AXDInterpolator

A Tool for Computing Interpolants for Arrays with MaxDiff

Jose Abel Castellanos Joo ${ }^{1}$, Silvio Ghilardi², Alessandro Gianola ${ }^{3}$, Deepak Kapur ${ }^{1}$
${ }^{1}$ Department of Computer Science
University of New Mexico, USA
${ }^{2}$ Dipartimento di Matematica
Università degli Studi di Milano, Italy
${ }^{3}$ Faculty of Computer Science
Free University of Bozen-Bolzano, Italy

19th International Workshop on Satisfiability Modulo Theories August 9, 2022

Motivation

- The theory of arrays with extensionality does not have quantifier-free interpolation [5]

Motivation

- The theory of arrays with extensionality does not have quantifier-free interpolation [5]

Example: $\left(h^{\prime}=w r(h, i, e), a \neq b \wedge\right.$ $\operatorname{rd}(h, a) \neq \operatorname{rd}\left(h^{\prime}, a\right) \wedge \operatorname{rd}(h, b) \neq$ $\left.r d\left(h^{\prime}, b\right)\right)$

- Interpolant in $\langle=, w r, r d\rangle$ is

$$
\begin{aligned}
& \exists j \cdot(\operatorname{rd}(h, j) \neq \\
& \operatorname{rd}\left(h^{\prime}, j\right) \wedge \forall k .(k \neq j \rightarrow \\
& \left.\left.\operatorname{rd}(h, k)=\operatorname{rd}\left(h^{\prime}, k\right)\right)\right)
\end{aligned}
$$

Motivation

- The theory of arrays with extensionality does not have quantifier-free interpolation [5]
- If the signature of the theory is extended with an additional diff operator, the resulting theory becomes
quantifier-free interpolating [1]

Example: $\left(h^{\prime}=w r(h, i, e), a \neq b \wedge\right.$
$\operatorname{rd}(h, a) \neq \operatorname{rd}\left(h^{\prime}, a\right) \wedge \operatorname{rd}(h, b) \neq$ $\left.r d\left(h^{\prime}, b\right)\right)$

- Interpolant in $\langle=, w r, r d\rangle$ is

$$
\begin{aligned}
& \exists j .(\operatorname{rd}(h, j) \neq \\
& \operatorname{rd}\left(h^{\prime}, j\right) \wedge \forall k \cdot(k \neq j \rightarrow \\
& \left.\left.\operatorname{rd}(h, k)=\operatorname{rd}\left(h^{\prime}, k\right)\right)\right)
\end{aligned}
$$

Motivation

- The theory of arrays with extensionality does not have quantifier-free interpolation [5]
- If the signature of the theory is extended with an additional diff operator, the resulting theory becomes
quantifier-free interpolating [1]

Example: $\left(h^{\prime}=w r(h, i, e), a \neq b \wedge\right.$
$\operatorname{rd}(h, a) \neq \operatorname{rd}\left(h^{\prime}, a\right) \wedge \operatorname{rd}(h, b) \neq$ $\left.r d\left(h^{\prime}, b\right)\right)$

- Interpolant in $\langle=, w r, r d\rangle$ is

$$
\begin{aligned}
& \exists j \cdot(\operatorname{rd}(h, j) \neq \\
& \operatorname{rd}\left(h^{\prime}, j\right) \wedge \forall k .(k \neq j \rightarrow \\
& \left.\left.\operatorname{rd}(h, k)=\operatorname{rd}\left(h^{\prime}, k\right)\right)\right)
\end{aligned}
$$

- Interpolant in $\langle=, \mathrm{wr}, \mathrm{rd}, \operatorname{diff}\rangle$ is let $j=$ $\operatorname{diff}\left(h, h^{\prime}\right)$ be in $h^{\prime}=$ $\operatorname{wr}(h, j, r d(h, j))$

Motivation (Cont'd)

- In the literature, the diff operator is a binary function skolemizing the extensionality axiom, which lacks a meaningful interpretation

Motivation (Cont'd)

- In the literature, the diff operator is a binary function skolemizing the extensionality axiom, which lacks a meaningful interpretation
- The diff operator in this work returns 0 if the two input arrays are the same and otherwise returns the biggest index where the input arrays are different

Motivation (Cont'd)

- In the literature, the diff operator is a binary function skolemizing the extensionality axiom, which lacks a meaningful interpretation
- The diff operator in this work returns 0 if the two input arrays are the same and otherwise returns the biggest index where the input arrays are different
- Endowing this semantic on diff allows the theory to formalize desirable specifications (in particular, the length function) without quantifiers of bounded arrays

Contributions

- Implemented the proposed algorithm in [2] for the theory $\mathcal{A R} \mathcal{D}\left(\mathcal{T}_{\mathcal{I}}\right)$, where $\mathcal{T}_{\mathcal{I}}$ is an index theory.

Contributions

- Implemented the proposed algorithm in [2] for the theory $\mathcal{A R} \mathcal{D}\left(\mathcal{T}_{\mathcal{I}}\right)$, where $\mathcal{T}_{\mathcal{I}}$ is an index theory.
- Provided support for the quantifier-free fragment of the index theories $\mathcal{T} \mathcal{O}, \mathcal{I D} \mathcal{L}$, and $\mathcal{L I} \mathcal{A}$.

Contributions

- Implemented the proposed algorithm in [2] for the theory $\mathcal{A R} \mathcal{D}\left(\mathcal{T}_{\mathcal{I}}\right)$, where $\mathcal{T}_{\mathcal{I}}$ is an index theory.
- Provided support for the quantifier-free fragment of the index theories $\mathcal{T O}, \mathcal{I D} \mathcal{L}$, and $\mathcal{L I} \mathcal{A}$.
- Designed an architecture allowing the system to use different interpolation engines as black boxes. Currently, we support iZ3, SMTInterpol, and MathSAT.

Theory Arrays with MaxDiff

- $\mathcal{A R} \mathcal{D}\left(\mathcal{T}_{\mathcal{I}}\right)$ includes, besides the axioms of $\mathcal{T}_{\mathcal{I}}$, the following axioms:

Theory Arrays with MaxDiff

- $\mathcal{A R} \mathcal{D}\left(\mathcal{T}_{\mathcal{I}}\right)$ includes, besides the axioms of $\mathcal{T}_{\mathcal{I}}$, the following axioms:

$$
\begin{array}{rl}
\forall y, i, e . & i \geq 0 \rightarrow \operatorname{rd}(\operatorname{wr}(y, i, e), i)=e \\
\forall y, i, j, e . & i \neq j \rightarrow \operatorname{rd}(\operatorname{wr}(y, i, e), j)=\operatorname{rd}(y, j) \\
\forall x, y . & x \neq y \rightarrow \operatorname{rd}(x, \operatorname{diff}(x, y)) \neq \operatorname{rd}(y, \operatorname{diff}(x, y)) \\
\forall x, y, i . & i>\operatorname{diff}(x, y) \rightarrow \operatorname{rd}(x, i)=\operatorname{rd}(y, i) \\
\forall x . & \operatorname{diff}(x, x)=0 \\
\forall x . i & i<0 \rightarrow \operatorname{rd}(x, i)=\perp \\
\forall i . & \operatorname{rd}(\varepsilon, i)=\perp \tag{7}
\end{array}
$$

Theory Arrays with MaxDiff

- $\mathcal{A R} \mathcal{D}\left(\mathcal{T}_{\mathcal{I}}\right)$ includes, besides the axioms of $\mathcal{T}_{\mathcal{I}}$, the following axioms:

$$
\begin{array}{rl}
\forall y, i, e . & i \geq 0 \rightarrow \operatorname{rd}(\mathrm{wr}(y, i, e), i)=e \\
\forall y, i, j, e . & i \neq j \rightarrow \operatorname{rd}(\operatorname{wr}(y, i, e), j)=\operatorname{rd}(y, j) \\
\forall x, y . & x \neq y \rightarrow \operatorname{rd}(x, \operatorname{diff}(x, y)) \neq \operatorname{rd}(y, \operatorname{diff}(x, y)) \\
\forall x, y, i . & i>\operatorname{diff}(x, y) \rightarrow \operatorname{rd}(x, i)=\operatorname{rd}(y, i) \\
\forall x . & \operatorname{diff}(x, x)=0 \\
\forall x . i & i<0 \rightarrow \operatorname{rd}(x, i)=\perp \\
\forall i . & \operatorname{rd}(\varepsilon, i)=\perp \tag{7}
\end{array}
$$

- As an effect of the above axioms, we have that an array x is undefined outside the interval $[0,|x|]$, where $|x|$ is defined as $|x|:=\operatorname{diff}(x, \varepsilon)$.

Theory Arrays with MaxDiff (Cont'd)

Given array variables a, b, we define by mutual recursion the sequence of array terms b_{1}, b_{2}, \ldots and of index terms $\operatorname{diff}_{1}(a, b), \operatorname{diff}_{2}(a, b), \ldots$:

Theory Arrays with MaxDiff (Cont'd)

Given array variables a, b, we define by mutual recursion the sequence of array terms b_{1}, b_{2}, \ldots and of index terms $\operatorname{diff}_{1}(a, b), \operatorname{diff}_{2}(a, b), \ldots$:

$$
b_{1}:=b
$$

$$
\operatorname{diff}_{1}(a, b):=\operatorname{diff}\left(a, b_{1}\right)
$$

Theory Arrays with MaxDiff (Cont'd)

Given array variables a, b, we define by mutual recursion the sequence of array terms b_{1}, b_{2}, \ldots and of index terms $\operatorname{diff}_{1}(a, b), \operatorname{diff}_{2}(a, b), \ldots$:

$$
\begin{array}{cl}
b_{1}:=b ; & \operatorname{diff}_{1}(a, b):=\operatorname{diff}\left(a, b_{1}\right) ; \\
b_{k+1}:=\operatorname{wr}\left(b_{k}, \operatorname{diff}_{k}(a, b), \operatorname{rd}\left(a, \operatorname{diff}_{k}(a, b)\right)\right) ; & \operatorname{diff}_{k+1}(a, b):=\operatorname{diff}\left(a, b_{k+1}\right)
\end{array}
$$

Theory Arrays with MaxDiff - Lemma

The conjunctive formula

$$
\begin{equation*}
\operatorname{diff}_{1}(a, b)=k_{1} \wedge \cdots \cdots \wedge \operatorname{diff}_{l}(a, b)=k_{l} \tag{8}
\end{equation*}
$$

Theory Arrays with MaxDiff - Lemma

The conjunctive formula

$$
\begin{equation*}
\operatorname{diff}_{1}(a, b)=k_{1} \wedge \cdots \cdots \wedge \operatorname{diff}_{l}(a, b)=k_{l} \tag{8}
\end{equation*}
$$

is equivalent modulo $\mathcal{A R} \mathcal{D}$ to the conjunction of the following five formulæ:

$$
\begin{gather*}
k_{1} \geq k_{2} \wedge \cdots \wedge k_{I-1} \geq k_{l} \wedge k_{l} \geq 0 \tag{9}\\
\bigwedge_{j<1}\left(k_{j}>k_{j+1} \rightarrow \operatorname{rd}\left(a, k_{j}\right) \neq \operatorname{rd}\left(b, k_{j}\right)\right) \tag{10}\\
\bigwedge_{j<1}\left(k_{j}=k_{j+1} \rightarrow k_{j}=0\right) \tag{11}\\
\bigwedge_{j \leq I}\left(\operatorname{rd}\left(a, k_{j}\right)=\operatorname{rd}\left(b, k_{j}\right) \rightarrow k_{j}=0\right) \tag{12}\\
\forall h\left(h>k_{I} \rightarrow \operatorname{rd}(a, h)=\operatorname{rd}(b, h) \vee h=k_{1} \vee \cdots \vee h=k_{l-1}\right)
\end{gather*}
$$

Separated Pairs

A pair of sets of quantifier-free formulae $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is a separated pair iff
the university of NEW MEXICO.

Separated Pairs

A pair of sets of quantifier-free formulae $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is a separated pair iff
(1) Φ_{1} contains equalities of the form $\operatorname{diff}_{k}(a, b)=i$ and $a=\mathrm{wr}(b, i, e)$; moreover if it contains the equality $\operatorname{diff}_{k}(a, b)=i$, it must also contain an equality of the form $\operatorname{diff}_{l}(a, b)=j$ for every $l<k$;

Separated Pairs

A pair of sets of quantifier-free formulae $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is a separated pair iff
(1) Φ_{1} contains equalities of the form $\operatorname{diff}_{k}(a, b)=i$ and $a=\mathrm{wr}(b, i, e)$; moreover if it contains the equality $\operatorname{diff}_{k}(a, b)=i$, it must also contain an equality of the form $\operatorname{diff}_{l}(a, b)=j$ for every $l<k$;
(2) Φ_{2} contains Boolean combinations of T_{1}-atoms and of atoms of the forms: $\left\{r d(a, i)=r d(b, j), \quad \operatorname{rd}(a, i)=e, \quad e_{1}=e_{2}\right\}$, where $a, b, i, j, e, e_{1}, e_{2}$ are variables or constants of the appropriate sorts.

M-Instantiations

If \mathcal{I} is a set of $\mathcal{T}_{\mathcal{I}}$-terms, an \mathcal{I}-instance of a universal formula of the kind $\forall i \phi$ is a formula of the kind $\phi(t / i)$ for some $t \in \mathcal{I}$.

M-Instantiations

If \mathcal{I} is a set of $\mathcal{T}_{\mathcal{I}}$-terms, an \mathcal{I}-instance of a universal formula of the kind $\forall i \phi$ is a formula of the kind $\phi(t / i)$ for some $t \in \mathcal{I}$.
Let \mathcal{I} be a set of $\mathcal{T}_{\mathcal{I}}$-terms and let $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ be a separated pair; we let $\Phi(\mathcal{I})=\left(\Phi_{1}(\mathcal{I}), \Phi_{2}(\mathcal{I})\right)$ be the smallest separated pair satisfying the following conditions:

M-Instantiations

If \mathcal{I} is a set of $\mathcal{T}_{\mathcal{I}}$-terms, an \mathcal{I}-instance of a universal formula of the kind $\forall i \phi$ is a formula of the kind $\phi(t / i)$ for some $t \in \mathcal{I}$.
Let \mathcal{I} be a set of $\mathcal{T}_{\mathcal{I}}$-terms and let $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ be a separated pair; we let $\Phi(\mathcal{I})=\left(\Phi_{1}(\mathcal{I}), \Phi_{2}(\mathcal{I})\right)$ be the smallest separated pair satisfying the following conditions:

- $\Phi_{1}(\mathcal{I})$ is equal to Φ_{1} and $\Phi_{2}(\mathcal{I})$ contains Φ_{2};

M-Instantiations

If \mathcal{I} is a set of $\mathcal{T}_{\mathcal{I}}$-terms, an \mathcal{I}-instance of a universal formula of the kind $\forall i \phi$ is a formula of the kind $\phi(t / i)$ for some $t \in \mathcal{I}$.
Let \mathcal{I} be a set of $\mathcal{T}_{\mathcal{I}}$-terms and let $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ be a separated pair; we let $\Phi(\mathcal{I})=\left(\Phi_{1}(\mathcal{I}), \Phi_{2}(\mathcal{I})\right)$ be the smallest separated pair satisfying the following conditions:

- $\Phi_{1}(\mathcal{I})$ is equal to Φ_{1} and $\Phi_{2}(\mathcal{I})$ contains Φ_{2};
- $\Phi_{2}(\mathcal{I})$ contains all \mathcal{I}-instances of the two formulæ $\forall i \operatorname{rd}(\varepsilon, i)=\perp, \forall i(i<0 \rightarrow \operatorname{rd}(a, i)=\perp)$, where a is any array variable occurring in Φ_{1} or Φ_{2};

M-Instantiations

If \mathcal{I} is a set of $\mathcal{T}_{\mathcal{I}}$-terms, an \mathcal{I}-instance of a universal formula of the kind $\forall i \phi$ is a formula of the kind $\phi(t / i)$ for some $t \in \mathcal{I}$.
Let \mathcal{I} be a set of $\mathcal{T}_{\mathcal{I}}$-terms and let $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ be a separated pair; we let $\Phi(\mathcal{I})=\left(\Phi_{1}(\mathcal{I}), \Phi_{2}(\mathcal{I})\right)$ be the smallest separated pair satisfying the following conditions:

- $\Phi_{1}(\mathcal{I})$ is equal to Φ_{1} and $\Phi_{2}(\mathcal{I})$ contains Φ_{2};
- $\Phi_{2}(\mathcal{I})$ contains all \mathcal{I}-instances of the two formulæ $\forall i \operatorname{rd}(\varepsilon, i)=\perp, \forall i(i<0 \rightarrow \operatorname{rd}(a, i)=\perp)$, where a is any array variable occurring in Φ_{1} or Φ_{2};
- if Φ_{1} contains $a=\mathrm{wr}(b, i, e)$, then $\Phi_{2}(\mathcal{I})$ contains all the \mathcal{I}-instances of the equivalent formula $(i \geq 0 \rightarrow \operatorname{rd}(a, i)=e) \wedge \forall h(h \neq i \rightarrow \operatorname{rd}(a, h)=\operatorname{rd}(b, h))$;

M-Instantiations

If \mathcal{I} is a set of $\mathcal{T}_{\mathcal{I}}$-terms, an \mathcal{I}-instance of a universal formula of the kind $\forall i \phi$ is a formula of the kind $\phi(t / i)$ for some $t \in \mathcal{I}$.
Let \mathcal{I} be a set of $\mathcal{T}_{\mathcal{I}}$-terms and let $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ be a separated pair; we let $\Phi(\mathcal{I})=\left(\Phi_{1}(\mathcal{I}), \Phi_{2}(\mathcal{I})\right)$ be the smallest separated pair satisfying the following conditions:

- $\Phi_{1}(\mathcal{I})$ is equal to Φ_{1} and $\Phi_{2}(\mathcal{I})$ contains Φ_{2};
- $\Phi_{2}(\mathcal{I})$ contains all \mathcal{I}-instances of the two formulæ $\forall i \operatorname{rd}(\varepsilon, i)=\perp, \forall i(i<0 \rightarrow \operatorname{rd}(a, i)=\perp)$, where a is any array variable occurring in Φ_{1} or Φ_{2};
- if Φ_{1} contains $a=\operatorname{wr}(b, i, e)$, then $\Phi_{2}(\mathcal{I})$ contains all the \mathcal{I}-instances of the equivalent formula $(i \geq 0 \rightarrow \operatorname{rd}(a, i)=e) \wedge \forall h(h \neq i \rightarrow \operatorname{rd}(a, h)=\operatorname{rd}(b, h))$;
- if Φ_{1} contains the conjunction $\bigwedge_{i=1}^{\prime} \operatorname{diff} f_{i}(a, b)=k_{i}$, then $\Phi_{2}(\mathcal{I})$ contains formulae (9), (10), (11), (12) as well as all I-instances of the formula (13).

M-Instantiations (Cont'd)

The complexity $c(t)$ of a term t is defined as the number of function symbols occurring in t.

M-Instantiations (Cont'd)

The complexity $c(t)$ of a term t is defined as the number of function symbols occurring in t.
For $M \in \mathbb{N} \cup\{\infty\}$, the M-instantiation of $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is the separated pair $\Phi\left(\mathcal{I}_{\Phi}^{M}\right)=\left(\Phi_{1}\left(\mathcal{I}_{\Phi}^{M}\right), \Phi_{2}\left(\mathcal{I}_{\Phi}^{M}\right)\right)$, where \mathcal{I}_{Φ}^{M} is the set of T_{1}-terms of complexity at most M built up from the index variables occurring in Φ_{1}, Φ_{2}.

M-Instantiations (Cont'd)

The complexity $c(t)$ of a term t is defined as the number of function symbols occurring in t.
For $M \in \mathbb{N} \cup\{\infty\}$, the M-instantiation of $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is the separated pair $\Phi\left(\mathcal{I}_{\phi}^{M}\right)=\left(\Phi_{1}\left(\mathcal{I}_{\Phi}^{M}\right), \Phi_{2}\left(\mathcal{I}_{\Phi}^{M}\right)\right)$, where \mathcal{I}_{Φ}^{M} is the set of T_{1}-terms of complexity at most M built up from the index variables occurring in Φ_{1}, Φ_{2}.
The full instantiation of $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is the separated pair $\Phi\left(\mathcal{I}_{\Phi}^{\infty}\right)=\left(\Phi_{1}\left(\mathcal{I}_{\Phi}^{\infty}\right), \Phi_{2}\left(\mathcal{I}_{\Phi}^{\infty}\right)\right)$ (which is usually not finite). A separated pair $\Phi=\left(\Phi_{1}, \Phi_{2}\right)$ is M-instantiated iff $\Phi=\Phi\left(\mathcal{I}_{\Phi}^{M}\right)$

M-Instantiations - Pseudo Code for quantifier-free $\mathcal{I D} \mathcal{L}$

```
Algorithm 1 M-Instantiation
    procedure StandardInput::InstantiatedTerms::M-Instantiate
    for term \(\in\) terms do
        new-term \(\leftarrow\) (term +1 ).simplify ()
        if \(\neg\) inSet(new-term, terms) then
                terms.push-back(new-term)
            end if
            new-term \(\leftarrow\) (term - 1).simplify ()
            if \(\neg\) inSet(new-term, terms) then
                terms.push-back(new-term)
            end if
    end for
    end procedure
```


Interpolation Algorithm

```
Algorithm 2 Main Loop
    : procedure AXDInterpolator::MAInLoop(StandardPair part-a, StandardPair part-b)
    if }\neg\mathrm{ (common-array-vars.areCommonPairsAvailable()) then
        SmtSolverSetup(solver, part-a)
        SmtSolverSetup(solver, part-b)
        if solver.check() = z3::unsat then
            is-unsat }\leftarrow\mathrm{ true
        end if
        return
        end if
        CircularPairlterator search-common-pairs(common-array-vars)
        while (num-attemps++ < remaining-fuel) do
            solver.push()
            SmtSolverSetup(solver, part-a)
            SmtSolverSetup(solver, part-b)
            if solver.check() = z3::unsat then
            is-unsat }\leftarrow\mathrm{ true
            return
            end if
            solver.pop()
            common-pair }\leftarrow*\mathrm{ *search-common-pair
            part-a-dim \leftarrow part-a.diff-map.size-of-entry(common-pair)
            part-b-dim }\leftarrow\mathrm{ part-b.diff-map.size-of-entry(common-pair)
            dim}\leftarrow\operatorname{min}(\mathrm{ part-a-dim, part-b-dim)
            new-index = fresh-index-constant()
            part-a.updateSaturation(common-pair, new-index, dim)
            part-b.updateSaturation(common-pair, new-index, dim)
            part-b.updateSaturation(com
        search-c
end procedure
```


Algorithm 3 SmtSolverSetup

procedure AXDInterpolator::SmTSolverSetup(z3::solver solver, StandardPair side-part)
for assertion \in side-part.part-2 do
solver.add(assertion)

end for

side-part.instantiate(solver, $\forall x, i . i<0 \rightarrow r d(x, i)=\perp$)
side-part.instantiate(solver, $\forall i . r d(\varepsilon, i)=\perp$)
for $a=w r(b, i, e) \in$ side-part.write-vector do
side-part.instantiate(solver, $\forall h . h \neq i \rightarrow \operatorname{rd}(a, h)=r d(b, h))$
end for
for $\operatorname{diff}(a, b)=i \in$ side-part.diff-map do
side-part.instantiate(solver, $\forall h . h>i \rightarrow r d(a, h)=r d(b, h))$
end for
end procedure

procedure StandardPair::UPDATESATURATION(z3Pair entry, z3::expr new-index, unsigned min-dim)

$$
a \leftarrow \text { entry.first }
$$

$\mathrm{b} \leftarrow$ entry.second
map-element \leftarrow diff-map.find(entry)
instantiated-terms.addVar(new-index)
if Heuristic then
end if
part-2.push-back(new-index $=$ (map-element.second) $[$ min-dim]
prev-index \leftarrow (map-element.second)[old-min - 1
part-2.push-back(prev-index \geq new-index)
part-2.push-back(new-index ≥ 0)
part-2. push-back(prev-index $=$ new-index \rightarrow prev-index $=0$)
end if
end procedure

Architecture Overview

Input Files and Extended Signature

Our extended language is parameterized by the array sorts in the input formula as well as by an index theory. The domain sort of every array is currently implemented using the Int sort.

```
(declare-sort A)
(declare-fun diff'A' ((Array Int A) (Array Int A)) Int)
(declare-fun length'A' ((Array Int A)) Int)
(declare-fun empty_array'A' () (Array Int A)
(declare-fun undefined'A' () A)
```

Figure: Our extended language parameterized with a sort A.

Demo

N
THE UNIVERSITY OF
NEW MEXICO.

Benchmarks using SV-COMP and UAutomizer - Setup

- We tested our implementation using C-programs from the ReachSafety-Arrays and MemSafety-Arrays tracks of the SV-COMP [3]

Benchmarks using SV-COMP and UAutomizer - Setup

- We tested our implementation using C-programs from the ReachSafety-Arrays and MemSafety-Arrays tracks of the SV-COMP [3]
- We used the model checker UAutomizer [4] to extract their SMT Scripts from the previous C-programs

Benchmarks using SV-COMP and UAutomizer - Setup

- We tested our implementation using C-programs from the ReachSafety-Arrays and MemSafety-Arrays tracks of the SV-COMP [3]
- We used the model checker UAutomizer [4] to extract their SMT Scripts from the previous C-programs
- We let the machine produce SMT Scripts for 15 minutes. We used these SMT Scripts files to compare the number of interpolants computed from unsatisfiable formulas. For the latter we assigned each process up to 360 seconds and 6 GB of memory

Benchmarks using SV-COMP and UAutomizer - Memsafety-track Results

	AXD Interpolator					
Subtracks	IZ3		MathSAT		SMTInterpol	
	Success	Timeout	Success	Timeout	Success	Timeout
array-examples	584	1	584	1	584	1
array-memsafety	118	0	118	0	118	0
termination-crafted	52	3	52	3	52	3

Table: Memsafety-track results - Our implementation

Subtracks	iZ3		MathSAT		SMTInterpol	
	Success	Timeout	Success	Timeout	Success	Timeout
array-examples	585	0	585	0	585	0
array-memsafety	118	0	118	0	118	0
termination-crafted	55	0	55	0	55	0

Table: Memsafety-track results - Other solvers

Benchmarks using SV-COMP and UAutomizer - Reachsafety-track Results

	AXD Interpolator							
Subtracks	iZ3			MathSAT				SMTInterpol
	Success	Timeout	Success	Timeout	Success	Timeout		
array-cav19	31	0	31	0	31	0		
array-examples	50	0	50	0	50	0		
array-fpi	774	21	774	21	774	21		
array-industry-pattern	8	0	8	0	8	0		
array-lopstr16	54	0	54	0	54	0		
array-patterns	11	0	11	0	11	0		
array-tiling	6	0	6	0	6	0		
reducercommutativity	53	0	53	0	53	0		

Table: Reachsafety-track results - Our implementation

Subtracks	iZ3		MathSAT		SMTInterpol	
	Success	Timeout	Success	Timeout	Success	Timeout
array-cav19	31	0	31	0	31	0
array-examples	50	0	50	0	50	0
array-fpi	795	0	795	0	795	0
array-industry-pattern	8	0	8	0	8	0
array-lopstr16	54	0	54	0	54	0
array-patterns	11	0	11	0	11	0
array-tiling	6	0	6	0	6	0
reducercommutativity	53	0	53	0	53	0

Table: Reachsafety-track results - Other Solvers

Future Work

- We handle boolean combination of formulas using a DNF transformation. Such transformation appears to be the first target to rework since this can take exponential amount of time.

Future Work

- We handle boolean combination of formulas using a DNF transformation. Such transformation appears to be the first target to rework since this can take exponential amount of time.
- The current design does not perform incremental satisfiability checks. Incremental checks are possible to implement due to the incremental nature of the proposed interpolation algorithm by including a hash consed data structure on the terms/predicates produced in the main loop of the algorithm and because the data structure z3: :solver can keep track of previously proven assertions.

Conclusions

- In this paper we described AXDInterpolator, the implementation of the interpolation algorithm presented in [2].

Conclusions

- In this paper we described AXDInterpolator, the implementation of the interpolation algorithm presented in [2].
- We were able to show the feasibility of AXDInterpolator by validating it on two benchmarks taken from the SV-COMP.

Conclusions

- In this paper we described AXDInterpolator, the implementation of the interpolation algorithm presented in [2].
- We were able to show the feasibility of AXDInterpolator by validating it on two benchmarks taken from the SV-COMP.
- We also compared our implementation with state-of-the-art solvers: apart from very few timeout outcomes, our tool managed to handle all the examples the other solvers did.

Conclusions

- In this paper we described AXDInterpolator, the implementation of the interpolation algorithm presented in [2].
- We were able to show the feasibility of AXDInterpolator by validating it on two benchmarks taken from the SV-COMP.
- We also compared our implementation with state-of-the-art solvers: apart from very few timeout outcomes, our tool managed to handle all the examples the other solvers did.
- We also found interesting examples that are not handled by other state-of-the-art solvers, which makes the option of our language extension and tool an appealing consideration.

Thanks for your attention!

References I

嗇 Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise.
Quantifier-free interpolation of a theory of arrays.
Log. Methods Comput. Sci., 8(2), 2012.
R Silvio Ghilardi, Alessandro Gianola, and Deepak Kapur.
Interpolation and amalgamation for arrays with maxdiff.
In Stefan Kiefer and Christine Tasson, editors, Foundations of Software Science and Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 268-288. Springer, 2021.

References II

嗇 Jan Friso Groote, Kim Guldstrand Larsen, and Dirk Beyer. Software verification: 10th comparative evaluation (sv-comp 2021).
Tools and Algorithms for the Construction and Analysis of Systems27th
International Conference, TACAS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part II, 12652:401—422, February 2021.

围 Matthias Heizmann, Jürgen Christ, Daniel Dietsch, Evren Ermis, Jochen Hoenicke, Markus Lindenmann, Alexander Nutz, Christian Schilling, and Andreas Podelski. Ultimate Automizer with SMTInterpol. In Nir Piterman and Scott A. Smolka, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 641-643, Berlin, Heidelberg, 21 Springer Berlin Heidelberg.

References III

(Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation for Data Structures.
In Proc. of SIGSOFT-FSE, pages 105-116. ACM, 2006.

