, as it were, are doused before the fire can take off.  In the
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second—one-shot reduction--case, even though the absolute legitimacy

decline is far smaller, multiple highly aggrieved agents go active at once.

And by the same mechanism as discussed earlier, this depresses local C/A

ratios enough that less aggrieved agents jump in.  Hence, the rebellious

episode is greater, even though the absolute legitimacy reduction is smaller.

It is the rate of change--the derivative--of legitimacy that emerges as salient.

This result would appear to have important implications for the tactics

of revolutionary leadership.  Rather than chip away at the regime's

legitimacy over a long period with daily exposes of petty corruption, it is far

more effective to be silent for long periods, and accumulate one punchy

expose.  Indeed, the single punch need not be as "weighty," if you will, as the

"sum" of the daily particulars.  (The one-shot legitimacy reduction need not

be as great as the sum of all the incremental deltas.)  Perhaps this is why

Mao would regularly seclude himself in the mountains in preparation for a

dramatic reappearance, and why the return of exiled revolutionary leaders--

like Lenin and Khomeini--are attended with such trepidation by authorities.

Perhaps this is also why dramatic "triggering events" (e.g., assassinations)

loom so large in the literature on this topic; often, they are instances in which

the legitimacy of the regime suddenly takes a dive.  While often sufficient,

sharp legitimacy reductions are not the only inflammatory mechanism.

Run 5. Cop Reductions

Indeed, "It is not always when things are going from bad to worse that

revolutions break out," wrote de Tocqueville.  "On the contrary, it oftener

happens that when a people that has put up with an oppressive rule over a

long period without protest suddenly finds the government relaxing its

pressure, it takes up arms against it."  According to Kuran (1989), in the

cases of the French, Russian, and Iranian revolutions, "substantial numbers

of people were privately opposed to the regime.  At the same time, the regime

appeared strong, which ensured that public opposition was, in fact,

unalarming.  What, then, happened to break the appearance of the

invincibility of the regime and to start a revolutionary bandwagon rolling?  In
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the cases of France and Iran, the answer seems to lie, in large measure, in a

lessening of government oppression."  Indeed, De Tocqueville wrote that

"liberalization is the most difficult of political arts." Here we interpret

liberalization as cop reductions. Beginning at a high level, we walk the level

of cops down.  Figure 11 shows the typical result.

Figure 11.  Cop Reductions
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Unlike Run 3 (salami tactics), there comes a point at which a marginal

reduction in central authority does  "tip" society into rebellion.  The dynamics

under reductions in repressive potential (cops) are fundamentally different

from the dynamics under legitimacy reduction in this model--and perhaps in

societies.  Since both type of reduction are emboldening to revolutionaries,

one might have imagined that reductions in the regime's repressive power--

the cop level--would produce dynamics equivalent to those under legitimacy

reduction.  As we see, however, the dynamics are fundamentally different.

Stylized Facts Generated in Model I

While Model I is embryonic and preliminary, it does produce

noteworthy phenomena with some qualitative fidelity and therefore seems, at

the very least, promising.  We saw, first, the unexpected emergence of

individually deceptive behavior, in which privately aggrieved agents hide

their feelings when cops are near, but engage in openly rebellious activity

when the cops move away.  In general, the model naturally represents

political "tipping points"--revolutionary situations in which the screen is Blue

on the left (all agents quiescent) but Red on the right.  Surface stability

prevails despite deep and widespread hostility to the regime.  When pushed

beyond these tipping points, the model produces endogenous outbursts of

violence and punctuated equilibria characteristic of many complex systems.

For some parameter settings, the size distribution of rebellious outbursts and

the distribution of waiting times between outbursts exhibit remarkable

regularities.  The model explains standard repressive tactics like restrictions

on freedom of assembly and the imposition of curfews.  Such policies function

to prevent the random spatial clustering of highly aggrieved risk-takers,

whose activation reduces the local Cop-to-Active ratio, permitting other less

aggrieved and more timid agents to join in.  This same catalytic dynamic

underlies the intriguing "Salami Tactic" result: Legitimacy can fall much

farther incrementally than it can in one jump, without stimulating large-

scale rebellion.  The reason is that, in the former (Salami) case, the tails of
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the radical distribution--the sparks--are being picked off before they can

catalyze joining by the less aggrieved.  The model bears out DeTocqueville's

famous adage that "liberalization it the most difficult of political arts,"

showing that (quite unlike legitimacy reductions) incremental reductions in

repressive potential (cops) can produce large-scale tipping events.  Finally, it

may offer a useful laboratory to explore peacekeeping operations.

It should be added that the individual-level specification is quite

minimal, imposing bounded demands on the agent's (and cops) information

and computing capacity, while still insisting that the agent crudely weigh

expected benefits against expected costs in deciding how to act.  Agents are

boundedly rational and locally interacting; yet interesting macroscopic

phenomena emerge.

As noted at the outset, the model seems most promising for cases of

decentralized upheaval.  While one could argue that certain effects of

revolutionary leadership--reductions in perceived legitimacy through rousing

speeches or writings that expose regime corruption--are captured, explicit

leadership as such is really not modeled.  That could be a weakness in cases--

for example, the communist Chinese revolution--where central leadership

was important, though some would argue that, even there, the main issue

was not the individual leader, but society's "ripeness for revolution."  As

Engel's wrote, "In default of Napoleon, another would have been found."

(Cited in Kuran, 1989).  Our tension index might be a crude measure of this

“ripeness.”

Let us turn now to situations of interethnic violence, as in Kosovo or

Rwanda.  We will elaborate the model to represent conflict between two

ethnic groups.

CIVIL VIOLENCE MODEL II: INTER-GROUP VIOLENCE

Although distinct cultural groups have been generated in agent-based

computational models (Epstein and Axtell, 1996; Axelrod, 1997), here, we will

posit two ethnic groups: Blue and Green.  Agents are as in Model I and turn

Red when active.  But now, "going active" means killing an agent of the other
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ethnic group.  The killing is not confined to agents of the out-group known to

have killed.  It is indiscriminant.  In this variant of the model, "legitimacy" is

interpreted to mean each group's assessment of the other's right to exist, and

for the moment, L is exogenous and the same for each group.  (In Appendix B,

we indicate how the model can be extended to endogenize legitimacy,

allowing it to vary over time, and to take different values for each group.)

For Model II, we also introduce some simple population dynamics.

Specifically, agents clone offspring onto unoccupied neighboring sites with

probability p each period.  Offspring inherit the parent's ethnic identity and

grievance.  Because there is birth, there must be death to prevent saturation.

Accordingly, agents are assigned a random death age from U(0, max_age).

Here, max_age=100. Cops are as before, and arrest--evenhandedly--Red

agents within their vision.  There is no in-group policing in this version of the

model, though Fearon and Laitin (1996) argue convincingly that this may be

important in many cases.

Run 6. Peaceful Coexistence

For the first run of Model II, we set Legitimacy to a high number, just

to check whether peaceful coexistence prevails with no cops.   Figure 12

depicts a typical situation.
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Figure 12.  Peaceful Coexistence

On the left, we clearly see spatial heterogeneity and peaceful mixing of

groups with no red agents.  On the right, we see only the palest of pink

shades, indicating low levels of grievance.  Harmonious diversity prevails.

However, with no cops to regulate the competition, if L falls, even to 0.8, the

picture darkens substantially.  Indeed, we grow ethnic cleansing.

Run 7.  Ethnic Cleansing

The sequence of four panels clearly shows local episodes of ethnic

cleansing, leading ultimately to the annihilation of one group by the other:

genocide.
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         Animation 7.  Local Ethnic Cleansing To Genocide
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Over a large number of runs (n=30), genocide is always observed.  The victor

is random.  The phenomenon is strongly reminiscent of "competitive

exclusion" in population biology (see May, 1976).  When two closely related

species compete in a confined space for the same resource, one will gain an

edge and wipe the other out.  If, however, the inter-species competition is

regulated by a predator that feeds evenhandedly on the competitors, then

both can survive.  Peacekeepers are analogous to such predators.  We

introduce them in Run 8.
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Run 8.  Safe Havens

We begin this run exactly as in the previous genocide case.  But, at

t=50, we deploy a force of peacekeepers.  They go to random unoccupied sites

on the lattice.  And this typically produces safe havens.  A representative

result is shown in Figure 13.

     Figure 13.  Safe Havens Emerge Under Peacekeeping

Rather than begin with no cops initially, as in the previous run, we now offer

a case in which the initial cop density is high.  Once a stable pattern has

emerged, we withdraw the cops.
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Animation 9.  Initial Peacekeepers Withdrawn
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We begin in Panel 1 with a high cop density of 0.04.  With heavy

authority from the start, we see the emergence of a stable but nasty regime.

The presence of cops prevents either side from wiping the other out, but their

co-existence is not peaceful.  On the right screen, it is clear that ethnic

hostility is widespread at all times.  Then, beginning in Panel 2, all cops are

withdrawn--the peacekeepers suddenly go home. Ceteris paribus, there is

reversion to competitive exclusion and, predictably, by Panel 5, one side has

wiped the other out.

Clearly, peacekeeping forces can avert genocide.  But what is the

overall relationship between the size of a peacekeeping presence and the

incidence of genocide?  As an initial exploration of this complex matter, we

conducted a sensitivity analysis on cop density.

Cop Density and Extinction Times

For purposes of this analysis, all cops are in place at time zero.  But

there will be random run-to-run variations in their initial positions and, of

course, in their subsequent movements.  These initial cop densities are
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systematically varied from 0.008 up to 0.01, in increments of 0.002.  For each

such value, the model was run 50 times until the monochrome--genocide--

state was reached.  (If it was not reached after 15,000 cycles, we cut off the

computation).  So, at each density, there is a sample distribution of waiting

times over the 50 runs.  First, we plot the means of these distributions at

each initial density.  In Figure 14 we show that curve, and also the best

linear fit to the same data.

Figure 14. Waiting Time Mean and Initial Cop Density

Figure 3. Waiting Time Variance and Initial Cop Density

Both curves rise to the right overall--the bigger the initial force of

peacekeepers, the more time one buys.  Notice, however, that the actual mean

curve (the blue curve) is not monotone!  It rises and falls.  Within certain

ranges, the mean waiting time may fall--genocide may actually be earlier--
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with increasing force size!  This is counterintuitive and reflects the extreme

path dependency and high variance of the process.  Indeed, as Figure 15

shows, the variance in waiting time itself increases with density, and is very

great above a density of around 0.05.

Figure 15. Waiting Time Variance and Initial Cop Density   
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Reading across, it is clear that one can have convergence to genocide in 200

cycles at virtually every level of initial cop density!  And reading vertically, at

a high cop density of 0.08, one can have high effectiveness (delays of over

15000 cycles) or extremely low effectiveness (convergence in tens of cycles).

The devil would appear to be in the details in peacekeeping operations.

Above a certain point, higher force levels per se, do not confer much higher

confidence of the outcome in these spatially distributed path dependent

dynamics.  In figure 16, the standard deviation in waiting times is plotted

against force density.

Figure 16. Waiting Time Standard Deviation and Initial Cop

Density

The result is a logistic-like S-shaped curve, suggesting diminishing marginal

effectiveness above the "knee" of this curve.  Since the mean µ is essentially

linear and the standard deviation σ is essentially logistic, their ratio σ/µ—the

coefficient of variation—is as shown in figure 17
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   Figure 17.  Coefficient of Variation

This entire analysis proceeds from the assumption that all cops are in

place at time zero.  The same analysis should be conducted for different

arrival schedules.  At the moment, our claim is simply that the agent-based

methodology permits one to study the effects of early and late interventions of

different scales, which is obviously crucial in deciding how to size, design, and

operate peacekeeping forces.

Summary Of Model II Results.

With high legitimacy (mutual perception by each ethnic group of the

other's right to exist), peaceful coexistence between ethnic groups is observed;

no cops are needed.  However, if the cop density is held at zero, and

legitimacy is reduced (to 0.8), we see local episodes of ethnic cleansing,

leading to surrounded enclaves of victims, leading ultimately to the

annihilation of one group by the other.  With early intervention on a
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sufficient scale, this process can be stopped.  Safe havens emerge.  With high

cop density from the outset, the same level of legitimacy (0.8) produces a

stable society plagued by endemic ethnic violence.  If cops are suddenly

removed, there is reversion to competitive exclusion and genocide.  The

statistical relationship between initial cop densities and the waiting time to

genocide was studied.  That analysis showed that, above a certain level, there

were diminishing marginal returns to the cop density, per se.  Throwing

forces at the problem, as it were, is likely to prove inefficient, if it is effective

at all.  And outright ineffectiveness (quick convergence to genocide) at

extremely high force levels, it was shown, is not at all unlikely, due to the

path dependent and highly variable dynamics of interethnic civil violence.

Conclusion

Agent-based methods offer a novel and, we believe, promising approach

to understanding the complex dynamics of rebellion and interethnic civil

violence, and, in turn, to fashioning more effective and efficient policies to

anticipate and deal with them.
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         MODEL ONE MODEL TWO
VARIABLE NAME Run 1 Run 2 Runs 3&4 Run 5 Run 6 Run 7 Run 8
Cop Vision 1.7 7 7 7 1.7 1.7 1.7
Agent Vision 1.7 7 7 7 1.7 1.7 1.7
Legitimacy 0.89 0.82 0.9 0.8 0.9 0.8 0.8
Max. Jail Term 15 30 infinite infinite 15 15 15
Movement none random site in vision random site in vision random site in vision random site in vision random site in vision random site in vision
Initial Cop Density 0.04 0.04 0.074 0.074 0 0 0.04

ALL MODELS
Lattice Dimensions 40x40
Lattice Topology TORUS
Cloning Probability 0.05
Arrest Probability Constant, k 2.3
Max. Age 200
Agent "active" threshold (for G-N) 0.1
Initial Population Density 0.7
Agent Updating Asynchronous
Agent Activation Once per period,

random order

* Departures noted in text
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APPENDIX B: IMMEDIATE EXTENSIONS AND LONGER-TERM

OBJECTIVES.

Four extensions of the present model are of immediate interest:

[1] To explore the effect of different jail terms on the dynamics of Model

I, define:

J
J

Life
= +( )max1 ,

where Jmax and Life  are the maximum jail sentence and agent lifetime,

respectively.   Then, we generalize the equation for the agent’s net risk to

read:

N RPJ= α ,  where α ∈[ , ]0 1 .

The case explored in the text is α = 0. Clearly, as we increase α , we increase

the deterrent effect of jail, an effect worth exploring.  The next three

extensions concern the ethnic violence Model II.

[2] Endogenous Legitimacy

Define the Green-induced Blue per period attrition rate as

βi

BluesKilledByGreensInPeriod i

BluesAliveAtStartOfPeriod i
= _

_
.

Then define Blue’s (homogeneous) measure of Green’s legitimacy (right to

exist) as:

L t LB i
i

i

m

( ) ( )= −
=
∑0

1

1 β ,

where i  ranges from one period ago  to m  periods ago, and L0 is the initial

value.  Thus, m  is the Blue culture’s  shared “memory” for Green
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transgressions.  So, if L0 were 1.0 and, over the last three periods, Green had

inflicted on Blue the attrition rates of 0.0 (one period ago), 0.0 (two periods

ago), and 0.1 (three periods ago), we would have:

LB( ) ( . . . ),3 1 0 0 0 0 0 11 2 3= − + +

whereas if the attrition rate of 0.1 had been inflicted in the most recent

period, Blue would compute

LB( ) ( . . . ),3 1 0 1 0 0 0 01 2 3= − + +

a lower legitimacy, leading to higher Blue grievance, etc.  Obviously, the

Green calculation of L tG ( )  would be exactly analogous.  Three points deserve

emphasis.  The agent can inherit the “cultural memory” of transgressions

inflicted before his birth (m may exceed individual agent lifetimes).  There is

discounting, with more recent transgressions weighing more.   With time, old

transgressions can fade away (i.e., if m=10 all transgressions committed more

than ten periods ago are forgotten).

Now, this extension will tend to produce spirals of violence once a few

risk neutral aggrieved agents begin executing members of the other group.

Each group’s evaluation of the other’s legitimacy will be revised downward,

leading to escalating violence unless there are breaks on the process.  Of

course, peacekeepers are one such regulatory mechanism.  But, a richer

model would allow for the endogenous regulation of inter-ethnic violence,

despite high tension, without external forces.  A modification that would

operate to mitigate the escalatory dynamic just noted is as follows.

[3] Agents estimate the probability of other-group retaliation.

Recall that agents compute the probability of arrest via the formula:

P k C A v= − −1 exp[ ( / ) ],
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where C/A is the cop-to-active ratio within the agent’s vision v.  For the inter-

ethnic variant of the model, let AB  and AG denote active Blues and Greens.

Then, there would be a deterrent effect if Blues were to compute

P k
C A

A
G

B
v= − − +

1 exp[ ( ) ]

Then, even in the absence of cops (C=0), an explosion of Green actives would

serve to deter Blue activation, and vice versa, damping the escalatory

pressures generated under endogenous legitimacy above.  How the two effects

--escalatory and deterrent--would interact is potentially quite rich.

[4] Relative Deprivation.  

A final and easily implemented extension would crudely capture relative

deprivation (Gurr, 1972).  One would assume different Hardship distributions

for different ethnic groups.  For example, one could draw the Hardship of

Blue agents from U(0, .4), and the Hardship of Green agents from U(.5, .9).,

in which case the poorest Green would still be better off than the richest

Blue.

Computational Reconstruction

The principal longer-term objective would be the computational

reconstruction of the true sequence of events in, for example, Rwanda.  This

effort would be on the model of the Artificial Anasazi Project, which—aided

by an extremely detailed environmental and demographic data base—did

reconstruct important elements of a true spatio-temporal history in an agent-

based computational model.  For a report, see Dean, et al (1999).
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