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Motivation

The theory of arrays with
extensionality does not have
quantifier-free interpolation
[5]

If the signature of the theory
is extended with an additional
diff operator, the resulting
theory becomes
quantifier-free interpolating
[1]

Example: (h
′
= wr(h, i , e), a ̸= b∧

rd(h, a) ̸= rd(h
′
, a) ∧ rd(h, b) ̸=

rd(h
′
, b))

Interpolant in ⟨=,wr,rd⟩ is
∃j .(rd(h, j) ̸=
rd(h

′
, j) ∧ ∀k .(k ̸= j →

rd(h, k) = rd(h
′
, k)))

Interpolant in
⟨=,wr,rd,diff⟩ is let j =
diff(h, h

′
) be in h

′
=

wr(h, j ,rd(h, j))
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Motivation (Cont’d)

In the literature, the diff operator is a binary function skolemizing the
extensionality axiom, which lacks a meaningful interpretation

The diff operator in this work returns 0 if the two input arrays are the same and
otherwise returns the biggest index where the input arrays are different

Endowing this semantic on diff allows the theory to formalize desirable
specifications (in particular, the length function) without quantifiers of bounded
arrays
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Contributions

Implemented the proposed algorithm in [2] for the theory ARD(TI), where TI is
an index theory.

Provided support for the quantifier-free fragment of the index theories T O, IDL,
and LIA.
Designed an architecture allowing the system to use different interpolation engines
as black boxes. Currently, we support iZ3, SMTInterpol, and MathSAT.
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Theory Arrays with MaxDiff

ARD(TI) includes, besides the axioms of TI , the following axioms:

∀y , i , e. i ≥ 0→ rd(wr(y , i , e), i) = e (1)

∀y , i , j , e. i ̸= j → rd(wr(y , i , e), j) = rd(y , j) (2)

∀x , y . x ̸= y → rd(x ,diff(x , y)) ̸= rd(y ,diff(x , y)) (3)

∀x , y , i . i > diff(x , y)→ rd(x , i) = rd(y , i) (4)

∀x . diff(x , x) = 0 (5)

∀x .i i < 0→ rd(x , i) = ⊥ (6)

∀i . rd(ε, i) = ⊥ (7)

As an effect of the above axioms, we have that an array x is undefined
outside the interval [0, |x |], where |x | is defined as |x | := diff(x , ε).
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Theory Arrays with MaxDiff (Cont’d)

Given array variables a, b, we define by mutual recursion the sequence of array terms
b1, b2, . . . and of index terms diff1(a, b),diff2(a, b), . . . :

b1 := b; diff1(a, b) := diff(a, b1);

bk+1 := wr(bk ,diffk(a, b),rd(a,diffk(a, b))); diffk+1(a, b) := diff(a, bk+1)
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Theory Arrays with MaxDiff - Lemma

The conjunctive formula

diff1(a, b) = k1 ∧ · · · · · · ∧ diffl(a, b) = kl (8)

is equivalent modulo ARD to the conjunction of the following five formulæ:

k1 ≥ k2 ∧ · · · ∧ kl−1 ≥ kl ∧ kl ≥ 0 (9)∧
j<l(kj > kj+1 → rd(a, kj) ̸= rd(b, kj)) (10)∧

j<l(kj = kj+1 → kj = 0) (11)∧
j≤l(rd(a, kj) = rd(b, kj)→ kj = 0) (12)

∀h (h > kl → rd(a, h) = rd(b, h) ∨ h = k1 ∨ · · · ∨ h = kl−1) (13)
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Separated Pairs

A pair of sets of quantifier-free formulae Φ = (Φ1,Φ2) is a separated pair iff

(1) Φ1 contains equalities of the form diffk(a, b) = i and a = wr(b, i , e); moreover
if it contains the equality diffk(a, b) = i , it must also contain an equality of the
form diffl(a, b) = j for every l < k ;

(2) Φ2 contains Boolean combinations of TI -atoms and of atoms of the forms:
{rd(a, i) = rd(b, j), rd(a, i) = e, e1 = e2}, where a, b, i , j , e, e1, e2 are
variables or constants of the appropriate sorts.
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M-Instantiations

If I is a set of TI-terms, an I-instance of a universal formula of the kind ∀i ϕ is a
formula of the kind ϕ(t/i) for some t ∈ I.

Let I be a set of TI-terms and let Φ = (Φ1,Φ2) be a separated pair; we let
Φ(I) = (Φ1(I),Φ2(I)) be the smallest separated pair satisfying the following
conditions:

- Φ1(I) is equal to Φ1 and Φ2(I) contains Φ2;
- Φ2(I) contains all I-instances of the two formulæ
∀i rd(ε, i) = ⊥, ∀i (i < 0→ rd(a, i) = ⊥), where a is any array variable
occurring in Φ1 or Φ2;

- if Φ1 contains a = wr(b, i , e), then Φ2(I) contains all the I-instances of the
equivalent formula (i ≥ 0→ rd(a, i) = e) ∧ ∀h (h ̸= i → rd(a, h) = rd(b, h));

- if Φ1 contains the conjunction
∧l

i=1 diffi (a, b) = ki , then Φ2(I) contains the
formulae (9), (10), (11), (12) as well as all I-instances of the formula (13).
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M-Instantiations (Cont’d)

The complexity c(t) of a term t is defined as the number of function symbols
occurring in t.

For M ∈ N ∪ {∞}, the M-instantiation of Φ = (Φ1,Φ2) is the separated pair
Φ(IMΦ ) = (Φ1(IMΦ ),Φ2(IMΦ )), where IMΦ is the set of TI -terms of complexity at most
M built up from the index variables occurring in Φ1,Φ2.
The full instantiation of Φ = (Φ1,Φ2) is the separated pair
Φ(I∞Φ ) = (Φ1(I∞Φ ),Φ2(I∞Φ )) (which is usually not finite). A separated pair
Φ = (Φ1,Φ2) is M-instantiated iff Φ = Φ(IMΦ )
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M-Instantiations - Pseudo Code for quantifier-free IDL

Algorithm 1 M-Instantiation

1: procedure StandardInput::InstantiatedTerms::M-Instantiate
2: for term ∈ terms do
3: new-term ← (term + 1).simplify()
4: if ¬ inSet(new-term, terms) then
5: terms.push-back(new-term)
6: end if
7: new-term ← (term - 1).simplify()
8: if ¬ inSet(new-term, terms) then
9: terms.push-back(new-term)

10: end if
11: end for
12: end procedure
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Interpolation Algorithm

Algorithm 2 Main Loop

1: procedure AXDInterpolator::MainLoop(StandardPair part-a, StandardPair part-b)
2: if ¬(common-array-vars.areCommonPairsAvailable()) then
3: SmtSolverSetup(solver, part-a)
4: SmtSolverSetup(solver, part-b)
5: if solver.check() = z3::unsat then
6: is-unsat ← true
7: end if
8: return
9: end if

10: CircularPairIterator search-common-pairs(common-array-vars)
11: while (num-attemps++ < remaining-fuel) do
12: solver.push()
13: SmtSolverSetup(solver, part-a)
14: SmtSolverSetup(solver, part-b)
15: if solver.check() = z3::unsat then
16: is-unsat ← true
17: return
18: end if
19: solver.pop()
20: common-pair ← *search-common-pair
21: part-a-dim ← part-a.diff-map.size-of-entry(common-pair)
22: part-b-dim ← part-b.diff-map.size-of-entry(common-pair)
23: dim ← min(part-a-dim, part-b-dim)
24: new-index = fresh-index-constant()
25: part-a.updateSaturation(common-pair, new-index, dim)
26: part-b.updateSaturation(common-pair, new-index, dim)
27: search-common-pair.next()
28: end while
29: end procedure

Algorithm 3 SmtSolverSetup

1: procedure AXDInterpolator::SmtSolverSetup(z3::solver solver, StandardPair side-part)
2: for assertion ∈ side-part.part-2 do
3: solver.add(assertion)
4: end for
5: side-part.instantiate(solver, ∀x , i .i < 0→ rd(x , i) = ⊥)
6: side-part.instantiate(solver, ∀i .rd(ε, i) = ⊥)
7: for a = wr(b, i , e) ∈ side-part.write-vector do
8: side-part.instantiate(solver, ∀h.h ̸= i → rd(a, h) = rd(b, h))
9: end for

10: for diff(a, b) = i ∈ side-part.diff-map do
11: side-part.instantiate(solver, ∀h.h > i → rd(a, h) = rd(b, h))
12: end for
13: end procedure

Algorithm 4 UpdateSaturation

1: procedure StandardPair::updateSaturation(z3Pair entry, z3::expr new-index, unsigned min-dim)
2: a ← entry.first
3: b ← entry.second
4: map-element ← diff-map.find(entry)
5: instantiated-terms.addVar(new-index)
6: if Heuristic then
7: instantiated-terms.M-instante()
8: end if
9: if min-dim < old-dim then

10: part-2.push-back(new-index = (map-element.second)[min-dim]
11: else
12: prev-index ← (map-element.second)[old-min - 1]
13: part-2.push-back(prev-index ≥ new-index)
14: part-2.push-back(new-index ≥ 0)
15: part-2.push-back(prev-index > new-index → rd(a, prev-index) ̸= rd(b, prev-index))
16: part-2.push-back(prev-index = new-index → prev-index = 0)
17: end if
18: part-2.push-back(rd(a, new-index) = rd(b, new-index) → new-index = 0)
19: end procedure
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Input Files and Extended Signature

Our extended language is parameterized by the array sorts in the input formula as well
as by an index theory. The domain sort of every array is currently implemented using
the Int sort.

(declare-sort A)
(declare-fun diff’A’ ((Array Int A) (Array Int A)) Int)
(declare-fun length’A’ ((Array Int A)) Int)
(declare-fun empty_array’A’ () (Array Int A)
(declare-fun undefined’A’ () A)

Figure: Our extended language parameterized with a sort A.
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Demo
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Benchmarks using SV-COMP and UAutomizer - Setup

We tested our implementation using C-programs from the ReachSafety-Arrays and
MemSafety-Arrays tracks of the SV-COMP [3]

We used the model checker UAutomizer [4] to extract their SMT Scripts from the
previous C-programs

We let the machine produce SMT Scripts for 15 minutes. We used these SMT
Scripts files to compare the number of interpolants computed from unsatisfiable
formulas. For the latter we assigned each process up to 360 seconds and 6 GB of
memory
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Benchmarks using SV-COMP and UAutomizer - Memsafety-track Results

AXD Interpolator
Subtracks iZ3 MathSAT SMTInterpol

Success Timeout Success Timeout Success Timeout

array-examples 584 1 584 1 584 1
array-memsafety 118 0 118 0 118 0
termination-crafted 52 3 52 3 52 3

Table: Memsafety-track results - Our
implementation

Subtracks iZ3 MathSAT SMTInterpol

Success Timeout Success Timeout Success Timeout

array-examples 585 0 585 0 585 0
array-memsafety 118 0 118 0 118 0
termination-crafted 55 0 55 0 55 0

Table: Memsafety-track results - Other solvers
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Benchmarks using SV-COMP and UAutomizer - Reachsafety-track Results

AXD Interpolator
Subtracks iZ3 MathSAT SMTInterpol

Success Timeout Success Timeout Success Timeout

array-cav19 31 0 31 0 31 0
array-examples 50 0 50 0 50 0
array-fpi 774 21 774 21 774 21
array-industry-pattern 8 0 8 0 8 0
array-lopstr16 54 0 54 0 54 0
array-patterns 11 0 11 0 11 0
array-tiling 6 0 6 0 6 0
reducercommutativity 53 0 53 0 53 0

Table: Reachsafety-track results - Our
implementation

Subtracks iZ3 MathSAT SMTInterpol

Success Timeout Success Timeout Success Timeout

array-cav19 31 0 31 0 31 0
array-examples 50 0 50 0 50 0
array-fpi 795 0 795 0 795 0
array-industry-pattern 8 0 8 0 8 0
array-lopstr16 54 0 54 0 54 0
array-patterns 11 0 11 0 11 0
array-tiling 6 0 6 0 6 0
reducercommutativity 53 0 53 0 53 0

Table: Reachsafety-track results - Other Solvers
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Future Work

We handle boolean combination of formulas using a DNF transformation. Such
transformation appears to be the first target to rework since this can take
exponential amount of time.

The current design does not perform incremental satisfiability checks. Incremental
checks are possible to implement due to the incremental nature of the proposed
interpolation algorithm by including a hash consed data structure on the
terms/predicates produced in the main loop of the algorithm and because the
data structure z3::solver can keep track of previously proven assertions.
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Conclusions

In this paper we described AXDInterpolator, the implementation of the
interpolation algorithm presented in [2].

We were able to show the feasibility of AXDInterpolator by validating it on two
benchmarks taken from the SV-COMP.

We also compared our implementation with state-of-the-art solvers: apart from
very few timeout outcomes, our tool managed to handle all the examples the
other solvers did.

We also found interesting examples that are not handled by other state-of-the-art
solvers, which makes the option of our language extension and tool an appealing
consideration.
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Thanks for your attention!

J.A. Castellanos Joo AXDInterpolator SMT 2021 21 / 24



References I

Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise.
Quantifier-free interpolation of a theory of arrays.
Log. Methods Comput. Sci., 8(2), 2012.

Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur.
Interpolation and amalgamation for arrays with maxdiff.
In Stefan Kiefer and Christine Tasson, editors, Foundations of Software Science
and Computation Structures - 24th International Conference, FOSSACS 2021,
Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 268–288.
Springer, 2021.

J.A. Castellanos Joo AXDInterpolator SMT 2021 22 / 24



References II

Jan Friso Groote, Kim Guldstrand Larsen, and Dirk Beyer.
Software verification: 10th comparative evaluation (sv-comp 2021).
Tools and Algorithms for the Construction and Analysis of Systems27th
International Conference, TACAS 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City,
Luxembourg, March 27 – April 1, 2021, Proceedings, Part II, 12652:401—422,
February 2021.

Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke,
Markus Lindenmann, Alexander Nutz, Christian Schilling, and Andreas Podelski.
Ultimate Automizer with SMTInterpol.
In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 641–643, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

J.A. Castellanos Joo AXDInterpolator SMT 2021 23 / 24



References III

Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba.
Interpolation for Data Structures.
In Proc. of SIGSOFT-FSE, pages 105–116. ACM, 2006.

J.A. Castellanos Joo AXDInterpolator SMT 2021 24 / 24


	Motivation
	Contributions
	Background
	Implementation
	Evaluation
	Conclusions

