
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID 1

Automatic Synthesis of Isotropic Textures on
Surfaces from Sample Images

Joel Castellanos and Lance R. Williams

Abstract—A fully automatic method of synthesizing isotropic textures on subdivision surfaces from sample images is presented.
Both Gaussian and Laplacian pyramid representations of the sample texture are constructed. Texture synthesis proceeds coarse-to-
fine, by incrementally inverting the Laplacian pyramid to produce an initial guess and refining this guess using non-parametric
sampling. The sampling procedure uses a nearest neighbor search while preserving first-order statistics. The resulting texture is
generated directly on the subdivision surface. Within the domain of isotropic textures, the proposed method offers improvements in
faithful reproduction of a sample's appearance over a wide range of scales. The method can also be used to produce isotropic
variants of anisotropic textures. Finally, while the sampling procedure we describe is not amenable to standard methods for nearest
neighbor search in high dimensional spaces, an acceleration method is proposed that uses an eigenvector transform and a set of
dynamic Kd-trees.

Index Terms— Engineering, Fine arts, Markov processes, Non-parametric statistics.

—————————— u ——————————

1 INTRODUCTION
1.1 Texture

 exture can be thought of as a visual pattern that is spa-
tially repeated either deterministically or stochastically.

The pattern may be completely deterministic, such as a chess-
board, completely random, such as well-mixed salt and pep-
per, or exhibit intermediate degrees of randomness, such as
tree bark, clouds, or marble. Textures can also be classified on
a continuum from isotropic (having no particular orientation)
to strongly anisotropic. Polished granite, for example, is iso-
tropic, while a texture comprised of horizontal layers of sand-
stone is anisotropic. With the trivial exception of uniform col-
ors, deterministic textures are anisotropic. A texture may ex-
hibit different properties at different scales – see Fig. 1.

Fig. 1. Example Textures: (a) Floral print fabric that is deterministic and
hence anisotropic. (b) Brick wall having a large-scale structure that is
anisotropic; however, at small scales (within a single brick or mortar
line), the structure is isotropic. (c) Texture formed by the random ar-
rangement of identical elements exhibit aspects of both determinism
and randomness, yet are isotropic at all scales. (d) Some textures can
only be characterized statistically. Burl wood is an example of such a
texture. It is isotropic at all scales.

1.2 Texture Synthesis
Texture synthesis is the creation of a new texture that is differ-

ent from a sample, yet can be said to have the same visual
appearance. Texture synthesis has been an active research
topic in computer vision and graphics. One of he most
straightforward applications is to synthesize a texture on the
surface of an object in a computer generated scene in order to
increase its degree of visual realism. Other image-based appli-
cations include inpainting, foreground removal, [6], lossy im-
age and video compression, and animation of a static texture
[1]. Fig. 2 shows an example of texture synthesis using the
method proposed in this paper.

Fig. 2. Texture Synthesis on a Surface: (a) Input sample image. (b)
Input triangulated surface of Torso of Venus de Milo with 1,418-faces.
(c) View of synthetic texture synthesized using the method described in
this paper.

Two major approaches to texture synthesis are procedural
and sample-based. Procedural synthesis generates textures
from mathematical equations that are particular to each tex-
ture. While procedural synthesis is currently very popular, a
disadvantage is that the parameters yielding in a particular
texture can be difficult to discover. Designers can spend
weeks tweaking parameters, and the results, while possibly
quite interesting and beautiful, are generally unpredictable. By
contrast, sample-based synthesis applies a single procedure to

————————————————
• J. Castellanos is a graduate student in the Dept. of Computer Science, Uni-

versity of New Mexico, Albuquerque. E-mail: joel@cs.unm.edu.
• L.R. Williams is an Associate Professor in the Department of Computer

Science, University of New Mexico, Albuquerque, NM 87131.
 E-mail: williams@cs.unm.edu.

T

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

a wide range of given texture samples.

1.3 First and Second Order Statistics
Throughout the literature, it is common to refer to the first-
order and second-order statistics of a texture. With few excep-
tions (mostly quite contrived), a pair of textures with the same
first and second order statistics appear equivalent to the human
observer. First-order statistics are the red, blue, and green
pixel value histograms. These depend only on individual pixel
values and not on the interaction or co-occurrence of
neighboring pixel values. Second-order statistics are defined
as the probability of observing a pair of color values occurring
at the endpoints of a dipole of random length placed in the
image at a random location and orientation.

1.4 Quilting
Quilting methods are sample-based texture synthesis methods
that stitch together representative patches of a sample texture.
Alpha blending and more sophisticated methods including
dynamic programming are used to eliminate discontinuities at
patch boundaries. Methods often include heuristics for auto-
matically selecting “good” patches from a sample. For highly
structured textures, the patch boundaries are generally chosen
to avoid cutting across important features. For more stochastic
textures, irregularly shaped patches generally work best. Quilt-
ing methods such as those described by Praun [9] and Efros
and Freeman [5] can be very fast and produce excellent results
for a wide range of textures on parameterized surfaces. There
are, however, disadvantages inherent to any quilting process.
First, quilting methods cannot reproduce structure at scales
significantly larger than the size of the quilting elements, nor
can they reproduce stochastic properties that occur on a scale
smaller than the quilting elements. For example, in a texture of
pebbles, there may be one odd shaped pebble with a distinc-
tive marking. Quilting algorithms are likely to produce many
copies of this odd shaped pebble with the same distinctive
marking.

When applying quilting methods to surfaces, there is a third
inherent disadvantage: Since quilting methods have fewer
degrees of freedom to exercise than pixel synthesis methods,
frustration due to misalignment of quilting patches on a sur-
face can only be relaxed by repositioning and reorientation the
patches. By contrast, pixel based texture synthesis methods
can relax this frustration more uniformly. This effect is most
noticeable when quilting anisotropic textures onto a surface
lacking an explicit two-dimensional parameterization. This
results in visible discontinuities. Therefore, quilting a surface
with anisotropic elements requires that a two-dimensional
parametrization be imposed on the surface, and when parame-
terizing most surfaces, the creation of singularities is unavoid-
able.

1.5 Neighborhood Search Methods
Neighborhood search methods of texture synthesis are based
on a Markov random field texture model. This model makes
the assumption that the probability distribution of brightness
values for a pixel are conditioned solely on the brightness val-
ues of pixels in its neighborhood and are independent of those

in the rest of the image. The Markov random field is used to
model a texture's second order statistics.

Neighborhood search methods synthesize an output texture
pixel by pixel given a sample input image. To determine the
value of a particular output pixel, its spatial neighborhood is
compared against all possible neighborhoods from the input
image. Its value is then replaced with the value of the input
pixel with the most similar neighborhood. Texture synthesis
methods based on neighborhood search have used update or-
ders that are scanline, spiral, surface sweeping, and random. In
order to capture fine detail, a single pixel must be used as the
unit of synthesis, yet the pixel's neighborhood must be large
enough to capture a texture's structure at the largest scale rep-
resented in the sample. Since search time increases rapidly
with neighborhood size, neighborhood search methods can be
very slow. Multi-resolution formulations of neighborhood
search methods synthesize texture using relatively small
neighborhoods with successively finer resolution. Large-scale
structure is captured by low-resolution neighborhoods and
fine-scale structure is captured by high-resolution neighbor-
hoods. Multi-resolution neighborhood search methods, there-
fore, have the advantage of being much faster than otherwise
equivalent single resolution methods.

2 PREVIOUS WORK

2.1 Efros and Leung
The sample-based, texture synthesis method of Efros and
Leung [6], can be viewed as a non-parametric sampling pro-
cedure for an implicit Markov random field. Their algorithm
"grows" texture, pixel by pixel, outwards from an initial seed.
All previously synthesized pixels in a square window around a
given pixel (weighted to emphasize proximity) are used as the
context. The size of the window is a free parameter that speci-
fies the degree of randomness of a given texture. To synthe-
size a pixel, the algorithm first finds all neighborhoods in the
sample image that are "similar" to the pixel's neighborhood. It
then randomly chooses one of these neighborhoods and takes
its center value to be the new center value of the output
neighborhood.

2.2 Wei and Levoy
Our work builds most directly upon the multi-resolution,
neighborhood-search-based method of Wei and Levoy [13].
For non-parameterized surfaces, Wei and Levoy's method
takes two inputs: 1) A sample image; and 2) A triangulation of
the surface on which the texture is to be synthesized. They
build a partial a Gaussian pyramid from the sample image
with K levels (usually with K=4). The triangulation represent-
ing the geometry of the surface is then recursively subdivided
K times with subdivision k corresponding to level k of the
Gaussian pyramid. Texture synthesis proceeds coarse-to-fine
in three passes for each level in the Gaussian pyramid being
synthesized. In the first pass of level k, the level is initialized
with randomly chosen RGB values from the corresponding
level of the sample's Gaussian pyramid (this matches the first-
order statistics of level k). The second pass propagates infor-

CASTELLANOS-WILLIAMS: AUTOMATIC SYNTHESIS OF ISOTROPIC TEXTURES ON SURFACES FROM SAMPLE IMAGES 3

mation from coarse scales to fine scales using a neighborhood
search process based on a neighborhood spanning two levels
of the pyramid: the current level and next coarser level (levels
k and k-1). The third pass on level k, further refines each face's
RGB values using a neighborhood search process based on a
neighborhood consisting solely of pixels within level k.

3 OUR APPROACH

3.1 Overview
The method we describe is restricted to isotropic textures

because only isotropic textures can be automatically generated
on an arbitrary surface in the absence of a parametrization.

Our method has been inspired by other multi-resolution,
texture synthesis methods that non-parametrically sample an
implicit Markov random field. Although our primary inspira-
tion was Wei-Levoy[13], we have also been influenced by
Heeger-Bergen[7], Efros-Leung[6], Debonet[4], and Bar-
Joseph[1]. Like Wei-Levoy[13] we synthesize texture in a
coarse-to-fine manner by searching for the face in the analysis
Gaussian pyramid with the most similar neighborhood. How-
ever, our method differs from Wei-Levoy[13] in three signifi-
cant ways. First, our method propagates information from
coarse-to-fine in a more principled, and more effective man-
ner, namely, by incrementally inverting a Laplacian pyramid
transform. A second difference is that, the greedy method of
non-parametric sampling described by Wei-Levoy[13] has
been replaced with a sampling procedure of our own design
that does a better job of preserving the first-order statistics of
the sample. Finally, as a pre-processing step, we resample the
input texture using a triangular grid so that its geometry more
closely resembles that of the subdivision surface on which the
texture will be synthesized. Representing both the analysis and
synthesis pyramids using the same geometry greatly simplifies
the neighborhood matching procedure that is the heart of the
texture synthesis process.

3.2 Coarse-to-fine Information Flow
The proposed method computes both Gaussian and Laplacian
pyramid representations of the sample texture. Having both
representations of the sample allows the synthesis process to
propagate information from coarse scales to fine scales by
incremental inversion of the Laplacian pyramid transform.
The procedure we use to implicitly sample the Markov ran-
dom field at level k of the analysis Gaussian pyr amid returns
not only the Gaussian RGB values, as in Wei & Levoy [13],
but also the RGB values of the four Laplacian children at level
k+1 (the next finer resolution level). Therefore, we simultane-
ously synthesize Gaussian level k, (symbolized Gk), and
Laplacian level k+1 (symbolized Lk+1). Once Gk and Lk+1 are
complete, we compute a first approximation of Gk+1 by up-
sampling Gk, convolving it with a Gaussian kernel, and adding
this to Lk+1. This incremental inversion of the Laplacian pyra-
mid produces a very smooth coarse-to-fine information flow
where large-scale structures, which form in coarser resolution
levels, propagate to finer resolution levels.

Only the coarsest level of the synthesis Gaussian pyramid,

G0, is initialized with the RGB values of randomly chosen
faces of the coarsest level of the analysis Gaussian pyramid.
After a given level is initialized (by random samples in the
case of G0, or by incremental inversion of the Laplacian pyra-
mid for all other levels), each face is visited in random order
and its value is asynchronously updated using a non-
parametric sampling procedure.
Fig. 3 illustrates the information flow of the process. Notice
that low frequency structures that are present in the final tex-
ture (i.e., the green/yellow region and the blue region in Step
14) form in the first step of the sampling (G0 in Step 8). By
contrast, the results of Wei-Levoy[13] (who initialize each
level with random values from the sample's pyramid) exhibit
large shifts in spatial structure as synthesis progresses from
coarse to fine.

3.3 Laplacian Pyramid Transform
The Laplacian pyramid transform is a linear transform that
represents a gray scale image by decomposing it into a set of
bandpass images, and a single residual lowpass image [3]. The
original image can be perfectly reconstructed from the set of
bandpass images, together with the residual lowpass image.
Color images can be represented by transforming each color
channel independently. The Laplacian pyramid transform is a
historical predecessor of and closely related to the fast wavelet
transform.

Each iteration of the process proceeds as follows: 1) The
image is lowpass filtered by convolution with a Gaussian ker-
nel; 2) The result is then subtracted from the original image.
This difference image is called the bandpass image and retains
the high-frequency detail. The bandpass image can be thought
of as a second derivative of the lowpass image; 3) The low-
pass image that resulted from the first step is then downsam-
pled by a factor of two (every other pixel in both dimensions
is discarded).

The three steps described above are repeated recursively, us-
ing the result of the third step at one level as input to the first
step at the next level. In the case of a square input image of
size 2K, then the process can be repeated K times giving a re-
sidual lowpass image consisting of a single pixel. The lowpass
images are called the Gaussian pyramid levels, Gk. Let GK-1 be
the original image and G0 be the residual lowpass image. The
bandpass images are called the Laplacian pyramid levels, Lk.

The transform is inverted in the reverse order: 1) Each
Gaussian pyramid level, Gk, beginning with the lowest resolu-
tion, G0, is upsampled (zeros are inserted between sample
points in both dimensions); 2) The upsampled Gaussian level
is interpolated by convolution with the same Gaussian kernel
used in the encoding process; 3) The result is added to the
corresponding Laplacian pyramid level, Lk+1. As with encod-
ing, the process is repeated for each level of the pyramid. This
decoding process reconstructs the original image without er-
ror.

For notational convenience we define two operations: re-
duce and project. The reduce operation is Gaussian convolu-
tion followed by downsampling. The project operation is up-
sampling followed by Gaussian convolution:

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

)(1 kk GreduceG =− (1)

)(1 kkk GprojectGL −=− (2)

Generalizing the Laplacian pyramid to operate on a surface
requires first generalizing the basic image processing opera-

tions mentioned above: Gaussian convolution, and up and
down sampling. These generalizations are described below
along with a method for recursive subdivision which is used to
generate the geometry on which the transform is defined.

Fig. 3. Analysis and Synthesis: This figure illustrates the paths of information flow in our method. The analysis pyramid is computed by mapping
the texture sample onto a triangular grid (Step 0) and repeatedly convolving with a Gaussian kernel and downsampling. Synthesis begins with G0
of the synthesis pyramid being initialized with random values from G0 of the analysis pyramid (Step 7). Gaussian convolution is represented by ∗g.
Upsampling and downsampling are represented by ↑2 and ↓2. Blue arrows and the function Choosy() indicate our non-parametric sampling proc-
ess, which returns both a Gaussian and a Laplacian level. Green arrows indicate the project and correct operations that produce the next level's
initial guess. Note: The Laplacian pyramid images (which generally contain negative values) have been normalized for the purpose of display

3.4 Mesh Subdivision
Butterfly subdivision developed by Zorin, Schröder, and
Sweldens [14] is used recursively to generate the geometry of
each subsequent level of the pyramid. Butterfly subdivision
adds a vertex to every edge, and subdivides every face into

four faces as shown in Fig 4.

Fig. 4. Butterfly Subdivision: new vertices and edges shown in red.

CASTELLANOS-WILLIAMS: AUTOMATIC SYNTHESIS OF ISOTROPIC TEXTURES ON SURFACES FROM SAMPLE IMAGES 5

 The position of each new vertex is determined by the sten-
cils shown in Fig. 5 using weights given in [14]. Vertices
added to interior edges will always have a valence of six, and
vertices added to boundary edges will always have a valence
of four. The scheme neither deletes nor moves existing verti-
ces, and produces limit surfaces with continuous first deriva-
tives.

Fig. 5. Subdivision Stencils: (a) For pair of vertices each with va-
lence=6, and (b) Used when at least one of the endpoints of the di-
vided segment has a valence not equal to 6.

3.5 Downsampling and Upsampling
When a two-dimensional, pixel image is downsamped, by a
factor of two, every other pixel in both dimensions is dis-
carded. Upsampling, by a factor of two, inserts zeros between
each pixel in both dimensions.

Sirl-Moore and Williams [10] generalized downsampling
and upsampling to a surface whose faces are two-colorable by
marking each face as either type black or type white so that no
two adjacent faces have the same type. Recall that the butter-
fly scheme subdivides each parent face on level k into four
child faces on level k+1. Using the method of Sirl-Moore and
Williams, the center child inherits the type of its parent, and
each of the three outer children inherits the type opposite to its
parent (see Fig. 6).

Fig. 6. Color Inheritance for Resampling

Downsampling, populates each parent cell with the RGB
color values of its center child. Upsampling, populates each
white child with the RGB color values of its parent, and each
black child with RGB values of zero.

3.6 Gaussian Convolution
Two-dimensional, discrete convolution is a common image

processing operation. To define the convolution of two func-
tions of a surface, image pixels are replaced with surface
faces. The faces, in general, are neither equally spaced nor
equally sized. Therefore, the Gaussian must be represented as
a continuous function of the distance, (,)d i j , between face i

and face j. We define the distance, (,)d i j , between faces i
and j as the straight-line Euclidean distance between the cen-
troid of the two faces. Since the Gaussian attenuates rapidly
with increasing distance, we find this to be a reasonable ap-
proximation. This is especially true at the finest resolution,

which, for a 4-level pyramid, has 256 times as many faces as
the input geometry. Since the butterfly subdivision produces
surfaces with continuous first derivatives, even regions of the
input geometry with high curvature will be reasonably flat on
a small neighborhood of the finest resolution level. Differ-
ences in face size are accounted for by scaling the Gaussian by
the area, ai, of face, i.

Let Ω(i) be a neighborhood of faces about face i such that
each face j ∈ Ω(i) is sufficiently near i to significantly con-
tribute to the value of face i after convolution. Since the Gaus-
sian has compact support, this will be a small neighborhood.
Formally, we define the neighborhood, Ω(i), as including i, all
faces adjacent to i, and all faces adjacent to those faces recur-
sively with the recursion ending in each direction when the
distance, d(i,j), between the face in question and i, is greater
than 3σ. The convolution weight of face j ∈ Ω(i) relative to
face i is given by the equation developed in [10]:

(,)
ij j

d i j
w g a

σ
 =

 (3)

where
2 2() rg r e−= , and σ is the maximum distance between

all pairs of adjacent faces. In the expression for wij, dividing
by σ dilates g, a Gaussian of unit standard deviation, so that it
is a Gaussian of standard deviation σ. The standard deviation
of the Gaussian at each level of the Laplacian pyramid there-
fore equals the maximum distance between any two adjacent
faces of the triangulation at that level. This is a conservative
choice (compared to the alternative of setting σ equal to the
average distance between adjacent faces) which minimizes the
aliasing introduced by downsampling, yet remains faithful to
Burt’s formulation [2]. The down side of this conservative
choice is the risk of introducing excessive blurring. Over-
sampling is minimized by remeshing the input geometry (be-
fore subdividing) so that all triangles are approximately equi-
lateral and approximately equally sized. Therefore, the maxi-
mum distance between any two adjacent faces is not much
larger than the average distance. As will be discussed later,
there are a number of other reasons why it is desirable to regu-
larize the input geometry. Finally, so that the sum of the con-
volution weights contributing to the value of face i is one,

each weight is divided by the factor,
() ijj i

w
∈Ω∑ . The value

of face i after convolution is therefore:

()

()

()ij j
j i

i
ij

j i

w v
v

w
∈Ω

∈Ω

′ =
∑

∑
 (4)

where vj is the value of face j before convolution.

3.7 Reduce and Project
With resampling and convolution defined for triangulated sur-
faces, reduce and project can be likewise generalized. Analo-
gous to the case of a 2D image, reduce is Gaussian convolu-
tion followed by downsampling, and project is upsampling
followed by Gaussian convolution. When a surface is upsam-
pled, only half of the faces of the child level inherit the value

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

of their parent. The other half of the faces are each assigned a
value of zero. In order to preserve overall brightness, a nor-
malization factor is applied to each face. This factor is devel-
oped in [10]:

()

()i ij
j i

S j w
∈Ω

Γ = ∑ (5)

where ()S j equals one if face j is white (meaning it inherited

RGB color values from its parent), and ()S j equals zero if
face j is black . The value of face i after upsampling and con-
volution is therefore:

()

ij
i j

j i i

w
v v

∈Ω

 ′ = Γ
∑ . (6)

3.8 Mapping Rectangular to Triangular Grids
What we call the analysis pyramid (i.e. the pyramid

representation of the sample image), actually consists of two
pyramids. The sample image, represented as a rectangular
array of pixels, is mapped onto a pair of triangular “grids”.
The grids are identical except that the second is rotated 90°
relative to the first. Each mapping forms the finest resolution
level of a Gaussian pyramid representation of the sample im-
age. During texture synthesis, when evaluating neighborhood
similarity, we query both Gaussian pyramids and, within each
pyramid, consider three, 60° rotations of each neighborhood.
We therefore choose the best of six rotational phases of the
sample: 0°, 30°, 60°, 90°, 120°, and 150°. This effectively
increases the number of sample neighborhoods by a factor six
and is tantamount to averaging the Markov random field sta-
tistics over multiple orientations. This is consistent with our
assumption of isotropy.

Each triangular grid consists of rows of congruent, equilat-
eral triangles. Let K be the desired number of pyramid levels.
The sample image is assumed to be square, having a width of
m pixels where m is divisible by 2K-1. The sample image is
mapped to a triangular grid with m rows, and a second triangu-
lar grid with m columns. Since these grids correspond to the
geometry of the finest resolution level of the synthesis pyra-
mid (i.e., the pyramid representation of the texture being syn-
thesized), we must construct them so that they are the result of
K-1 applications of butterfly subdivision. Fig. 7 shows the
grid, G2, used to map a 12×12 pixel sample image with K=3.
G2 has 12 rows of triangles: one row for each pixel. Notice
that this geometry is the result of two subdivisions of G0. G0 is

constructed with (1)2 Km − = 3 rows of triangles. The number
of triangles in each row of G0 is chosen so that the width of
the row is less than or equal to the total height of G0.

Fig. 7. Sample Geometry Mapping: (a) G2, (b) G1, and (c) G0 for a
12x12 pixel sample image with N=3.

Because there is no one-to-one mapping between the rec-
tangular grid of pixels and the grid of equilateral triangles,
bilinear interpolation is used to perform the mapping. Fig. 8
shows the mapping of a 64×64 pixel texture onto 0° and 90°
rotations of the flat, regular, triangular grid. The triangular
grid used in this mapping consists of 64 rows with an average
of 104 triangles per row. It results from four subdivisions of a
roughly square grid consisting of 8 rows of congruent, equilat-
eral triangles. The difference between the two mappings re-
quires magnification to discern. Yet, as can be seen in the
magnified images, there are significant differences in the
neighborhoods. For example, compare the short, black hori-
zontal line that appears just above the center of the magnified
sample (Fig. 8d) with the same line's appearance in Fig. 8e
and Fig. 8f.

Fig. 8. Interpolation of pixel grid onto triangular grid: (a) Original texture
image consisting of 64×64 = 4096 pixels. (b) Interpolated image onto a
triangular grid consisting of 6,656 equilateral triangles. (c) Interpolated
image onto a triangular grid that is rotated 90° from the grid used in (b).
(d - f) Enlargements of corresponding segments of (a), (b), and (c).

3.9 Surface Remeshing
There are at least three reasons why it is desirable to remesh
the input surface: First, faces of the triangulation are used in a
way that is analogous to the pixels of an image. Therefore, it is
desirable that all faces have approximately equal area, and be
approximately equilateral. Second, the downsampling and
upsampling processes, which we use for subdivision surfaces,
assume that the triangulation is two-colorable. A conformal,
triangulated surface is two-colorable if and only if all of its
non-boundary vertices are of even valence (boundary vertices
may be of any valence). Finally, computing the error distance
between neighborhoods of the input and output Gaussian
pyramids, as required by our sampling procedure, is most ac-
curate when all of the vertices have a valence of six. This will
be the case for vertices created by recursive subdivision, but
not necessarily for those of the input geometry.

CASTELLANOS-WILLIAMS: AUTOMATIC SYNTHESIS OF ISOTROPIC TEXTURES ON SURFACES FROM SAMPLE IMAGES 7

The remeshing method given by Turk [11] can be used to
convert a polygonal mesh representing the geometry of a sur-
face into a semi-regular triangulation with a user specified
number of vertices. Furthermore, it can be arranged so that all
vertices are even, and have a valence of six. The initial po-
lygonal surface may be either concave or convex, and it may
have holes. The major restriction is that the mesh must be con-
forming: Each edge is shared by no more than two polygons.
In our implementation, the given triangulation is remeshed
using [11]. The faces of the remeshed triangulation form the
geometry of the residual lowpass level, G0, of the synthesis
Gaussian pyramid.

3.10 Convolution Parameters
After building the analysis and synthesis geometries, and
computing the Laplacian pyramid transform of the input tex-
ture, there remain a few parameters that need to be calculated
before the synthesis process can begin. First, a scaling factor
must be determined relating distances in the analysis and syn-
thesis spaces. Distances in the analysis pyramid are left un-
scaled. All distances measured in the synthesis pyramid are
scaled by the factor, ˆ ˆ() ()A Sd k d k , where ˆ ()Ad k is the mean
Euclidean distance between centroids of adjacent faces of
level k, of the analysis pyramid, and ˆ ()Sd k is the correspond-
ing quantity for the synthesis pyramid. Recall that, by con-
struction, the distances between centroids of all pairs of faces
on the analysis pyramid are identical, and on the synthesis
pyramid the variance of this distance is reasonably small.

The second parameter that needs to be calculated is σk, the
standard deviation of the Gaussian kernel used in the reduce
and project operations. Since values from the analysis pyr amid
are copied into the synthesis pyramid, this parameter should
be the same for both pyramids. We set σk equal to the maxi-
mum distance (scaled as described above) between pairs of
adjacent faces for a given level of the synthesis pyramid.

3.11 Choosy Sampling
We have developed a sampling procedure for Markov random
fields, which we call choosy sampling. This procedure finds a
match based on neighborhood similarity, thereby matching the
(second-order statistics of the sample, while simultaneously
preserving the first-order statistics. The choosy sampling pro-
cedure, like the procedures employed by both Efros-Leung[6]
and Wei-Levoy[13], is non-parametric. Non-parametric sam-
pling, is sampling that makes no reliance on the estimation of
parameters such as mean, standard deviation, or distribution
curve.

Choosy sampling visits, in random order, each face of a
given level of the synthetic Gaussian pyramid and asynchro-
nously updates its color values. A similarity metric is calcu-
lated between the color values in a neighborhood of faces
around the visited synthesis face and the neighborhood around
each face of the corresponding level of the analysis Gaussian
pyramids. The similarity metric is multiplied by a penalty
factor that increases exponentially with the differential fre-
quency of selection. More specifically, the similarity between
a neighborhood, ΩS(i), around face i of the synthesis Gaussian

pyramid, and a neighborhood, ΩA(j), around face j of the

analysis Gaussian pyramid, is scaled by the factor ()[]2 minc j c− ,
where []c j is the number of times that face j already been
used, and cmin is the minimum value of c among all neighbor-
hoods of the appropriate level of the analysis Gaussian pyra-
mid. This exponential scaling is a soft constraint, which is
intended to approximate sampling without replacement. In
true sampling without replacement, before any face can be
used n+1 times, all faces must be used n times. Although it is
clear that such a process will match the first-order statistics
perfectly, true sampling without replacement has the serious
problem that when a majority of the faces have been chosen n
times, the search process becomes over-constrained, and it is
nearly impossible to find a satisfactory match. We have ob-
served that this results in noticeable speckling in the texture
being synthesized. By approximating sampling without re-
placement using a soft constraint, our choosy sampling avoids
this problem while still yielding good matching of first-order
statistics.

By contrast, Wei-Levoy[13] always chose the best match.
We have observed (see section 5) that, for many textures, this
greedy selection method results in some faces (or pixels) being
chosen significantly more frequently than others. The result,
with such textures, is poor matching of the first-order statis-
tics.

 Efros-Leung[6] type sampling methods choose randomly
between faces (or pixels) with neighborhood similarities be-
low a given threshold. Tight thresholds capture second-order
statistics at the expense of first-order statistics. The reverse is
true for loose thresholds. The “best” threshold choice is tex-
ture dependent.

3.12 Neighborhood Similarity Function
The neighborhood we use in the choosy sampling is restricted
to a single level of the Gaussian pyramid. The k-distant
neighborhood about face j is defined as the set of faces whose
minimum adjacency distance is greater than zero and less than
or equal to k. If every vertex has a valence of six, then the ad-
jacency relationships between faces in the k-distant neighbor-
hood will always have three-fold symmetry, and the cardinal-
ity of the neighborhood will be divisible by three. The stencil
shown in Fig. 9 highlights the three-fold symmetry for 2-
distant neighbors:

Fig. 9. Choosy Neighborhood Stencil Showing Three-fold Symmetry: Notice
that there are 12 one-distant neighbors, and 24 two-distant neighbors.

In both the analysis Gaussian pyramid (by initial construc-

tion, and butterfly subdivision), and the synthesis Gaussian
pyramid (by remeshing, and butterfly subdivision) the all ver-

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

tices have a valence of six except for those on the boundary,
which have a valance less than six. Analysis neighborhoods
that include boundary vertices are not included in the sampling
process. Faces missing from a synthesis neighborhood because
the neighborhood extends beyond the boundary are treated as
“wild cards”. The color difference between such faces and any
analysis face in the corresponding position is defined as zero.

As shown in Fig. 9, a two-distant neighborhood includes
3 3 12 36p = ⋅ = faces. Since each face has three, color values
(RGB), there are a total of 3 36 108⋅ = values per neighbor-
hood. The error distance between the query neighborhood
ΩS(i) of the synthesis pyramid about face i and a neighborhood
ΩA(j) of the analysis pyramid about face j, is the 108 dimen-
sional Euclidean distance between ΩS(i) and ΩA(j). Since we
assume isotropic textures, we exploit the three-fold symmetry
of the neighborhood, by defining the error distance between
ΩS(i) and ΩA(j) as the minimum error distance between ΩA(j)
and three 60° rotations of ΩS(i).

Proximity is emphasized by weighting the error distances
between RGB values of corresponding faces zS ∈ ΩS(i) and zA
∈ ΩA(j) by an exponential function of the inverse Euclidean
distance between the centroid of each face in the syntheses
neighborhood zS, and centroid of i. Since this is the same dis-
tance function used previously for other purposes, we denote it
with the same notation, d(zS, i). The scaling factor, βZ, is
given by:

2(,)1
2 1.3 k

Sd z i

z
e σβ

−

 = (7)

where, σk is the standard deviation of the Gaussian kernel used
in the reduce and project operations at level k. So that the
same numerical value of σk used in reduce and project,

d(zS, i) must be scaled by the ratio ˆ ˆ() ()A Sd k d k defined ear-
lier. The effect of the scaling factor, βZ, on a relatively flat
patch of geometry with approximately congruent, equilateral
triangles of average size is to weight one-distant neighbors
roughly four times more heavily than two-distant neighbors.

3.13 Sampling Iteration
The texture synthesis results can be improved by iteratively
applying the choosy sampling at each resolution level. The
improvement is particularly noticeable on samples that are
composed of meaningful elements (such as the olives in Fig.
10). Successive iterations visit faces in different random or-
ders.

Fig. 10. Choosy Sampling Iteration on Wet Olives: (a) Sample (96×96).
(b) Result with one iteration per resolution level. (c) Result with 8 itera-
tions on levels 0 through 2, and one iteration on level 3. (d) Result with
8 iterations on each level.

4 ALGORITHMS
Pseudocode of the proposed texture synthesis process is
shown in Algorithm 1 and 2. The algorithms are preceded by a
list of definitions.

∆input: Geometry (faces, edges, and vertices) of the input.
∆A, ∆S: Geometry of analysis and synthesis pyramids including

space for RGB values of the Gaussian and Laplacian levels.
GA, GS: Gaussian values of analysis and synthesis pyr amids.
LA, LS: Laplacian values of analysis and synthesis pyr amids.
TurkRemesh: Converts a general conformal mesh into a semi-

regular triangulation using [11].
ButterflySubdivision: Performs recursive subdivision using the

butterfly subdivision schema [14].
GetDistanceScalingFactor: Calculates scaling factor for dis-

tances measured in a given level of the synthetic geometry.
GetSigma : Calculates the target standard deviation, σk, of the

Gaussian function used for convolution at a given resolution
level for both analysis and synthesis.

RandomFaces: Populates the RGB Gaussian values of the first
parameter with randomly sampled faces from the second.

Project: Performs upsampling and Gaussian convolution of
the given triangulation.

Choosy: Uses the choosy sampling process (see algorithm 2),
to asynchronously copy RGB values of faces from GA[k] to
GS[k]. Additionally, if k < MAXLEVEL-1, then the Laplacian
RGB values of each face’s four children are also copied
from LA[k+1] into LS[k+1].

Minimum: Calculates the minimum value of a vector.
Neighborhood: Returns an ordered, single resolution,

neighborhood in the given geometry about the given face.
ErrorDistance: Returns the minimum error distance (scaled by

βZ) of three rotational phases between the Gaussian RGB
values of corresponding faces of the given neighborhoods.

ChildernOf: Given a face in level k, this function returns face
indexes, in level k+1, of the children of the given face.

Algorithm 1: Synthesize Texture

SynthesizeTexture(GA, LA, ∆input)
 ∆S[0] ← TurkRemesh(∆input)
 for k = 0 to MAXLEVEL-1 do
 if (k > 0) then ∆S[k] ← ButterflySubdivision(∆S[k-1])
 λS[k] ← GetDistanceScalingFactor(∆A[k], ∆S[k])
 σ[k] ← GetSigma(∆A[k], ∆S[k])
 end
 GS[0] ← RandomFaces(GA[0], ∆S)
 〈GS[0], LS[1]〉 ← Choosy(GS[0], ∆S[1], GA[0], LA[1], 0)
 for k = 1 to MAXLEVEL-1 do
 for c = {RED, GREEN, BLUE} do
 GS[k][c] ← LS[k][c] + Project(GS[k-1][c], λS[k], σ[k])
 end
 〈GS[k],LS[k+1]〉 ←Choosy(GS[k],∆S[k+1],GA[k],LA[k+1],k)
 end
 return GS[MAXLEVEL-1]
end

CASTELLANOS-WILLIAMS: AUTOMATIC SYNTHESIS OF ISOTROPIC TEXTURES ON SURFACES FROM SAMPLE IMAGES 9

Algorithm 2: Choosy Sampling

Choosy(GS[k], ∆S[k+1], GA[k], LA[k+1], k)
 c[{ j ∈ GA[k] }] = 0
 foreach (i ∈ GS[k] selected randomly) do
 cmin = Minimum(c[])
 dmin = MAXFLOAT
 ΩS ← Neighborhood(GS[k], i)
 foreach (j ∈ GA[k]) do
 ΩA ← Neighborhood(GA[k], j)

 d = ErrorDistance(ΩA, ΩS) ∗
)][(2 mincjc −

 if (d < dmin) then { jopt = j; dmin = d }
 end
 GS[k][i] ← GA[k][jopt]
 if (k < MAXLEVEL-1) then
 LS[k+1][ChildernOf(GS[k][i])] ←
 LA[k+1][ChildernOf(GA[k][jopt]]
 end
 c[jopt] = c[jopt] + 1
 end

5 RESULTS
All of the experimental results shown in this section use four
levels of resolution, one iteration of choosy sampling at each
level, and a neighborhood size of 36. Results from other re-
searchers were downloaded from the named researchers' web-
sites. Fig. 2, Fig. 11, and Fig. 12 show natural textures on a
variety of geometries. OpenGL lighting effects have been used
in these three figures to accentuate the surface geometry.
While lighting effects can aid in realism, they can obfuscate
some details of the texture synthesis results. Therefore, most
of our examples (especially the comparative examples) are
synthesized on the surface of a sphere without the use of light-
ing.

The rusty metal texture synthesized on the teapot (Fig. 11)
is particularly challenging to many synthesis methods because
it contains fine scale pitting, and a single instance of a large-
scale rusty patch. This patch has a very distinctive shape,
which would be distracting if reproduced exactly in different
places on the surface, as quilting methods are prone to do.

Burl wood (Fig. 12) is one of the few wood grains that is
statistically isotropic.

Fig. 11. Rusty Metal texture on Utah Teapot: (a) Samples (96×96), (b)
3,752 face input geometry and 960,521 face output geometry dis-
played with OpenGL lighting effects.

Fig. 12. Burl Wood Synthesized on Ludwig von Beethoven Bust - (a)
Sample (128×128), (b) 5,030-face input geometry and 321,920-face
output geometry displayed with OpenGL lighting effects.

The pool water, (Fig. 13), works exceptionally well with
our method. We succeed in capturing the first order statistics,
and the connectedness, thickness, and randomness of the lines
of light, as well as the shading of the darker areas. The syn-
thetic patterns are novel, yet realistic.

Fig. 13. Pool Water on Sphere: (a) Sample (128×128), (b) Castellanos-
Williams on 524,288 face sphere, (c) Wei-Levoy

The candy sample shown in Fig. 14 is composed of repeated
elements (roughly cylindrical candies). While the texture as a
whole is isotropic, the elements from which it is comprised are
not. Our method often fails to reproduce the elements of such
a texture in an accurate way (although the results can be sig-
nificantly improved with multiple iterations of choosy sam-
pling. See Fig. 10). However, we believe that we do better
with this candy texture than Wei-Levoy[13]: First, the shape
of our candies more closely matches those in the sample. Sec-
ondly, the first order statistics of Wei-Levoy's result are se-

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

verely skewed. Their result contains too much lavender and
brown, and too little green and teal. This point is dramatically
illustrated by the histograms. Our results match the sample’s
histograms so closely that they are essentially superimposed.
As explained earlier, the Wei-Levoy[13] sampling method is
too greedy and often results in poor matching of the first-order
statistics. The histograms in Fig. 14 were calculated with 50
bins in each color channel. The sample contains 36,864 pixels,
and our result contains 131,072 faces (counting the full sur-
face of the sphere). The result from Wei-Levoy contains
40,000 pixels. Each histogram has been normalized so that the
sum of all bin-counts equals is one.

Fig. 14. Histogram Comparison for Candy Texture.

The textures in Fig. 15-17 are each anisotropic on a medium
scale. For instance, in Fig. 14, the black bands form a roughly
rectangular grid. This anisotropy is well modeled by the
method of Wei-Levoy[13]. Our method creates isotropic vari-
ants of anisotropic samples. Although these are not faithful
reproductions, they are often quite interesting. Unlike the iso-
tropic textures they are derived from, they can be synthesized
directly on a two-dimensional surface in the absence of a
parameterization. Also note that Wei-Levoy[13] succeed in
matching the first order statistics for each of these textures.
We believe that the reason for this is that in each case, the
first-order statistics are fairly constant in all small windows of
the sample.

Fig. 15. Alien Skin Comparison: (a) Sample (96×96), (b) Castellanos-
Williams on 131,072 face sphere, (c) Wei-Levoy

Fig. 16. Anisotropic Red-Green Pattern Comparison: (a) Sample
(64×64), (b) Castellanos-Williams on 131,072 face sphere, (c) Wei-
Levoy.

Fig. 17. (a) Anisotropic cells sample (64×64), (b) Castellanos-Williams
on 131,072 face sphere, (c) Wei-Levoy.

The saltine cracker sample, shown in Fig. 18, offers an ex-
cellent comparison of the strengths and weakness of the vari-
ous methods. This sample contains a deterministic pattern of
holes superimposed on an isotropic background texture. The
quilting method used by Efros-Freeman[5] reproduces the
deterministic pattern perfectly. Notice also that there are no
discernible boundaries between the patches. Efros-Freeman[5]
capture the large-scale stochastic pattern of the placement of
the dark brown patches. The smaller scale stochastic proper-
ties, however, are poorly represented. In particular, the same
dark random shape is reproduced distractingly throughout the
image. Wei-Levoy[13] also show evidence of copying what
should be a randomly shaped dark spot. Additionally, Wei-
Levoy[13] produce far too much light colored area. Our
method, while it completely fails to reproduce the arrangement
of the holes, creates genuinely novel brown patches that re-
semble those of real crackers. It also accurately reproduces the
sample's color mixture.

CASTELLANOS-WILLIAMS: AUTOMATIC SYNTHESIS OF ISOTROPIC TEXTURES ON SURFACES FROM SAMPLE IMAGES 11

Figure 18 - Saltine cracker Comparison: (a) Sample, (b) Castellanos-
Williams on 524,288 face sphere, (c) Efros-Freeman, (d) Wei-Levoy.

The sample used in Fig. 19 is a segment from an abstract
watercolor painting. Our method has created completely novel
patterns (no copying) within the artist’s style.

 (a) (b)
Fig. 19. (a) Isotropic Watercolor Painting (96×96), (b) Castellanos-
Williams on 524,288 face sphere.

6 ACCELERATION

6.1 Time Complexity Without Acceleration
The most computationally intensive part of the algorithm de-
scribed above is the choosy sampling. We usually use a
neighborhood size of 36 with three colors. Queries, therefore,
are performed in d-dimensional space where d = 3×36 = 108.
The time complexity with M faces on the final rendered sur-
face, and N pixels in the sample is, therefore,

()0
6 / 2 ()K k

k
O MNd O MNd

=
=∑ (8)

The K terms correspond to the number of pyramid levels
(we usually use four), and the factor of six comes from the use
of six rotational phases of the sample.

6.2 Dimensionality Reduction
The Eigenvector Transform, variously referred to as Kar-
hunen-Loéve (KL) Transform, Hotelling Transform, or Prin-
cipal Component Analysis (PCA) is a procedure that trans-
forms a number of correlated random variables into a smaller
number of uncorrelated random variables called the principal
components [8]. The first principal component accounts for as
much of the variability in the data as possible, and each suc-
ceeding component accounts for as much of the remaining
variability as possible. Given N vectors, ixv of dimension d,

the principal components are the eigenvectors of TXX . Prin-
cipal components with very small eigenvalues can be ignored
in many problems without significantly affecting the results.

In our problem, ixv is a three-color, adjacency neighbor-

hood totaling 108 dimensions, and N is the number of faces in
a given level of the sample. Therefore, there are 108 eigenvec-
tors and eigenvalues. For all of the textures we have tested
(which include all those shown in this paper), the ratio of the
first eigenvalue to the second is at least 50, and the ratio of the
first to the twentieth is at least 1000. Table 1 shows five sam-
ple textures and selected eigenvalues.

TABLE 1

NEIGHBORHOOD EIGENVALUES

Selected
Eigen-
values

108
75
50
30
20
10
9
8
7
6
5
4
3
2
1

0.00000
0.00007
0.00036
0.00379
0.01256
0.04825
0.05045
0.08063
0.10439
0.36311
0.37680
0.45952
1.27433
1.28836
72.5694

0.00000
0.00003
0.00030
0.00105
0.00375
0.02663
0.03131
0.03761
0.03973
0.10023
0.11087
0.11649
0.39757
0.42776
176.469

0.00003
0.00041
0.00103
0.00542
0.01743
0.14606
0.17085
0.17469
0.28112
0.30249
0.39283
0.56957
0.60274
1.52357
74.2641

0.00000
0.00001
0.00007
0.00081
0.00270
0.01431
0.01533
0.01823
0.01975
0.04339
0.04381
0.04832
0.14290
0.15274
81.1529

Four sample textures and their eigenvalues for 108×108 covariance matrix.

Recall that in our procedure, proximity is emphasized by
weighting the error distances between RGB values of corre-
sponding faces by a Gaussian function of the faces’ Euclidean
distance to the face being synthesized. In the transformed
space, each dimension no longer corresponds to a single face
making it impossible to apply distance weighting. Therefore,
weighting needs to be applied before the neighborhood is

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, MANUSCRIPT ID

transformed. Then, at each query, the same scaling needs to be
applied to the magnitudes of the synthesized neighborhood
values.

The images in Fig. 20 show a comparison of results using
the full 108 dimensional query and results using only the 20
most significant transformed dimensions. We observe that the
quality of the results is indistinguishable. The overhead added
by the transformation is negligible, and this process immedi-
ately offers a five-fold increase in speed. More significantly,
the dimensionality reduction makes it possible to use special-
ized data structures for approximate nearest neighbor compu-
tations in high-dimensional spaces, such as Kd-trees, leading
to further acceleration.

Fig. 20. Acceleration Comparison: (a) Green Marble Sample (96×96).
(b) Orthoclase Garnet sample (96×96). (b, e) Synthetic textures using,
108-dimention query without distance weights. (c, f) Result with 20-
dimention query in transformed space.

6.3 Kd-Tree of Transformed Neighborhoods
A Kd-tree (k-dimensional tree) is a standard data structure for
quickly searching a multi-dimensional space for an approxi-
mate nearest neighbor. There are a number of variants of the
Kd-tree. The one most relevant to our needs is briefly de-
scribed.

Given a set of k-dimensional points, a Kd-tree is constructed
recursively by choosing the dimension with the greatest vari-
ance, calculating the median value in that dimension, and
splitting the set roughly in half. Points along the selected di-
mension with values less than the median are placed in one
subtree, and the remaining points are placed in the other sub-
tree. This is done recursively until each subtree contains only
a single point. A Kd-tree for a set of n points uses O(n) stor-
age, can be constructed in ()2logO kn n time, and can be que-

ried for an approximate nearest neighbor in ()2logO k n time.

This search works well for a wide range of data sets provided
n is much larger than k.

We have seen that by using the eigenvector transform, the
dimensionality of neighborhood searches can be reduced from
108 to 20 without a significant loss of information. Our data

sets consist of 8,000 points (for the finest resolution level of a
64×64 sample) through 30,000 points (for a 128×128 sample).
Given an arbitrary data set, this number of points is marginally
sufficient for a twenty dimensional Kd-tree. However, as
made explicit by the eigenvector transformation, the variance
of our dataset is concentrated in the principle components with
the largest eigenvalues; therefore the tree will, on average,
split more frequently along dimension i than along the dimen-
sion i+1. Recall that in our particular data sets, the variance
along the first dimension was found to be at least 50 times
greater than the variance along the second dimension. This
concentration of the variance insures that the tree is maximally
effective for the limited dataset.

Using the eigenvector transform described earlier, each leaf
in the Kd-tree is a transformed representation of the RGB val-
ues of a neighborhood of 36 Gaussian faces in one of the two
analysis pyramids. A query point consists of the transformed
RGB values of a neighborhood of Gaussian faces in the syn-
thesis pyramid.

6.4 Set of Dynamic Kd-Trees
The requirement for approximately uniform sampling makes
the use of a standard Kd-tree impossible. A Kd-tree can be
queried to find an analysis face with a neighborhood similar to
a given neighborhood. The choosy sampling procedure re-
quires that the difference between the given neighborhood and
the query result be weighted by a function of the number of
times that result has been chosen. This weight cannot be built
into the tree from the start because it changes after every query
and is a function of the query point as well as the leaf.

We propose the use of a set of dynamic Kd-trees: A single
Kd-tree could initially hold all of the neighborhoods of the
sample. When a leaf is chosen, the chosen leaf needs to be
moved to a different tree, so that all nodes in a given tree have
been chosen the same number of times. A search then, would
query each tree individually and appropriately scale the result
from each tree. By the nature of the data and the exponential
scaling factor, the number of leaves in each tree would form a
narrow Gaussian with the vast majority of leaves in only 3
trees. It is important that only a small number of trees are
needed because each tree requires a separate search, and Kd-
trees only give reasonably accurate results when they have
many more leaves than dimensions. Points that do not fall
within the three most populous values of c[j] could be
searched linearly. Thus, the complete texture synthesis algo-
rithm is improved from O(mnk) to O(mk log n).

7 CONCLUSION
We have described a fully automatic method of synthesizing
isotropic textures on subdivision surfaces from sample images.
Within the class of isotropic textures, this method offers sev-
eral improvements over existing methods. The method can
also be used to create isotropic variants of anisotropic textures.

The original contributions of our paper can be summarized as
follows:
• Both Gaussian and Laplacian pyramid representations of

CASTELLANOS-WILLIAMS: AUTOMATIC SYNTHESIS OF ISOTROPIC TEXTURES ON SURFACES FROM SAMPLE IMAGES 13

the sample texture are constructed. The inverse Laplacian
pyramid transform is used to generate first approxima-
tions to the texture at each level of the associated Gaus-
sian pyramid resulting in a smooth coarse-to-fine infor-
mation flow.

• We have introduced a new non-parametric sampling
method, which approximates sampling without replace-
ment, yet is softly constrained. Choosy sampling trans-
forms a greedy, nearest neighbor search process into a
significantly more effective non-parametric sampling
method. The essential property of searching for a best
match (and in doing do, modeling a texture's second-order
statistics) is maintained while simultaneously preserving
the first-order statistics of the sample texture.

• The input texture is resampled using a triangular grid so
that its geometry more closely resembles that of the sub-
division surface on which the texture will be synthesized.
Representing both the analysis and synthesis pyramids us-
ing the same data structure greatly simplifies the
neighborhood matching procedure that is the heart of the
texture synthesis process.

• The application of the Eigenvector Transform to the set of
all sample neighborhoods at a given resolution level has
proven highly effective in accelerating the texture synthe-
sis process.

• The standard Kd-tree has been adapted to apply to a case
where the result of a query is a function of the result of all
previous queries.

References
[1] Bar-Joseph Z., El-Yaniv R., Lichinski D., and Werman M. “Texture

Mixing and Texture Movie Synthesis using Statistical Learning,”. IEEE
Trans. on Visualization and Computer Graphics vol. 7, no. 2, pp. 120–
135, 2001.

[2] Burt P.J. “Fast Filter Transforms for Image Processing.” The Visual
Computer vol. 16, pp. 20–51, 1981.

[3] Burt P.J., Adelson E.H. “The Laplacian Pyramid as a Compact Image
Code,” IEEE Trans, C-31:532-540, 1983.

[4] De Bonet J.S. “Multiresolution Sampling Procedure for Analysis and
Synthesis of Texture Images,”. SIGGRAPH 97, pp. 361–368, 1997.

[5] Efros A. and Freeman W. “Image Quilting for Texture Synthesis and
Transfer,” SIGGRAPH 01, pp. 341–346, 2001.

[6] Efros A. and Leung T. “Texture Synthesis by Non-parametric Sam-
pling,” Intl. Conf. on Computer Vision, vol. 2, pp. 1033–1038, 1999.

[7] Heeger D.J. and Bergen J.R. “Pyramid-based Texture Analy-
sis/Synthesis,” SIGGRAPH 95, pp. 229–238, 1995.

[8] Hotelling H. “Analysis of a Complex of Statistical Variables into Princi-
pal Components,” J. Educ. Psychol., vol. 24, pp. 417-441, 498-520,
1933.

[9] Praun E., Finkelstein A. and Hoppe H. “Lapped Textures,” SIGGRAPH
00, pp. 465–470, 2000.

[10] Sirl-Moore Curtis and Williams Lance R. “Automatic Synthesis of Iso-
tropic Textures on the Sphere from Sample Images Using the Laplacian
Pyramid Transform,” University of New Mexico, TR-CS-2001-11,
2001.

[11] Turk G. “Re-tiling Polygonal Surfaces,” SIGGRAPH 92, pp. 55–64,
1992.

[12] Wei L.Y. and Levoy M. “Fast Texture Synthesis using Tree Structured
Vector Quantization,”. SIGGRAPH 00, pp. 479–488, 2000.

[13] Wei L.Y. and Levoy M. “Texture Synthesis Over Arbitrary Manifold
Surfaces,” SIGGRAPH 01, pp. 355–360, 2001.

[14] Zorin D., Schröder P. and Sweldens W. “Interpolating Subdivision for
Meshes with Arbitrary Topology,” SIGGRAPH 96, pp. 189–192, 1996.

Joel Castellanos received his BS degree in Physics and
Computer Science from Wilkes University and is
currently a graduate student in the Dept. of Computer
Science at the University of New Mexico. He is also
currently a senior software engineer with ASRC
Aerospace, has taught mathematics at Central Wyoming
College, Physics at Albuquerque Academy HS, and was
a research scientist Rice University.

Lance R. Williams received the BS degree in computer
science from the Pennsylvania State University and the
MS and PhD degrees in computer science from the
University of Massachusetts. He is currently an associ-
ate professor of computer science with the University of
New Mexico. Prior to joining UNM, he was a post-
doctoral scientist at NEC Research Institute.

