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Automatic Synthesis of Isotropic Textures on 
Surfaces from Sample Images 

Joel Castellanos and Lance R. Williams  

Abstract—A fully automatic method of synthesizing isotropic textures on subdivision surfaces from sample images is presented. 
Both Gaussian and Laplacian pyramid representations of the sample texture are constructed. Texture synthesis proceeds coarse-to-
fine, by incrementally inverting the Laplacian pyramid to produce an initial guess and refining this guess using  non-parametric 
sampling. The sampling procedure uses a nearest neighbor search while preserving first-order statistics. The resulting texture is 
generated directly on the subdivision surface. Within the domain of isotropic textures, the proposed method offers improvements in 
faithful reproduction of a sample's appearance over a wide range of scales. The method can also be used to produce isotropic 
variants of anisotropic textures. Finally, while the sampling procedure we describe is not amenable to standard methods for nearest 
neighbor search in high  dimensional spaces, an acceleration method is proposed that uses an  eigenvector transform and a set of 
dynamic Kd-trees. 

Index Terms— Engineering, Fine arts, Markov processes,  Non-parametric statistics. 
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1 INTRODUCTION 
1.1 Texture 

 exture can be thought of as a visual pattern that is spa-
tially repeated either deterministically or stochastically. 

The pattern may be completely deterministic, such as a chess-
board, completely random, such as well-mixed salt and pep-
per, or exhibit intermediate degrees of randomness, such as 
tree bark, clouds, or marble. Textures can also be classified on 
a continuum from isotropic (having no particular orientation) 
to strongly anisotropic. Polished granite, for example, is iso-
tropic, while a texture comprised of horizontal layers of sand-
stone is anisotropic. With the trivial exception of uniform col-
ors, deterministic textures are anisotropic. A texture may ex-
hibit different properties at different scales – see Fig. 1.  
 

 
Fig. 1. Example Textures: (a) Floral print fabric that is deterministic and 
hence anisotropic. (b) Brick wall having a large-scale structure that is 
anisotropic; however, at small scales (within a single brick or mortar 
line), the structure is isotropic. (c) Texture formed by the random ar-
rangement of identical elements exhibit aspects of both determinism 
and randomness, yet are isotropic at all scales. (d) Some textures can 
only be characterized statistically. Burl wood is an example of such a 
texture. It is isotropic at all scales. 

1.2   Texture Synthesis 
Texture synthesis is the creation of a new texture that is differ-

ent from a sample, yet can be said to have the same visual 
appearance. Texture synthesis has been an active research 
topic in computer vision and graphics. One of he most 
straightforward applications is to synthesize a texture on the 
surface of an object in a computer generated scene in order to 
increase its degree of visual realism. Other image-based appli-
cations include inpainting, foreground removal, [6], lossy im-
age and video compression, and animation of a static texture 
[1]. Fig. 2 shows an example of texture synthesis using the 
method proposed in this paper.  

 
Fig. 2. Texture Synthesis on a Surface: (a) Input sample image. (b) 
Input triangulated surface of Torso of Venus de Milo with 1,418-faces. 
(c) View of synthetic texture synthesized using the method described in 
this paper. 

Two major approaches to texture synthesis are procedural 
and sample-based. Procedural synthesis generates textures 
from mathematical equations that are particular to each tex-
ture. While procedural synthesis is currently very popular, a 
disadvantage is that the parameters yielding in a particular 
texture can be difficult to discover. Designers can spend 
weeks tweaking parameters, and the results, while possibly 
quite interesting and beautiful, are generally unpredictable. By 
contrast, sample-based synthesis applies a single procedure to 
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a wide range of given texture samples. 

1.3   First and Second Order Statistics 
Throughout the literature, it is common to refer to the first-
order and second-order statistics of a texture. With few excep-
tions (mostly quite contrived), a pair of textures with the same 
first and second order statistics appear equivalent to the human 
observer. First-order statistics are the red, blue, and green 
pixel value histograms. These depend only on individual pixel 
values and not on the interaction or co-occurrence of 
neighboring pixel values. Second-order statistics are defined 
as the probability of observing a pair of color values occurring 
at the endpoints of a dipole of random length placed in the 
image at a random location and orientation.  

1.4   Quilting 
Quilting methods are sample-based texture synthesis methods 
that stitch together representative patches of a sample texture. 
Alpha blending and more sophisticated methods including 
dynamic programming are used to eliminate discontinuities at 
patch boundaries. Methods often include heuristics for auto-
matically selecting “good” patches from a sample. For highly 
structured textures, the patch boundaries are generally chosen 
to avoid cutting across important features. For more stochastic 
textures, irregularly shaped patches generally work best. Quilt-
ing methods such as those described by Praun [9] and Efros 
and Freeman [5] can be very fast and produce excellent results 
for a wide range of textures on parameterized surfaces. There 
are, however, disadvantages inherent to any quilting process. 
First, quilting methods cannot reproduce structure at scales 
significantly larger than the size of the quilting elements, nor 
can they reproduce stochastic properties that occur on a scale 
smaller than the quilting elements. For example, in a texture of 
pebbles, there may be one odd shaped pebble with a distinc-
tive marking. Quilting algorithms are likely to produce many 
copies of this odd shaped pebble with the same distinctive 
marking.  

When applying quilting methods to surfaces, there is a third 
inherent disadvantage: Since quilting methods have fewer 
degrees of freedom to exercise than pixel synthesis methods, 
frustration due to misalignment of quilting patches on a sur-
face can only be relaxed by repositioning and reorientation the 
patches. By contrast, pixel based texture synthesis methods 
can relax this frustration more uniformly. This effect is most 
noticeable when quilting anisotropic textures onto a surface 
lacking an explicit two-dimensional parameterization.  This 
results in visible discontinuities. Therefore, quilting a surface 
with anisotropic elements requires that a two-dimensional 
parametrization be imposed on the surface, and when parame-
terizing most surfaces, the creation of singularities is unavoid-
able.  

1.5   Neighborhood Search Methods 
Neighborhood search methods of texture synthesis are based 
on a Markov random field texture model. This model makes 
the assumption that the probability distribution of brightness 
values for a pixel are conditioned solely on the brightness val-
ues of pixels in its neighborhood and are independent of those 

in the rest of the image. The Markov random field is used to 
model a texture's second order statistics.  

Neighborhood search methods synthesize an output texture 
pixel by pixel given a sample input image. To determine the 
value of a particular output pixel, its spatial neighborhood is 
compared against all possible neighborhoods from the input 
image. Its value is then replaced with the value of the input 
pixel with the most similar neighborhood. Texture synthesis 
methods based on neighborhood search have used update or-
ders that are scanline, spiral, surface sweeping, and random. In 
order to capture fine detail, a single pixel must be used as the 
unit of synthesis, yet the pixel's neighborhood must be large 
enough to capture a texture's structure at the largest scale rep-
resented in the sample. Since search time increases rapidly 
with neighborhood size, neighborhood search methods can be 
very slow. Multi-resolution formulations of neighborhood 
search methods synthesize texture using relatively small 
neighborhoods with successively finer resolution. Large-scale 
structure is captured by low-resolution neighborhoods and 
fine-scale structure is captured by high-resolution neighbor-
hoods. Multi-resolution neighborhood search methods, there-
fore, have the advantage of being much faster than otherwise 
equivalent single resolution methods. 

2 PREVIOUS WORK 

2.1   Efros and Leung 
The sample-based, texture synthesis method of Efros and 
Leung [6], can be viewed as a  non-parametric sampling pro-
cedure for an implicit Markov random field. Their algorithm 
"grows" texture, pixel by pixel, outwards from an initial seed. 
All previously synthesized pixels in a square window around a 
given pixel (weighted to emphasize proximity) are used as the 
context. The size of the window is a free parameter that speci-
fies the degree of randomness of a given texture. To synthe-
size a pixel, the algorithm first finds all neighborhoods in the 
sample image that are "similar" to the pixel's neighborhood. It 
then randomly chooses one of these neighborhoods and takes 
its center value to be the new center value of the output 
neighborhood. 

2.2   Wei and Levoy 
Our work builds most directly upon the multi-resolution, 
neighborhood-search-based method of Wei and Levoy [13]. 
For non-parameterized surfaces, Wei and Levoy's method 
takes two inputs: 1) A sample image; and 2) A triangulation of 
the surface on which the texture is to be synthesized. They 
build a partial a Gaussian pyramid from the sample image 
with K levels (usually with K=4). The triangulation represent-
ing the geometry of the surface is then recursively subdivided 
K times with subdivision k corresponding to level k of the 
Gaussian pyramid. Texture synthesis proceeds coarse-to-fine 
in three passes for each level in the Gaussian pyramid being 
synthesized. In the first pass of level k, the level is initialized 
with randomly chosen RGB values from the corresponding 
level of the sample's Gaussian pyramid (this matches the first-
order statistics of level k). The second pass propagates infor-
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mation from coarse scales to fine scales using a neighborhood 
search process based on a neighborhood spanning two levels 
of the pyramid: the current level and next coarser level (levels 
k and k-1). The third pass on level k, further refines each face's 
RGB values using a neighborhood search process based on a 
neighborhood consisting solely of pixels within level k. 

3 OUR APPROACH 

3.1   Overview 
The method we describe is restricted to isotropic textures 

because only isotropic textures can be automatically generated 
on an arbitrary surface in the absence of a parametrization.  

Our method has been inspired by other multi-resolution, 
texture synthesis methods that  non-parametrically sample an 
implicit Markov random field. Although our primary inspira-
tion was Wei-Levoy[13], we have also been influenced by 
Heeger-Bergen[7], Efros-Leung[6], Debonet[4], and Bar-
Joseph[1]. Like Wei-Levoy[13] we synthesize texture in a 
coarse-to-fine manner by searching for the face in the analysis 
Gaussian pyramid with the most similar neighborhood. How-
ever, our method differs from Wei-Levoy[13] in three signifi-
cant ways. First, our method propagates information from 
coarse-to-fine in a more principled, and more effective man-
ner, namely, by incrementally inverting a Laplacian pyramid 
transform. A second difference is that, the greedy method of 
non-parametric sampling described by Wei-Levoy[13] has 
been replaced with a sampling procedure of our own design 
that does a better job of preserving the first-order statistics of 
the sample. Finally, as a pre-processing step, we resample the 
input texture using a triangular grid so that its geometry more 
closely resembles that of the subdivision surface on which the 
texture will be synthesized. Representing both the analysis and 
synthesis pyramids using the same geometry greatly simplifies 
the neighborhood matching procedure that is the heart of the 
texture synthesis process. 

3.2   Coarse-to-fine Information Flow 
The proposed method computes both Gaussian and Laplacian 
pyramid representations of the sample texture. Having both 
representations of the sample allows the synthesis process to 
propagate information from coarse scales to fine scales by 
incremental inversion of the Laplacian pyramid transform. 
The procedure we use to implicitly sample the Markov ran-
dom field at level k of the analysis Gaussian pyr amid returns 
not only the Gaussian RGB values, as in Wei & Levoy [13], 
but also the RGB values of the four Laplacian children at level 
k+1 (the next finer resolution level). Therefore, we simultane-
ously synthesize Gaussian level k, (symbolized Gk), and 
Laplacian level k+1 (symbolized Lk+1). Once Gk and Lk+1 are 
complete, we compute a first approximation of Gk+1 by up-
sampling Gk, convolving it with a Gaussian kernel, and adding 
this to Lk+1. This incremental inversion of the Laplacian pyra-
mid produces a very smooth coarse-to-fine information flow 
where large-scale structures, which form in coarser resolution 
levels, propagate to finer resolution levels. 

Only the coarsest level of the synthesis Gaussian pyramid, 

G0, is initialized with the RGB values of randomly chosen 
faces of the coarsest level of the analysis Gaussian pyramid. 
After a given level is initialized (by random samples in the 
case of G0, or by incremental inversion of the Laplacian pyra-
mid for all other levels), each face is visited in random order 
and its value is asynchronously updated using a non-
parametric sampling procedure.  
Fig. 3 illustrates the information flow of the process. Notice 
that low frequency structures that are present in the final tex-
ture (i.e., the green/yellow region and the blue region in Step 
14) form in the first step of the sampling (G0 in Step 8). By 
contrast, the results of Wei-Levoy[13] (who initialize each 
level with random values from the sample's pyramid) exhibit 
large shifts in spatial structure as synthesis progresses from 
coarse to fine. 

3.3   Laplacian Pyramid Transform 
The Laplacian pyramid transform is a linear transform that 
represents a gray scale image by decomposing it into a set of 
bandpass images, and a single residual lowpass image [3]. The 
original image can be perfectly reconstructed from the set of 
bandpass images, together with the residual lowpass image. 
Color images can be represented by transforming each color 
channel independently. The Laplacian pyramid transform is a 
historical predecessor of and closely related to the fast wavelet 
transform. 

Each iteration of the process proceeds as follows: 1) The 
image is lowpass filtered by convolution with a Gaussian ker-
nel; 2) The result is then subtracted from the original image. 
This difference image is called the bandpass image and retains 
the high-frequency detail. The bandpass image can be thought 
of as a second derivative of the lowpass image; 3) The low-
pass image that resulted from the first step is then downsam-
pled by a factor of two (every other pixel in both dimensions 
is discarded). 

The three steps described above are repeated recursively, us-
ing the result of the third step at one level as input to the first 
step at the next level. In the case of a square input image of 
size 2K, then the process can be repeated K times giving a re-
sidual lowpass image consisting of a single pixel. The lowpass 
images are called the Gaussian pyramid levels, Gk. Let GK-1 be 
the original image and G0 be the residual lowpass image. The 
bandpass images are called the Laplacian pyramid levels, Lk. 

The transform is inverted in the reverse order:  1) Each 
Gaussian pyramid level, Gk, beginning with the lowest resolu-
tion, G0, is upsampled (zeros are inserted between sample 
points in both dimensions); 2) The upsampled Gaussian level 
is interpolated by convolution with the same Gaussian kernel 
used in the encoding process; 3) The result is added to the 
corresponding Laplacian pyramid level, Lk+1. As with encod-
ing, the process is repeated for each level of the pyramid. This 
decoding process reconstructs the original image without er-
ror.  

For notational convenience we define two operations: re-
duce and project. The reduce operation is Gaussian convolu-
tion followed by downsampling. The project operation is up-
sampling followed by Gaussian convolution: 
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     )(1 kk GreduceG =−  (1) 

    )(1 kkk GprojectGL −=−  (2) 

Generalizing the Laplacian pyramid to operate on a surface 
requires first generalizing the basic image processing opera-

tions mentioned above: Gaussian convolution, and up and 
down sampling. These generalizations are described below 
along with a method for recursive subdivision which is used to 
generate the geometry on which the transform is defined. 

   

 
Fig. 3. Analysis and Synthesis: This figure illustrates the paths of information flow in our method. The analysis pyramid is computed by mapping 
the texture sample onto a triangular grid (Step 0) and repeatedly convolving with a Gaussian kernel and downsampling. Synthesis begins with G0 
of the synthesis pyramid being initialized with random values from G0 of the analysis pyramid (Step 7). Gaussian convolution is represented by ∗g. 
Upsampling and downsampling are represented by ↑2 and ↓2. Blue arrows and the function Choosy() indicate our non-parametric sampling proc-
ess, which returns both a Gaussian and a Laplacian level. Green arrows indicate the project and correct operations that produce the next level's 
initial guess.  Note: The Laplacian pyramid images (which generally contain negative values) have been normalized for the purpose of display

3.4   Mesh Subdivision 
Butterfly subdivision developed by Zorin, Schröder, and 
Sweldens [14] is used recursively to generate the geometry of 
each subsequent level of the pyramid. Butterfly subdivision 
adds a vertex to every edge, and subdivides every face into 

four faces as shown in Fig 4.  

 
Fig. 4. Butterfly Subdivision: new vertices and edges shown in red. 
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  The position of each new vertex is determined by the sten-
cils shown in Fig. 5 using weights given in [14]. Vertices 
added to interior edges will always have a valence of six, and 
vertices added to boundary edges will always have a valence 
of four. The scheme neither deletes nor moves existing verti-
ces, and produces limit surfaces with continuous first deriva-
tives. 

 
Fig. 5. Subdivision Stencils: (a) For pair of vertices each with va-
lence=6, and (b) Used when at least one of the endpoints of the di-
vided segment has a valence not equal to 6. 

3.5   Downsampling and Upsampling 
When a two-dimensional, pixel image is downsamped, by a 
factor of two, every other pixel in both dimensions is dis-
carded. Upsampling, by a factor of two, inserts zeros between 
each pixel in both dimensions. 

Sirl-Moore and Williams [10] generalized downsampling 
and upsampling to a surface whose faces are two-colorable by 
marking each face as either type black or type white so that no 
two adjacent faces have the same type. Recall that the butter-
fly scheme subdivides each parent face on level k into four 
child faces on level k+1. Using the method of Sirl-Moore and 
Williams, the center child inherits the type of its parent, and 
each of the three outer children inherits the type opposite to its 
parent  (see Fig. 6).  

 

Fig. 6. Color Inheritance for Resampling 

Downsampling, populates each parent cell with the RGB 
color values of its center child. Upsampling, populates each 
white child with the RGB color values of its parent, and each 
black  child with RGB values of zero. 

3.6   Gaussian Convolution 
Two-dimensional, discrete convolution is a common image 

processing operation. To define the convolution of two func-
tions of a surface, image pixels are replaced with surface 
faces. The faces, in general, are neither equally spaced nor 
equally sized. Therefore, the Gaussian must be represented as 
a continuous function of the distance, ( , )d i j , between face i 

and face j. We define the distance, ( , )d i j , between faces i 
and j as the straight-line Euclidean distance between the cen-
troid of the two faces. Since the Gaussian attenuates rapidly 
with increasing distance, we find this to be a reasonable ap-
proximation. This is especially true at the finest resolution, 

which, for a 4-level pyramid, has 256 times as many faces as 
the input geometry. Since the butterfly subdivision produces 
surfaces with continuous first derivatives, even regions of the 
input geometry with high curvature will be reasonably flat on 
a small neighborhood of the finest resolution level. Differ-
ences in face size are accounted for by scaling the Gaussian by 
the area, ai, of face, i.  

Let Ω(i) be a neighborhood of faces about face i such that 
each face j ∈ Ω(i) is sufficiently near i to significantly con-
tribute to the value of face i after convolution. Since the Gaus-
sian has compact support, this will be a small neighborhood. 
Formally, we define the neighborhood, Ω(i), as including i, all 
faces adjacent to i, and all faces adjacent to those faces recur-
sively with the recursion ending in each direction when the 
distance, d(i,j), between the face in question and i, is greater 
than 3σ. The convolution weight of face j ∈ Ω(i) relative to 
face i is given by the equation developed in [10]: 

( , )
ij j

d i j
w g a

σ
 =   

 (3) 

where
2 2( ) rg r e−= , and σ is the maximum distance between 

all pairs of adjacent faces. In the expression for wij, dividing 
by σ dilates g, a Gaussian of unit standard deviation, so that it 
is a Gaussian of standard deviation σ. The standard deviation 
of the Gaussian at each level of the Laplacian pyramid there-
fore equals the maximum distance between any two adjacent 
faces of the triangulation at that level. This is a conservative 
choice (compared to the alternative of setting σ  equal to the 
average distance between adjacent faces) which minimizes the 
aliasing introduced by downsampling, yet remains faithful to 
Burt’s formulation [2]. The down side of this conservative 
choice is the risk of introducing excessive blurring. Over-
sampling is minimized by remeshing the input geometry (be-
fore subdividing) so that all triangles are approximately equi-
lateral and approximately equally sized. Therefore, the maxi-
mum distance between any two adjacent faces is not much 
larger than the average distance. As will be discussed later, 
there are a number of other reasons why it is desirable to regu-
larize the input geometry. Finally, so that the sum of the con-
volution weights contributing to the value of face i is one, 

each weight is divided by the factor, 
( ) ijj i

w
∈Ω∑ . The value 

of face i after convolution is therefore: 

( )

( )

( )ij j
j i

i
ij

j i

w v
v

w
∈Ω

∈Ω

′ =
∑

∑
 (4) 

where vj is the value of face j before convolution. 

3.7   Reduce and Project 
With resampling and convolution defined for triangulated sur-
faces, reduce and project can be likewise generalized. Analo-
gous to the case of a 2D image, reduce is Gaussian convolu-
tion followed by downsampling, and project is upsampling 
followed by Gaussian convolution.  When a surface is upsam-
pled, only half of the faces of the child level inherit the value 
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of their parent. The other half of the faces are each assigned a 
value of zero.  In order to preserve overall brightness, a nor-
malization factor is applied to each face. This factor is devel-
oped in [10]: 

( )

( )i ij
j i

S j w
∈Ω

Γ = ∑  (5) 

where ( )S j  equals one if face j is white (meaning it inherited 

RGB color values from its parent), and ( )S j equals zero if 
face j is black . The value of face i after upsampling and con-
volution is therefore: 

( )

ij
i j

j i i

w
v v

∈Ω

 ′ =  Γ 
∑ . (6) 

3.8   Mapping Rectangular to Triangular Grids 
What we call the analysis pyramid ( i.e. the pyramid 

representation of the sample image), actually consists of two 
pyramids. The sample image, represented as a rectangular 
array of pixels, is mapped onto a pair of triangular “grids”. 
The grids are identical except that the second is rotated 90° 
relative to the first. Each mapping forms the finest resolution 
level of a Gaussian pyramid representation of the sample im-
age. During texture synthesis, when evaluating neighborhood 
similarity, we query both Gaussian pyramids and, within each 
pyramid, consider three, 60° rotations of each neighborhood. 
We therefore choose the best of six rotational phases of the 
sample: 0°, 30°, 60°, 90°, 120°, and 150°. This effectively 
increases the number of sample neighborhoods by a factor six 
and is tantamount to averaging the Markov random field sta-
tistics over multiple orientations. This is consistent with our 
assumption of isotropy.  

Each triangular grid consists of rows of congruent, equilat-
eral triangles. Let K be the desired number of pyramid levels. 
The sample image is assumed to be square, having a width of 
m pixels where m is divisible by 2K-1. The sample image is 
mapped to a triangular grid with m rows, and a second triangu-
lar grid with m columns. Since these grids correspond to the 
geometry of the finest resolution level of the synthesis pyra-
mid (i.e., the pyramid representation of the texture being syn-
thesized), we must construct them so that they are the result of 
K-1 applications of butterfly subdivision. Fig. 7 shows the 
grid, G2, used to map a 12×12 pixel sample image with K=3. 
G2 has 12 rows of triangles: one row for each pixel. Notice 
that this geometry is the result of two subdivisions of G0. G0 is 

constructed with ( 1)2 Km − = 3 rows of triangles.  The number 
of triangles in each row of G0 is chosen so that the width of 
the row is less than or equal to the total height of G0. 

 
Fig. 7. Sample Geometry Mapping: (a) G2, (b) G1, and (c) G0 for a 
12x12 pixel sample image with N=3.  

Because there is no one-to-one mapping between the rec-
tangular grid of pixels and the grid of equilateral triangles, 
bilinear interpolation is used to perform the mapping. Fig. 8 
shows the mapping of a 64×64 pixel texture onto 0° and 90° 
rotations of the flat, regular, triangular grid.  The triangular 
grid used in this mapping consists of 64 rows with an average 
of 104 triangles per row. It results from four subdivisions of a 
roughly square grid consisting of 8 rows of congruent, equilat-
eral triangles. The difference between the two mappings re-
quires magnification to discern. Yet, as can be seen in the 
magnified images, there are significant differences in the 
neighborhoods. For example, compare the short, black hori-
zontal line that appears just above the center of the magnified 
sample (Fig. 8d) with the same line's appearance in Fig. 8e 
and Fig. 8f. 

 
Fig. 8. Interpolation of pixel grid onto triangular grid: (a) Original texture 
image consisting of 64×64 = 4096 pixels. (b) Interpolated image onto a 
triangular grid consisting of 6,656 equilateral triangles. (c) Interpolated 
image onto a triangular grid that is rotated 90° from the grid used in (b). 
(d - f) Enlargements of corresponding segments of (a), (b), and (c). 

3.9   Surface Remeshing 
There are at least three reasons why it is desirable to remesh 
the input surface: First, faces of the triangulation are used in a 
way that is analogous to the pixels of an image. Therefore, it is 
desirable that all faces have approximately equal area, and be 
approximately equilateral. Second, the downsampling and 
upsampling processes, which we use for subdivision surfaces, 
assume that the triangulation is two-colorable. A conformal, 
triangulated surface is two-colorable if and only if all of its 
non-boundary vertices are of even valence (boundary vertices 
may be of any valence). Finally, computing the error distance 
between neighborhoods of the input and output Gaussian 
pyramids, as required by our sampling procedure, is most ac-
curate when all of the vertices have a valence of six. This will 
be the case for vertices created by recursive subdivision, but 
not necessarily for those of the input geometry.  
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The remeshing method given by Turk [11] can be used to 
convert a polygonal mesh representing the geometry of a sur-
face into a semi-regular triangulation with a user specified 
number of vertices. Furthermore, it can be arranged so that all 
vertices are even, and have a valence of six. The initial po-
lygonal surface may be either concave or convex, and it may 
have holes. The major restriction is that the mesh must be con-
forming: Each edge is shared by no more than two polygons. 
In our implementation, the given triangulation is remeshed 
using [11]. The faces of the remeshed triangulation form the 
geometry of the residual lowpass level, G0, of the synthesis 
Gaussian pyramid. 

3.10   Convolution Parameters 
After building the analysis and synthesis geometries, and 
computing the Laplacian pyramid transform of the input tex-
ture, there remain a few parameters that need to be calculated 
before the synthesis process can begin. First, a scaling factor 
must be determined relating distances in the analysis and syn-
thesis spaces. Distances in the analysis pyramid are left un-
scaled. All distances measured in the synthesis pyramid are 
scaled by the factor, ˆ ˆ( ) ( )A Sd k d k , where ˆ ( )Ad k is the mean 
Euclidean distance between centroids of adjacent faces of 
level k, of the analysis pyramid, and ˆ ( )Sd k  is the correspond-
ing quantity for the synthesis pyramid. Recall that, by con-
struction, the distances between centroids of all pairs of faces 
on the analysis pyramid are identical, and on the synthesis 
pyramid the variance of this distance is reasonably small. 

The second parameter that needs to be calculated is σk, the 
standard deviation of the Gaussian kernel used in the reduce 
and project operations. Since values from the analysis pyr amid 
are copied into the synthesis pyramid, this parameter should 
be the same for both pyramids. We set σk equal to the maxi-
mum distance (scaled as described above) between pairs of 
adjacent faces for a given level of the synthesis pyramid. 

3.11   Choosy Sampling 
We have developed a sampling procedure for Markov random 
fields, which we call choosy sampling. This procedure finds a 
match based on neighborhood similarity, thereby matching the 
(second-order statistics of the sample, while simultaneously 
preserving the first-order statistics. The choosy sampling pro-
cedure, like the procedures employed by both Efros-Leung[6] 
and Wei-Levoy[13], is  non-parametric. Non-parametric sam-
pling, is sampling that makes no reliance on the estimation of 
parameters such as mean, standard deviation, or distribution 
curve. 

Choosy sampling visits, in random order, each face of a 
given level of the synthetic Gaussian pyramid and asynchro-
nously updates its color values.  A similarity metric is calcu-
lated between the color values in a neighborhood of faces 
around the visited synthesis face and the neighborhood around 
each face of the corresponding level of the analysis Gaussian 
pyramids.  The similarity metric is multiplied by a penalty 
factor that increases exponentially with the differential fre-
quency of selection.  More specifically, the similarity between 
a neighborhood, ΩS(i), around face i of the synthesis Gaussian 

pyramid, and a neighborhood, ΩA(j), around face j of the 

analysis Gaussian pyramid,  is scaled by the factor ( )[ ]2 minc j c− , 
where [ ]c j  is the number of times that face j already been 
used, and cmin is the minimum value of c among all neighbor-
hoods of the appropriate level of the analysis Gaussian pyra-
mid. This exponential scaling is a soft constraint, which is 
intended to approximate sampling without replacement. In 
true sampling without replacement, before any face can be 
used n+1 times, all faces must be used n times. Although it is 
clear that such a process will match the first-order statistics 
perfectly, true sampling without replacement has the serious 
problem that when a majority of the faces have been chosen n 
times, the search process becomes over-constrained, and it is 
nearly impossible to find a satisfactory match. We have ob-
served that this results in noticeable speckling in the texture 
being synthesized. By approximating sampling without re-
placement using a soft constraint, our choosy sampling avoids 
this problem while still yielding good matching of first-order 
statistics.  

By contrast, Wei-Levoy[13] always chose the best match.  
We have observed (see section 5) that, for many textures, this 
greedy selection method results in some faces (or pixels) being 
chosen significantly more frequently than others. The result, 
with such textures, is poor matching of the first-order statis-
tics.  

 Efros-Leung[6] type sampling methods choose randomly 
between faces (or pixels) with neighborhood similarities be-
low a given threshold. Tight thresholds capture second-order 
statistics at the expense of first-order statistics. The reverse is 
true for loose thresholds.  The “best” threshold choice is tex-
ture dependent.  

3.12   Neighborhood Similarity Function 
The neighborhood we use in the choosy sampling is restricted 
to a single level of the Gaussian pyramid. The k-distant 
neighborhood about face j is defined as the set of faces whose 
minimum adjacency distance is greater than zero and less than 
or equal to k. If every vertex has a valence of six, then the ad-
jacency relationships between faces in the k-distant neighbor-
hood will always have three-fold symmetry, and the cardinal-
ity of the neighborhood will be divisible by three. The stencil 
shown in Fig. 9 highlights the three-fold symmetry for 2-
distant neighbors: 

 
Fig. 9. Choosy Neighborhood Stencil Showing Three-fold Symmetry: Notice 
that there are 12 one-distant neighbors, and 24 two-distant neighbors. 

 
In both the analysis Gaussian pyramid (by initial construc-

tion, and butterfly subdivision), and the synthesis Gaussian 
pyramid (by remeshing, and butterfly subdivision) the all ver-
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tices have a valence of six except for those on the boundary, 
which have a valance less than six. Analysis neighborhoods 
that include boundary vertices are not included in the sampling 
process. Faces missing from a synthesis neighborhood because 
the neighborhood extends beyond the boundary are treated as 
“wild cards”. The color difference between such faces and any 
analysis face in the corresponding position is defined as zero. 

As shown in Fig. 9, a two-distant neighborhood includes 
3 3 12 36p = ⋅ =  faces. Since each face has three, color values 
(RGB), there are a total of 3 36 108⋅ =  values per neighbor-
hood. The error distance between the query neighborhood 
ΩS(i) of the synthesis pyramid about face i and a neighborhood 
ΩA(j) of the analysis pyramid about face j, is the 108 dimen-
sional Euclidean distance between ΩS(i) and ΩA(j).  Since we 
assume isotropic textures, we exploit the three-fold symmetry 
of the neighborhood, by defining the error distance between 
ΩS(i) and ΩA(j) as the minimum error distance between ΩA(j) 
and three 60° rotations of  ΩS(i). 

Proximity is emphasized by weighting the error distances 
between RGB values of corresponding faces zS ∈ ΩS(i) and zA 
∈ ΩA(j) by an exponential function of the inverse Euclidean 
distance between the centroid of each face in the syntheses 
neighborhood zS, and centroid of i. Since this is the same dis-
tance function used previously for other purposes, we denote it 
with the same notation, d( zS, i). The scaling factor, βZ, is 
given by: 

2( , )1
2 1.3 k

Sd z i

z
e σβ

 
−  

 =  (7) 

where, σk is the standard deviation of the Gaussian kernel used 
in the reduce and project operations at level k. So that the 
same numerical value of σk used in reduce and project, 

d( zS, i) must be scaled by the ratio ˆ ˆ( ) ( )A Sd k d k  defined ear-
lier. The effect of the scaling factor, βZ, on a relatively flat 
patch of geometry with approximately congruent, equilateral 
triangles of average size is to weight one-distant neighbors 
roughly four times more heavily than two-distant neighbors.  
 

3.13   Sampling Iteration 
The texture synthesis results can be improved by iteratively 
applying the choosy sampling at each resolution level. The 
improvement is particularly noticeable on samples that are 
composed of meaningful elements (such as the olives in Fig. 
10). Successive iterations visit faces in different random or-
ders. 

 
Fig. 10. Choosy Sampling Iteration on Wet Olives: (a) Sample (96×96). 
(b) Result with one iteration per resolution level. (c) Result with 8 itera-
tions on levels 0 through 2, and one iteration on level 3. (d) Result with 
8 iterations on each level.   

4   ALGORITHMS 
Pseudocode of the proposed texture synthesis process is 
shown in Algorithm 1 and 2. The algorithms are preceded by a 
list of definitions.  
 
∆input: Geometry (faces, edges, and vertices) of the input. 
∆A, ∆S: Geometry of analysis and synthesis pyramids including 

space for RGB values of the Gaussian and Laplacian levels. 
GA, GS:  Gaussian values of analysis and synthesis pyr amids. 
LA, LS:  Laplacian values of analysis and synthesis pyr amids. 
TurkRemesh:  Converts a general conformal mesh into a semi-

regular triangulation using [11]. 
ButterflySubdivision: Performs recursive subdivision using the 

butterfly subdivision schema [14].  
GetDistanceScalingFactor: Calculates scaling factor for dis-

tances measured in a given level of the synthetic geometry. 
GetSigma : Calculates the target standard deviation, σk, of the 

Gaussian function used for convolution at a given resolution 
level for both analysis and synthesis. 

RandomFaces: Populates the RGB Gaussian values of the first 
parameter with randomly sampled faces from the second. 

Project: Performs upsampling and Gaussian convolution of 
the given triangulation.  

Choosy: Uses the choosy sampling process (see algorithm 2), 
to asynchronously copy RGB values of faces from GA[k] to 
GS[k]. Additionally, if k < MAXLEVEL-1, then the Laplacian 
RGB values of each face’s four children are also copied 
from LA[k+1] into LS[k+1]. 

Minimum: Calculates the minimum value of a vector. 
Neighborhood: Returns an ordered, single resolution,  

neighborhood in the given geometry about the given face. 
ErrorDistance: Returns the minimum error distance (scaled by 

βZ ) of three rotational phases between the Gaussian RGB 
values of corresponding faces of the given neighborhoods.  

ChildernOf: Given a face in level k, this function returns face 
indexes, in level k+1, of the children of the given face. 

Algorithm 1: Synthesize Texture 

SynthesizeTexture( GA, LA, ∆input ) 
  ∆S[0]  ←  TurkRemesh( ∆input ) 
  for k = 0 to MAXLEVEL-1 do 
   if (k > 0) then ∆S[k]  ←  ButterflySubdivision( ∆S[k-1] ) 
   λS[k]  ←  GetDistanceScalingFactor( ∆A[k],  ∆S[k]) 
   σ[k]  ←  GetSigma( ∆A[k],  ∆S[k]) 
  end   
  GS[0] ← RandomFaces(GA[0], ∆S)  
  〈GS[0], LS[1]〉 ← Choosy(GS[0], ∆S[1], GA[0], LA[1],  0) 
  for k = 1 to MAXLEVEL-1 do 
   for c = {RED, GREEN,  BLUE} do 
    GS[k][c] ← LS[k][c] + Project( GS[k-1][c], λS[k], σ[k] )  
   end 
   〈GS[k],LS[k+1]〉 ←Choosy(GS[k],∆S[k+1],GA[k],LA[k+1],k) 
  end 
  return GS[MAXLEVEL-1] 
end 
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Algorithm 2: Choosy Sampling 

Choosy( GS[k], ∆S[k+1], GA[k], LA[k+1],  k) 
  c[  { j ∈ GA[k] } ] = 0 
  foreach (i ∈ GS[k] selected randomly) do 
   cmin = Minimum( c[] ) 
   dmin = MAXFLOAT 
   ΩS  ← Neighborhood( GS[k], i ) 
   foreach ( j ∈ GA[k] ) do 
    ΩA ← Neighborhood( GA[k], j ) 

    d = ErrorDistance( ΩA, ΩS ) ∗ 
)][(2 mincjc −

 
    if (d < dmin ) then  { jopt =  j;   dmin = d } 
   end 
   GS[k][i]  ← GA[k][jopt] 
   if ( k < MAXLEVEL-1 ) then 
    LS[k+1][ChildernOf( GS[k][i] ) ] ←  
      LA[k+1][ChildernOf( GA[k][jopt] ] 
   end 
   c[jopt] = c[jopt] + 1 
  end 

 

5 RESULTS 
All of the experimental results shown in this section use four 
levels of resolution, one iteration of choosy sampling at each 
level, and a neighborhood size of 36. Results from other re-
searchers were downloaded from the named researchers' web-
sites. Fig. 2, Fig. 11, and Fig. 12 show natural textures on a 
variety of geometries. OpenGL lighting effects have been used 
in these three figures to accentuate the surface geometry. 
While lighting effects can aid in realism, they can obfuscate 
some details of the texture synthesis results. Therefore, most 
of our examples (especially the comparative examples) are 
synthesized on the surface of a sphere without the use of light-
ing.  

The rusty metal texture synthesized on the teapot (Fig. 11) 
is particularly challenging to many synthesis methods because 
it contains fine scale pitting, and a single instance of a large-
scale rusty patch. This patch has a very distinctive shape, 
which would be distracting if reproduced exactly in different 
places on the surface, as quilting methods are prone to do.   

Burl wood (Fig. 12) is one of the few wood grains that is 
statistically isotropic.  

 
Fig. 11. Rusty Metal texture on Utah Teapot:  (a) Samples (96×96), (b)  
3,752 face input geometry and 960,521 face output geometry dis-
played with OpenGL lighting effects. 

 
Fig. 12. Burl Wood Synthesized on Ludwig von Beethoven Bust - (a) 
Sample (128×128), (b) 5,030-face input geometry and 321,920-face 
output geometry displayed with OpenGL lighting effects. 

The pool water, (Fig. 13), works exceptionally well with 
our method. We succeed in capturing the first order statistics, 
and the connectedness, thickness, and randomness of the lines 
of light, as well as the shading of the darker areas. The syn-
thetic patterns are novel, yet realistic. 

 
Fig. 13. Pool Water on Sphere: (a) Sample (128×128), (b) Castellanos-
Williams on 524,288 face sphere, (c) Wei-Levoy 

The candy sample shown in Fig. 14 is composed of repeated 
elements (roughly cylindrical candies). While the texture as a 
whole is isotropic, the elements from which it is comprised are 
not. Our method often fails to reproduce the elements of such 
a texture in an accurate way (although the results can be sig-
nificantly improved with multiple iterations of choosy sam-
pling. See Fig. 10). However, we believe that we do better 
with this candy texture than Wei-Levoy[13]: First, the shape 
of our candies more closely matches those in the sample. Sec-
ondly, the first order statistics of Wei-Levoy's result are se-
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verely skewed. Their result contains too much lavender and 
brown, and too little green and teal. This point is dramatically 
illustrated by the histograms. Our results match the sample’s 
histograms so closely that they are essentially superimposed. 
As explained earlier, the Wei-Levoy[13] sampling method is 
too greedy and often results in poor matching of the first-order 
statistics. The histograms in Fig. 14 were calculated with 50 
bins in each color channel. The sample contains 36,864 pixels, 
and our result contains 131,072 faces (counting the full sur-
face of the sphere). The result from Wei-Levoy contains 
40,000 pixels. Each histogram has been normalized so that the 
sum of all bin-counts equals is one.  

 

    
Fig. 14. Histogram Comparison for Candy Texture. 

The textures in Fig. 15-17 are each anisotropic on a medium 
scale. For instance, in Fig. 14, the black bands form a roughly 
rectangular grid. This anisotropy is well modeled by the 
method of Wei-Levoy[13]. Our method creates isotropic vari-
ants of anisotropic samples. Although these are not faithful 
reproductions, they are often quite interesting. Unlike the iso-
tropic textures they are derived from, they can be synthesized 
directly on a two-dimensional surface in the absence of a 
parameterization. Also note that Wei-Levoy[13] succeed in 
matching the first order statistics for each of these textures. 
We believe that the reason for this is that in each case, the 
first-order statistics are fairly constant in all small windows of 
the sample.  

 
Fig. 15. Alien Skin Comparison: (a) Sample (96×96), (b) Castellanos-
Williams on 131,072 face sphere, (c) Wei-Levoy 

 
Fig. 16. Anisotropic Red-Green Pattern Comparison: (a) Sample 
(64×64), (b) Castellanos-Williams on 131,072 face sphere, (c) Wei-
Levoy. 

 
Fig. 17. (a) Anisotropic cells sample (64×64), (b) Castellanos-Williams 
on 131,072 face sphere, (c) Wei-Levoy. 

The saltine cracker sample, shown in Fig. 18, offers an ex-
cellent comparison of the strengths and weakness of the vari-
ous methods. This sample contains a deterministic pattern of 
holes superimposed on an isotropic background texture. The 
quilting method used by Efros-Freeman[5] reproduces the 
deterministic pattern perfectly. Notice also that there are no 
discernible boundaries between the patches. Efros-Freeman[5] 
capture the large-scale stochastic pattern of the placement of 
the dark brown patches. The smaller scale stochastic proper-
ties, however, are poorly represented. In particular, the same 
dark random shape is reproduced distractingly throughout the 
image. Wei-Levoy[13] also show evidence of copying what 
should be a randomly shaped dark spot. Additionally, Wei-
Levoy[13] produce far too much light colored area. Our 
method, while it completely fails to reproduce the arrangement 
of the holes, creates genuinely novel brown patches that re-
semble those of real crackers. It also accurately reproduces the 
sample's color mixture.  
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Figure 18 - Saltine cracker Comparison: (a) Sample, (b) Castellanos-
Williams on 524,288 face sphere,  (c) Efros-Freeman, (d) Wei-Levoy. 

The sample used in Fig. 19 is a segment from an abstract 
watercolor painting. Our method has created completely novel 
patterns (no copying) within the artist’s style. 

       
                (a)                                          (b) 
Fig. 19. (a) Isotropic Watercolor Painting (96×96), (b) Castellanos-
Williams on 524,288 face sphere. 

6 ACCELERATION 

6.1   Time Complexity Without Acceleration 
The most computationally intensive part of the algorithm de-
scribed above is the choosy sampling. We usually use a 
neighborhood size of 36 with three colors. Queries, therefore, 
are performed in d-dimensional space where d = 3×36 = 108. 
The time complexity with M faces on the final rendered sur-
face, and N pixels in the sample is, therefore, 

( )0
6 / 2 ( )K k

k
O MNd O MNd

=
=∑                               (8) 

The K terms correspond to the number of pyramid levels 
(we usually use four), and the factor of six comes from the use 
of six rotational phases of the sample. 

6.2   Dimensionality Reduction 
The Eigenvector Transform, variously referred to as Kar-
hunen-Loéve (KL) Transform, Hotelling Transform, or Prin-
cipal Component Analysis (PCA) is a procedure that trans-
forms a number of correlated random variables into a smaller 
number of uncorrelated random variables called the principal 
components [8]. The first principal component accounts for as 
much of the variability in the data as possible, and each suc-
ceeding component accounts for as much of the remaining 
variability as possible. Given N vectors, ixv  of dimension d, 

the principal components are the eigenvectors of TXX . Prin-
cipal components with very small eigenvalues can be ignored 
in many problems without significantly affecting the results. 

In our problem, ixv  is a three-color, adjacency neighbor-

hood totaling 108 dimensions, and N is the number of faces in 
a given level of the sample. Therefore, there are 108 eigenvec-
tors and eigenvalues. For all of the textures we have tested 
(which include all those shown in this paper), the ratio of the 
first eigenvalue to the second is at least 50, and the ratio of the 
first to the twentieth is at least 1000. Table 1 shows five sam-
ple textures and selected eigenvalues. 

TABLE 1 

NEIGHBORHOOD EIGENVALUES 

Selected 
Eigen-
values     

108 
75 
50 
30 
20 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

0.00000 
0.00007 
0.00036 
0.00379 
0.01256 
0.04825 
0.05045 
0.08063 
0.10439 
0.36311 
0.37680 
0.45952 
1.27433 
1.28836 
72.5694 

0.00000 
0.00003 
0.00030 
0.00105 
0.00375 
0.02663 
0.03131 
0.03761 
0.03973 
0.10023 
0.11087 
0.11649 
0.39757 
0.42776 
176.469 

0.00003 
0.00041 
0.00103 
0.00542 
0.01743 
0.14606 
0.17085 
0.17469 
0.28112 
0.30249 
0.39283 
0.56957 
0.60274 
1.52357 
74.2641 

0.00000 
0.00001 
0.00007 
0.00081 
0.00270 
0.01431 
0.01533 
0.01823 
0.01975 
0.04339 
0.04381 
0.04832 
0.14290 
0.15274 
81.1529 

Four sample textures and their eigenvalues for 108×108 covariance matrix. 
 

Recall that in our procedure, proximity is emphasized by 
weighting the error distances between RGB values of corre-
sponding faces by a Gaussian function of the faces’ Euclidean 
distance to the face being synthesized. In the transformed 
space, each dimension no longer corresponds to a single face 
making it impossible to apply distance weighting. Therefore, 
weighting needs to be applied before the neighborhood is 
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transformed. Then, at each query, the same scaling needs to be 
applied to the magnitudes of the synthesized neighborhood 
values. 

The images in Fig. 20 show a comparison of results using 
the full 108 dimensional query and results using only the 20 
most significant transformed dimensions. We observe that the 
quality of the results is indistinguishable. The overhead added 
by the transformation is negligible, and this process immedi-
ately offers a five-fold increase in speed. More significantly, 
the dimensionality reduction makes it possible to use special-
ized data structures for approximate nearest neighbor compu-
tations in high-dimensional spaces, such as Kd-trees, leading 
to further acceleration. 

 
Fig. 20. Acceleration Comparison: (a) Green Marble Sample (96×96). 
(b) Orthoclase Garnet sample (96×96). (b, e) Synthetic textures using, 
108-dimention query without distance weights. (c, f) Result with 20-
dimention query in transformed space. 

6.3   Kd-Tree of Transformed Neighborhoods 
A Kd-tree (k-dimensional tree) is a standard data structure for 
quickly searching a multi-dimensional space for an approxi-
mate nearest neighbor. There are a number of variants of the 
Kd-tree. The one most relevant to our needs is briefly de-
scribed. 

Given a set of k-dimensional points, a Kd-tree is constructed 
recursively by choosing the dimension with the greatest vari-
ance, calculating the median value in that dimension, and 
splitting the set roughly in half. Points along the selected di-
mension with values less than the median are placed in one 
subtree, and the remaining points are placed in the other sub-
tree.  This is done recursively until each subtree contains only 
a single point. A Kd-tree for a set of n points uses O(n) stor-
age, can be constructed in ( )2logO kn n time, and can be que-

ried for an approximate nearest neighbor in ( )2logO k n time. 

This search works well for a wide range of data sets provided 
n is much larger than k. 

We have seen that by using the eigenvector transform, the 
dimensionality of neighborhood searches can be reduced from 
108 to 20 without a significant loss of information. Our data 

sets consist of 8,000 points (for the finest resolution level of a 
64×64 sample) through 30,000 points (for a 128×128 sample). 
Given an arbitrary data set, this number of points is marginally 
sufficient for a twenty dimensional Kd-tree. However, as 
made explicit by the eigenvector transformation, the variance 
of our dataset is concentrated in the principle components with 
the largest eigenvalues; therefore the tree will, on average, 
split more frequently along dimension i than along the dimen-
sion i+1. Recall that in our particular data sets, the variance 
along the first dimension was found to be at least 50 times 
greater than the variance along the second dimension. This 
concentration of the variance insures that the tree is maximally 
effective for the limited dataset. 

Using the eigenvector transform described earlier, each leaf 
in the Kd-tree is a transformed representation of the RGB val-
ues of a neighborhood of 36 Gaussian faces in one of the two 
analysis pyramids. A query point consists of the transformed 
RGB values of a neighborhood of Gaussian faces in the syn-
thesis pyramid. 

6.4   Set of Dynamic Kd-Trees 
The requirement for approximately uniform sampling makes 
the use of a standard Kd-tree impossible. A Kd-tree can be 
queried to find an analysis face with a neighborhood similar to 
a given neighborhood. The choosy sampling procedure re-
quires that the difference between the given neighborhood and 
the query result be weighted by a function of the number of 
times that result has been chosen. This weight cannot be built 
into the tree from the start because it changes after every query 
and is a function of the query point as well as the leaf. 

We propose the use of a set of dynamic Kd-trees: A single 
Kd-tree could initially hold all of the neighborhoods of the 
sample. When a leaf is chosen, the chosen leaf needs to be 
moved to a different tree, so that all nodes in a given tree have 
been chosen the same number of times. A search then, would 
query each tree individually and appropriately scale the result 
from each tree. By the nature of the data and the exponential 
scaling factor, the number of leaves in each tree would form a 
narrow Gaussian with the vast majority of leaves in only 3 
trees. It is important that only a small number of trees are 
needed because each tree requires a separate search, and Kd-
trees only give reasonably accurate results when they have 
many more leaves than dimensions. Points that do not fall 
within the three most populous values of c[j] could be 
searched linearly. Thus, the complete texture synthesis algo-
rithm is improved from O(mnk) to O(mk log n). 

7 CONCLUSION 
We have described a fully automatic method of synthesizing 
isotropic textures on subdivision surfaces from sample images. 
Within the class of isotropic textures, this method offers sev-
eral improvements over existing methods.  The method can 
also be used to create isotropic variants of anisotropic textures.  

 
The original contributions of our paper can be summarized as 
follows: 
• Both Gaussian and Laplacian pyramid representations of 
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the sample texture are constructed. The inverse Laplacian 
pyramid transform is used to generate first approxima-
tions to the texture at each level of the associated Gaus-
sian pyramid resulting in a smooth coarse-to-fine infor-
mation flow.   

• We have introduced a new non-parametric sampling 
method, which approximates sampling without replace-
ment, yet is softly constrained. Choosy sampling trans-
forms a greedy, nearest neighbor search process into a 
significantly more effective non-parametric sampling 
method. The essential property of searching for a best 
match (and in doing do, modeling a texture's second-order 
statistics) is maintained while simultaneously preserving 
the first-order statistics of the sample texture.  

• The input texture is resampled using a triangular grid so 
that its geometry more closely resembles that of the sub-
division surface on which the texture will be synthesized. 
Representing both the analysis and synthesis pyramids us-
ing the same data structure greatly simplifies the 
neighborhood matching procedure that is the heart of the 
texture synthesis process. 

• The application of the Eigenvector Transform to the set of 
all sample neighborhoods at a given resolution level has 
proven highly effective in accelerating the texture synthe-
sis process. 

• The standard Kd-tree has been adapted to apply to a case 
where the result of a query is a function of the result of all 
previous queries.  
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