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Motivation
What is an Interpolant?
What is a Uniform Interpolant?

Applications of Interpolants and Uniform Interpolants

Guide bounded model checking algorithms [7]

Invariant generation for quantifier-free theories [8]

Strongest interpolants [5]

Optimization of ontologies [6] (i.e. elimination of non-relevant
predicates)

Privacy-protecting ontologies [4] (i.e. predicate hiding)
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Motivation
What is an Interpolant?
What is a Uniform Interpolant?

First Order Interpolants

Definition

Let Σ be a first-order signature. Let T be a Σ−theory in
first-order logic. Given two logical formulas α and β such that
|=T α ∧ β → ⊥, an interpolant γ for (α, β) satisfies:

|=T α→ γ

|=T β ∧ γ → ⊥
γ refers only αβ − common symbols.

Theorem (Craig Interpolation Theorem)

For any ψ, φ first-order logic formulas such that |= ψ ∧ φ→ ⊥, the
interpolant γ of (ψ, φ) exists.
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Example

Let α = ¬(P ∧ Q)→ (¬R ∧ Q) and β = ¬(S → P) ∧ ¬(S → ¬R)

The interpolant of (α, β) is α[Q/>] ∨ α[Q/⊥] ∼= R → P

1. ¬(P ∧ Q)→ (¬R ∧ Q)

2. ¬(P ∧ Q)→ ¬(R ∨ ¬Q)

3. (R ∨ ¬Q)→ (P ∧ Q)

4. (Q → R)→ (P ∧ Q)

5. R → (Q → R)

6. R → (P ∧ Q)

7. (P ∧ Q)→ P

8. R → P

1. R → P

2. ¬(S → P)

3. ¬(S → ¬R)

4. S ∧ ¬P
5. S ∧ R

6. P

7. ⊥
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What is a Uniform Interpolant?

Uniform Interpolants

Definition

Let T be a theory and an existential formula ∃e.φ(e, z); call
Res(∃e.φ(e, z)) the set {θ(y , z)| |=T ∃e.φ(e, z)→ θ(y , z)}.
A quantifier-free formula ψ(z) is called a T -uniform interpolant if

ψ(z) ∈ Res(∃e.φ(e, z))

∀θ(y , z) ∈ Res(∃e.φ(e, z)). |=T ψ(z)→ θ(y , z)

Jose Abel Castellanos Joo Implementation of Uniform Interpolating Algorithms



Preliminaties
UI Algorithm for EUF

UI Algorithm for UTVPI
EUF + UTVPI

Conclusions and Future Work

Kapur’s Algorithm
My modification of Step III
Example
Evaluation

Key ideas / Steps

Preprocessing: Flatten formula by introducing new constants

Phase I: Elimination of uncommon constants

Phase II: Elimination of uncommon function symbols

Phase III: Elimination of uncommon symbols conditionally

Phase IV: Interpolant generation
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Preprocessing

The algorithm introduces new constants by equating each
subexpression in the AST of the original input.

For each sub-term t in the input formula assign a fresh unique
constant at . Additionally, for each sub-term t generate new
equations of the form:

c = ac , if t is a constant c

f (at1 , . . . , atn) = af (t1,...,tn), if t is a function application of the
form f (t1, . . . , tn)
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Elimination of uncommon constanst

This step builds an equivalence relation E of the f − equations
introduced in the Flattening step using a congruence closure
algorithm such that the representatives are common terms
whenever possible.

Uncommon terms appearing in the current conjunction of
equations are replaced by their representatives.
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Elimination of uncommon function symbols

This step produces for all pairs of f − equations
(f (a1, . . . , an) = c, f (b1, . . . , bn) = d) Horn clauses of the form∧n

i=1(reprE(ai ) = reprE(bi ))→ reprE(c) = reprE(d) when either of
the two following situations happen:

The outermost symbol of the f − equations is an uncommon
symbol.

There is at least one constant argument in any of the
f − equations that is an uncommon constant.
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Elimination of uncommon symbols conditionally

We identify the Horn clauses h :=
∧

i (ci = di )→ a = b that have
common antecedents and uncommon head equations. We perform
the following procedure:

if a and b are both uncommon terms: replace the equation
a = b appearing in the antecedents of all the current Horn
clauses by antecedent(h).

if either a is common and b uncommon: replace b by a in all
the current Horn clauses h

′
and append antecedent(h) to

antecedent(h
′
).

if either a is uncommon and b common: Proceed similarly as
in the previous case.

We repeat this step until we cannot produce any new Horn clauses.
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Interpolant generation

For each Horn clause of the form
∧

i (ai = bi )→ u = c where the
antecedent is common, the term u in its head equation is an
uncommon term, and the term c is a common term, replace every
instance of u appearing in each f − equation by c to generate Horn
clauses with antecedent

∧
i ai = bi .

Return the conjunction of formulas obtained as the interpolant.
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Combining two data structures I

The modification of Phase III implemented in this thesis work
combines and extends the algorithms and data structures
introduced in [2, 9].

The implementation of the congruence closure algorithm in [9]
extends the usual Find ,Merge operations on the union-find data
structure with the Explain operator.
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Combining two data structures II

Conditional Congruence Closure Algorithm:

Step 1. Let E be an empty equivalence class for all the terms
in the term tree of the Horn clauses in H, i.e. there is an
equivalence class for each term in H.

Step 2. Insert all the Horn clauses in H to the Gallier data
structure and update E according to Gallier’s algorithm.

Step 3. For all the common equations a = b in the Horn
clauses h ∈ H, Merge a and b in E . Update Gallier’s data
structure accordingly.

Step 4. Return E as the conditional congruence closure for H.
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A Simple Example

Let us consider α = {f (x1) 6= f (x2)} with the set of symbols to
eliminate U = {f }.

The implementation produces the following trace for α;U:
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Output of implementation

Before conditionalEliminationEqs

Horn clauses produced

0. 0x5648882bc710 (Leader) (= c_x2 c_x1) -> (= (a_f c_x2) (a_f c_x1))

1. 0x5648882d7dd0 (Leader) (= (a_f c_x2) (a_f c_x1)) -> false

Number of horn clauses: 2

Executing conditionalElimination

After conditionalEliminationEqs/Before conditionalEliminationHcs

Horn clauses produced

0. 0x5648882bc710 (Leader) (= c_x2 c_x1) -> (= (a_f c_x2) (a_f c_x1))

1. 0x5648882d7dd0 (Leader) (= (a_f c_x2) (a_f c_x1)) -> false

Number of horn clauses: 2

Executing conditionalEliminationfor Horn clauses

After conditionalEliminationHcs

Horn clauses produced

0. 0x5648882bc710 (Leader) (= c_x2 c_x1) -> (= (a_f c_x2) (a_f c_x1))

1. 0x5648882d7dd0 (Leader) (= (a_f c_x2) (a_f c_x1)) -> false

Number of horn clauses: 2

Horn clauses produced

0. 0x5648882deea0 (Leader) (= c_x2 c_x1) -> false

Number of horn clauses: 1

(ast-vector

(=> (= x2 x1) false))
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Discussing the Output

It is clear that f (x1) 6= f (x2) |= x1 6= x2

Lemma

x1 6= x2 implies any θ such that f (x1) 6= f (x2) |= θ

Proof.

Proof by induction on θ

Base case: f (x1) 6= f (x2) |= x1 6= x2 ∧ x1 = x1 ∧ x2 = x2
Inductive step:

Case f (x1) 6= f (x2) |= ψ ∧ φ : Thus, f (x1) 6= f (x2) |= ψ,
f (x1) 6= f (x2) |= φ. By IH. x1 6= x2 → ψ and x1 6= x2 → φ
Thus, x1 6= x2 → ψ ∧ φ
Case f (x1) 6= f (x2) |= ψ ∨ φ : EUF is convex. W.L.O.G.,
f (x1) 6= f (x2) |= φ. By IH. x1 6= x2 → φ. Thus,
x1 6= x2 → ψ ∨ φ.
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Performance comparison with other interpolating systems

It is important to mention that
iZ3 and Mathsat do not generate
uniform interpolants.

The examples generated where
randomly created using function
symbols with arity less than or
equal to 3, but not equal to 1.
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Key ideas / Steps

Kapur’s algorithm uses these inference rules:

ax + ax ≤ c a ∈ {−1, 0, 1} and x ∈ Vars
Normalize

ax ≤ b c2c
s1x1 + s2x2 ≤ c1 −s2x2 + s3x3 ≤ c2

Elim
s1x1 + s3x3 ≤ c1 + c2

Jose Abel Castellanos Joo Implementation of Uniform Interpolating Algorithms



Preliminaties
UI Algorithm for EUF

UI Algorithm for UTVPI
EUF + UTVPI

Conclusions and Future Work

Kapur’s Algorithm
Implementation Details
Example
Evaluation

Data structures implemented

Indexing data structure which encodes inequalities of the
input formula using natural numbers.
Position : UTVPI-term → N is a bijection.

Array of numbers Bounds indexed by the numeral
representation of the inequalities representing the minimum
bound of the encoded inequality, i.e.
Bounds[Position(a1x1 + a2x2)] = c

Data structure to keep track of the signs of variables to be
eliminated in the inequalities for efficient matching.

Data structure to represent an UTVPI term in normal form
endowed with addition and subtraction operations and the
Position function mentioned in the first item.
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A Simple Example

Let us consider α = {−x2 − x1 + 3 ≥ 0, x1 + x3 + 1 ≥
0,−x3 − x4 − 6 ≥ 0, x5 + x4 + 1 ≥ 0};U = {x1}.

Our implementation produced the following output:

x2 − x3 ≤ 4 ∧ x4 + x3 ≤ −6 ∧ −x5 − x4 ≤ 1
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Output of implementation

Processing

(+ c_x2 a_x1)

Updating structure with

x_2 + x_1 <= 3

Processing

(- (- c_x3) a_x1)

Updating structure with

- x_3 - x_2 <= 1

Processing

(+ c_x4 c_x3)

Updating structure with

x_4 + x_3 <= -6

Processing

(- (- c_x5) c_x4)

Updating structure with

- x_5 - x_4 <= 1

Removing this var: x_0

Removing this var: x_1

Removing this var: x_2

Reducing x_2 + x_1 and - x_3 - x_2

Result: - x_3 + x_1

Removing this var: x_3

Removing this var: x_4

Removing this var: x_5

(ast-vector

(<= (+ (- x3) x2) 4)

(<= (+ x4 x3) (- 6))

(<= (- (- x5) x4) 1))
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Discussing the output

It is easy to see that
α |=UTVPI x2 − x3 ≤ 4 ∧ x4 + x3 ≤ −6 ∧ −x5 − x4 ≤ 1.

Using Fourier-Motzkin, we can check that
|=UTVPI α ⇐⇒ |=UTVPI x2− x3 ≤ 4∧ x4 + x3 ≤ −6∧−x5− x4 ≤ 1

Thus, for every θ such that |=UTVPI α→ θ we have that
|=UTVPI x2 − x3 ≤ 4 ∧ x4 + x3 ≤ −6 ∧ −x5 − x4 ≤ 1→ θ
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Performance comparison with other interpolating systems

It is important to mention that iZ3 and Mathsat do not generate
uniform interpolants for this theory.

Jose Abel Castellanos Joo Implementation of Uniform Interpolating Algorithms



Preliminaties
UI Algorithm for EUF

UI Algorithm for UTVPI
EUF + UTVPI

Conclusions and Future Work

What to do with EUF + UTVPI?
Alternatives

The combined theory does not have the UI property

In previous chapters, we discussed uniform interpolanting
algorithms for the EUF and UTVPI theories respectively. This was
possible since each theory satisfies the Uniform Interpolant
Property (UIP).

Nonetheless, as shown in [1], the UIP does not hold for combined
theory of EUF and integer difference logic (IDL).

The same counter-example applies for the theory combination of
EUF and UTPVI. Hence, there cannot be an algorithm for
computing the uniform interpolant for this combined theory.
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What to do with EUF + UTVPI?
Alternatives

Weakening condition

This weakening condition allows prove soundness in the proposed
algorithm:

For all variables x to eliminate in the UTVPI components of the
input formula ψ, either:

ψ |=EUF+UTVPI x ≤ n1 and ψ |=EUF+UTVPI −x ≤ n2 where
n1, n2 ∈ Z, or

There exists a1x + a2y with y a common variable such that
ψ |=EUF+UTVPI a1x + a2y ≤ n1 and
ψ |=EUF+UTVPI −a1x − a2y ≤ n2, where a1, a2 ∈ {−1, 0, 1}
and n1, n2 ∈ Z
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What to do with EUF + UTVPI?
Alternatives

UI algorithm for EUF [3]

1. Simplification rules.

2. DAG update rule.

3. e-Free Literal rule.

4. Branch equalities or disequalities from the difference set of
compatible f − equations.
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What to do with EUF + UTVPI?
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Partially sound UI algorithm for EUF + UTVPI I

5. Eliminate uncommon UTVPI terms: if there are UTVPI
inequalities of the form aix + ajej ≤ k1 and aky − ajej ≤ k2 in
ψ, then introduce to φ the UTVPI inequality
aix + aky ≤ k1 + k2.

6. Normalize UTVPI inequalities: if there is a UTVPI
inequality of the form aix + aix ≤ k in the formula state, then
remove it and insert to ψ the UTVPI inequality aix ≤ bk/2c
7. Normalize bounds: if there are two UTVPI inequalities of
the form aix + ajy ≤ k1, aix + ajy ≤ k2 in the formula state
with {k1, k2} ∈ N, then remove them both and insert to ψ the
UTVPI inequality aix + ajy ≤ min(k1, k2)
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What to do with EUF + UTVPI?
Alternatives

Partially sound UI algorithm for EUF + UTVPI II

8. Propagate fully bounded uncommon UTVPI inequalities: if
there are two UTVPI inequalities in ψ of the form
aiei + ajej ≤ k1 and −aiei − ajej ≤ k2, where
ai ∈ {1,−1}, aj ∈ {1, 0,−1} and i > j or ei is uncommon and
ej is common then non-deterministically apply the following
rule:

Remove both aiei + ajej ≤ k1 and −aiei − ajej ≤ k2 from ψ
and replace every ei by l − aiajej where
l ∈ {−ajk2,−ajk2 + 1, . . . , ajk1 − 1, ajk1}.
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Simple Example I

Let us consider the following input formula {y − x ≤ 0,−y + x ≤
10y + x ≤ 20,−y − x ≤ −10,−e + x ≤ 0, e − y ≤ 0, f (e) = x};
U = {e}.

The normal form produced for the UTVPI component of the
proposed algorithm is the following conjunction of inequalities:
x ≤ 15,−x ≤ −5, y ≤ 10, y +x ≤ 20, y −x ≤ 0,−y ≤ 0,−y +x ≤
10,−y−x ≤ −10, e ≤ 10, e+x ≤ 25, e−x ≤ 5, e+y ≤ 20, e−y ≤
10,−e ≤ −5,−e+x ≤ 10,−e−x ≤ −10,−e+y ≤ 5,−e−y ≤ −5
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What to do with EUF + UTVPI?
Alternatives

Simple Example II

The final output produced by the algorith is

(f (5) = x ∧ δ) ∨ (f (6) = x ∧ δ) ∨ (f (7) = x ∧ δ)

∨ (f (8) = x ∧ δ) ∨ (f (9) = x ∧ δ) ∨ (f (10) = x ∧ δ)

where δ is x ≤ 15 ∧ −x ≤ 5 ∧ y ≤ 10 ∧ y + x ≤ 20 ∧ y − x ≤
0 ∧ −y ≤ 0 ∧ −y + x ≤ 10 ∧ −y − x ≤ −10
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What to do with EUF + UTVPI?
Alternatives

Yorsh - Musuvathi combination framework

The implementation maintains a map data structure that keeps
track of the partial interpolants. This ensures that the base case
for the above formula p(c) is replaced by previous clauses as
required in [10].

These partial interpolants are computed from an unsatisfiability
proof obtained by including the negation of the disjunction to the
formula using the following definition
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What to do with EUF + UTVPI?
Alternatives

Partial Interpolants

Definition

Let 〈A,B〉 be a pair of clause sets such that A ∧ B ` ⊥ and T be
a proof of unsatisfiability of A ∧ B. We define p(c) for a clause c
in T by induction on the proof structure:

if c is one of the input clauses then

if c ∈ A, then p(c) := ⊥
if c ∈ B, then p(c) := >

otherwise, c is a result of resolution, i.e. let c1, c2 be two
clauses of the form x ∨ c

′
1, ¬x ∨ c

′
2 respectively. The partial

interpolant for c is defined as follows:

if x ∈ A and x 6∈ B (x is A-local), then p(c) := p(c1) ∨ p(c2)
if x 6∈ A and x ∈ B (x is B-local), then p(c) := p(c1) ∧ p(c2)
otherwise (x is AB-common), then
p(c) := (x ∨ p(c1)) ∧ (¬x ∨ p(c2))
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What to do with EUF + UTVPI?
Alternatives

Implemented Modifications

Since introducing negations is necessary to compute partial
interpolants, we noticed the following interaction with the theories
involved in the thesis work:

EUF case: negations of literals in this theory are just
dis-equalities, which the interpolation algorithm implemented
handles as Horn clauses with a false head term.

UTVPI case: negations of literals in this theory are either
dis-equalities or strict inequalities. The dis-equalities are
purified an appended to the EUF component; strict
inequalities of the form x > y are replaced by non-strict
inequalities of the form x ≥ y + 1.
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Conclusions

The implementation and testing work in the implementation
for the EUF and UTVPI theories confirm that the approach
produces stronger interpolants compared to iZ3 and Mathsat.

Uniform interpolantion for the theories studied is comparable
in performance with well-known interpolant generating
implementations.

A new partially sound algorithm for the uniform interpolant
generation for the combined theory of EUF + UTVPI was
introduced in the sense that the algorithm is sound if the
input formula satisfies particular requirements.
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Future Work

In order to improve the UTVPI implementation, it will be
interesting to explore the use of heuristics to determine the
order in which the uncommon variable should be eliminated.

The implementation of the partially sound combination
algorithm will be considered in the future if rule 8 can be
replaced for propagation rules that avoid splitting.
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