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Ideal in Polynomial Ring

Let f = −x(x− 1)3 and B = {−(x+ 1)(x− 1),−(x− 1)2}

How can we certify that f ∈ ⟨B⟩?
Notice that:

x− 1 = −1
2(−(x+ 1)(x− 1)) + 1

2(−(x− 1)2)

x− 1|f

f = −x(x− 1)2(x− 1)

=
1

2
x(x− 1)2︸ ︷︷ ︸

not a sum of squares

(−(x+ 1)(x− 1)) − 1

2
x(x− 1)2︸ ︷︷ ︸

not a sums of squares

(−(x− 1)2)
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Reasoning over inequalities

If f = s0 + s1(−(x+ 1)(x− 1)) + s2(−(x− 1)2) where each si is
a sums squares then f ≥ 0 over

{x ∈ R | −(x+ 1)(x− 1) ≥ 0,−(x− 1)2 ≥ 0}
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Reasoning over Inequalities

In fact,

x =
1

2
(x2 + 1) +

1

2
(−(x− 1)2)

−(x− 1)3 =
1

2
((x− 1)4 + (x− 1)2) +

1

2
x2(−(x− 1)2)

Thus,

f =
1

4

(
(x2 + 1)((x− 1)4 + (x− 1)2) + x2(−(x− 1)2)2

)
︸ ︷︷ ︸

a sums of squares

+
1

4

(
((x− 1)4 + (x− 1)2) + (x2 + 1)x2

)
︸ ︷︷ ︸

a sums of squares

(−(x− 1)2)



5/51

Motivation Preliminaries Suitable Factors Computing certificates Proposed work Conclusions References

Reasoning over Inequalities

In fact,

x =
1

2
(x2 + 1) +

1

2
(−(x− 1)2)

−(x− 1)3 =
1

2
((x− 1)4 + (x− 1)2) +

1

2
x2(−(x− 1)2)

Thus,

f =
1

4

(
(x2 + 1)((x− 1)4 + (x− 1)2) + x2(−(x− 1)2)2

)
︸ ︷︷ ︸

a sums of squares

+
1

4

(
((x− 1)4 + (x− 1)2) + (x2 + 1)x2

)
︸ ︷︷ ︸

a sums of squares

(−(x− 1)2)



5/51

Motivation Preliminaries Suitable Factors Computing certificates Proposed work Conclusions References

Reasoning over Inequalities

In fact,

x =
1

2
(x2 + 1) +

1

2
(−(x− 1)2)

−(x− 1)3 =
1

2
((x− 1)4 + (x− 1)2) +

1

2
x2(−(x− 1)2)

Thus,

f =
1

4

(
(x2 + 1)((x− 1)4 + (x− 1)2) + x2(−(x− 1)2)2

)
︸ ︷︷ ︸

a sums of squares

+
1

4

(
((x− 1)4 + (x− 1)2) + (x2 + 1)x2

)
︸ ︷︷ ︸

a sums of squares

(−(x− 1)2)



5/51

Motivation Preliminaries Suitable Factors Computing certificates Proposed work Conclusions References

Reasoning over Inequalities

In fact,

x =
1

2
(x2 + 1) +

1

2
(−(x− 1)2)

−(x− 1)3 =
1

2
((x− 1)4 + (x− 1)2) +

1

2
x2(−(x− 1)2)

Thus,

f =
1

4

(
(x2 + 1)((x− 1)4 + (x− 1)2) + x2(−(x− 1)2)2

)
︸ ︷︷ ︸

a sums of squares

+
1

4

(
((x− 1)4 + (x− 1)2) + (x2 + 1)x2

)
︸ ︷︷ ︸

a sums of squares

(−(x− 1)2)



5/51

Motivation Preliminaries Suitable Factors Computing certificates Proposed work Conclusions References

Reasoning over Inequalities

In fact,

x =
1

2
(x2 + 1) +

1

2
(−(x− 1)2)

−(x− 1)3 =
1

2
((x− 1)4 + (x− 1)2) +

1

2
x2(−(x− 1)2)

Thus,

f =
1

4

(
(x2 + 1)((x− 1)4 + (x− 1)2) + x2(−(x− 1)2)2

)
︸ ︷︷ ︸

a sums of squares

+
1

4

(
((x− 1)4 + (x− 1)2) + (x2 + 1)x2

)
︸ ︷︷ ︸

a sums of squares

(−(x− 1)2)



6/51

Motivation Preliminaries Suitable Factors Computing certificates Proposed work Conclusions References

Preliminaries
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Quadratic modules

Definition

A quadratic module in R[X] := R[X1, . . . , Xn] is a subset
that is closed under addition and closed under multiplication
with squares in R[X].

Given a set of polynomials G = {g1, . . . , gn} ⊆ R[X],

the quadratic module generated by G is the set

QM(G) :=
{
s0 +

∑n
i=1 sigi | si ∈

∑
R[X]

2
for 0 ≤ i ≤ n

}
.

the semialgebraic set of G is the set
S(G) := {x ∈ Rn | gi(x) ≥ 0 for 1 ≤ i ≤ n}

A compact quadratic module is a quadratic module for which
the semialgebraic set of its generators is compact.
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Multiplicities matter

In [Ste96], the author noticed

1− x2 ̸∈ QM({(1− x2)3})

Otherwise, exists sums of squares s0, s1 such that
1− x2 = s0 + s1(1− x2)3.

The left hand side vanishes at x = 1. The multiplicity of
x− 1 is one.

The right hand side must vanish at x = 1. The multiplicity of
x− 1 in s0 would be even, which contradicts the left hand
side.
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Deciding membership in Quadratic module when n = 1

In [Aug08, p. 47], the author provided an algorithm to test the
membership of polynomials in compact univariate quadratic
modules.

The algorithm relies on the orders and signs at the end points of
the associated semialgebraic set of generators.

Definition

Let f ∈ R[x] with deg(f) = n, the Taylor series of f ∈ R[x]
centered at a ∈ R is

f = f(a) + f
′
(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

We define:

orda(f) as the least integer i such that f (i)(a)
i! is not zero.

ϵa(f) as 1 if f (i)(a)
i! > 0 where i = orda(f) and -1 otherwise.
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Deciding membership in Quadratic module when n = 1

Definition

Let G := {g1, . . . , gs} ⊆ R[x]. We define:

ka(G) := min
1≤i≤s

{orda(gi) | orda(gi) ∈ 2N, ϵa(gi) = −1}

k+a (G) := min
1≤i≤s

{orda(gi) | orda(gi) ∈ 2N+ 1, ϵa(gi) = 1}

k−a (G) := min
1≤i≤s

{orda(gi) | orda(gi) ∈ 2N+ 1, ϵa(gi) = −1}

In any of the three cases we define ka(G), k+a (G), k−a (G) to be ∞
if the corresponding set is empty.
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Deciding membership in Quadratic module when n = 1

Theorem 2.18 in [Aug08, p. 47] provides a criterion to check
membership in compact univariate quadratic modules.

A member must be non-negative over the associated semialgebraic
set of the generators G and satisfy conditions involving the orders
and signs at the endpoints of S(G) using ka, k

+
a , k

−
a .

x+ 1 ̸∈ QM({−(x+ 1)3(x− 1)3})

(x+ 1)3 =
1

8
(x+ 1)4((x− 2)2 + 3) +

1

8
(−(x+ 1)3(x− 1)3)

∈ QM({−(x+ 1)3(x− 1)3})
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Monogenic case
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Observations

Let G ⊆ R[x]. If S(G) is compact, then S(G) =
⋃n

i=1 [ai, bi]

We will assume S(G) is represented as ordered intervals.

We refer to the intervals ai = bi as isolated points.

S({f}) is compact if and only if f has even degree and the
leading coefficient of f is negative.

Figure: S(− 1
10 (x+ 2)(x+ 1)2x(x− 1)2(x− 2)(x− 3)) is compact
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Removing quadratic irreducible factors don’t change the
problem

Theorem

Let G ⊆ R[x], S(G) =
⋃n

i=1 [ai, bi] and f ∈ R[x] be a polynomial
such that f = f1 ∗ ((x− b)2 + c2) with b ∈ R, c ∈ R \ 0. If
f ∈ QM(G) then f1 ∈ QM(G).

Intuitively, this is because a polynomial of the form (x− b)2 + c2

with c ̸= 0 does not change the semialgebraic set nor the orders of
any polynomial f .

Additionally, these are sums of squares already which can be
absorbed by the sums of squares multipliers in the representation
of the polynomial f1 above.
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Example

Consider f = 2 + 4x+ x2 − x3 + x4 + x5.
We want to check f ∈ QM({−(x+ 1)3(x− 1)3})

Notice that

f = ((x− 1)2 + 1)(x+ 1)3

= ((x− 1)2 + 1)

(
1

8
(x+ 1)4((x− 2)2 + 3) +

1

8
(−(x+ 1)3(x− 1)3)

)
=

1

8
(x+ 1)4((x− 1)2 + 1)((x− 2)2 + 3)︸ ︷︷ ︸

a sums of squares

+
1

8
((x− 1)2 + 1)︸ ︷︷ ︸
a sums of squares

(−(x+ 1)3(x− 1)3)

∈ QM({−(x+ 1)3(x− 1)3})
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Suitable components

Definition

Let g ∈ R[x] be a polynomial. We define suitable components,
denoted as Rg, as {xi ∈ R | g(xi) > 0 and g

′
(xi) = 0}, i.e., an

ordered set by positive integers of local maxima of g, for which g is
positive.

Observation: g
′
is a polynomial, then any Rg is a finite collection

of points in R.
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Suitable factors

Definition

The suitable factors of f with respect to g is the set of
polynomials {fi | 0 ≤ i ≤ |Rg|} defined as:

fi = ci
∏

r∈Z(f)
xi<r<xi+1

(xi,xi+1)∈Rg

(x− r)ordr(f)

(1)

where x0 := −∞, xl+1 := ∞, ci = 1 if 0 ≤ i < |Rg|, and
c|Rg | = −1.
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Example

Let us consider

g := −(x+ 2)3(x+ 1)x2(x− 1)(x− 2)3

f := −(x+ 2)5(x+ 1
2)x

2(x− 1
2)(x− 3)

The components of Rg are (−∞,−
√
2), (−

√
2,
√
2), and (

√
2,∞).

Figure: Suitable factors of f with respect to Rg
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Example (Cont’d)

The suitable factors of f with respect to Rg are:

(x+ 2)5

(x+ 1
2)x

2(x− 1
2)

−(x− 3)

Figure: Suitable factors of f with respect to Rg
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Key idea about decomposition

Algorithm 1: Monogenic certificates

Input: f, g ∈ R[x]
Output: s0, s1 ∈

∑
R[x]2

Requires: S(g) =
⋃n

i=1 [ai, bi], f ∈ QM({g})
Ensures: f = s0 + s1g
// Rg is of the form {x1, . . . , xm} with

x1 < x2 < · · · < xm
1 Let Rg be the suitable components of g
2 Let fLeft be the factors of f with roots r such that r ≤ x1
3 Let fInBetween be the factors of f with roots r such that

x1 < r < xm
4 Let fRight be the factors of f with roots r such that xm ≤ r
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Key idea about decomposition

5 Compute certificates s0,L, s1,L of left suitable factor of g
6 for r is root in fLeft do
7 if r is equal to a1 then
8 Use s0,L, s1,L to compute certificates of (x− a1)

orda1 (f)

9 else
10 Use s0,L, s1,L to compute certificates of (x− r)
11 Use certificates of (x− r) to compute certificates of

(x− r)ordr(f)

12 end if

13 end for
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Key idea about decomposition

14 Compute certificates s0,R, s1,R of right suitable factor of g
15 for r is root in fRight do
16 if r is equal to am then
17 Use s0,R, s1,R to compute certificates of

−(x− am)ordam (f)

18 else
19 Use s0,R, s1,R to compute certificates of −(x− r)
20 Use certificates of −(x− r) to compute certificates of

−(x− r)ordr(f)

21 end if

22 end for
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Key idea about decomposition

23 for xi ∈ Rg do
24 Compute certificates s0,i,B, s1,i,B of∏

r∈Z(f)
xi<r<xi+1

(x− r)ordr(f)

25 end for
26 Collect and rearrange certificates obtained in previous steps by

multipliying each expression.
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Computing certificates for
suitable factors
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Left Suitable Factor

Monomials of the form

(x− a1)
k+a1 (2)

Two cases:

Semialgebraic starts with interval

Semialgebraic starts with isolated point
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Semialgebraic starts with interval

Generator g := (x− a1)
k+a1 (x− b1)

k−b1g2 where

g2 = −
∏m

i=2
ai<bi

(x− ai)
k+ai (x− bi)

k−bi
∏m

i=2
ai=bi

(x− ai)
kai .

Problem: Find s0, s1 ∈
∑

R[x]2 such that (x− a1)
k+a1 = s0 + s1g.

Approach: Find s1 ∈
∑

R[x]2 such that

(x− a1)
k+a1 − s1g ∈

∑
R[x]2
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Example

Consider g = −(x+ 2)3(x+ 1)x2(x− 1)(x− 2)3 from previous
example.

The left-most generalized natural generator is (x+ 2)3.
Notice that (x+ 2)3 = s0 + s1g. Hence,
(x+ 2)3 + s1(x+ 2)3(x+ 1)x2(x− 1)(x− 2)3 is a sums of
squares for some sums of squares s1.

(x+ 2)3(1 + s1(x+ 1)x2(x− 1)(x− 2)3)

We need to “complete” the root x = −2. Notice that
(x+ 1)x2(x− 1)(x− 2)3|x→−2 = −768. Setting s1 =

1
768 forces a

root at x = −2 in 1 + s1(x+ 1)x2(x− 1)(x− 2)3.
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Example

In this case, the roots of 1 + s1(x+ 1)x2(x− 1)(x− 2)3 are a
single real root at x = −2 and the rest are complex conjugates.
We have completed the even root for (x+ 2)3, thus
s0 = (x+ 2)3(1 + s1(x+ 1)x2(x− 1)(x− 2)3) is a sums of
squares.

Setting s1 =
1

768 we have

(x+ 2)3 = s0 + s1g

In general, we would expected that the expression 1− s1
g

(x−a1)
k+a1

to have negative intervals. Our algorithm fixes each negative
interval by updating s1 with square terms at the midpoints of these
negative intervals.
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Example

Consider

g =−x3(x− 1)5(x− 2)(x− 3)(x− 4)(x− 7)

(x− 8)(x− 10)(x− 14)(x− 15)(x− 16)2(x− 19)(x− 20)

The left-most generalized natural generator is x3.

We first set s1 =
1

274563072000 to complete the root.

We find that the negative intervals of 1− 1
274563072000g are

contained in the intervals (4, 7) ∪ (8, 10) ∪ (14, 15) ∪ (19, 20).

The following plots illustrate the updates to s1 and how the
polynomial 1− s1g becomes strictly positive to the right of x = 0.
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Example (Cont’d)

Figure: s1 = 1
274563072000
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Example (Cont’d)

Figure: s1 = 1
8305532928000 (x− (4 + 7)/2)2
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Example (Cont’d)

Figure: s1 = 1
600074754048000 (x− (4 + 7)/2)2(x− (8 + 10)/2)2
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Example (Cont’d)

Figure:
s1 = 1

126165717038592000 (x−(4+7)/2)2(x−(8+10)/2)2(x−(14+15)/2)2
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Example (Cont’d)

Figure: s1 = 1
18242308911967332192000 (x− (4 + 7)/2)2(x− (8 +

10)/2)2(x− (14 + 15)/2)2(x− (19 + 20)/2)4
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Right Suitable Factor

Key ideas:

Sum of squares are closed by involution maps: x 7→ −x

Applying a involution map, we reduce the problem to the Left
Suitable Factor case.

A second involution maps the reduced problem to the original
one.
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Properties

Proposition

If s ∈
∑

R[x]2 then s⋄ ∈
∑

R[x]2

Proposition

If f ∈ R[x] belongs to a compact quadratic module QM(G) for
some G = {gi | 1 ≤ i ≤ m} then f⋄ ∈ QM(G⋄).

Theorem

The involution of the left (resp. right)-most generalized natural
generator of a compact quadratic module QM(G) for some
G = {gi | 1 ≤ i ≤ m} is the right (resp. left) most generalized
natural generator of QM(G⋄).
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Strictly Positive Left Suitable Factor

These are monomials of the form:

x− c where c < S(G), (denoted as left strictly positive linear
factor), or

−(x− c) where c > S(G) (denoted as right strictly positive
linear factor).

It is enough to consider the left case as the right one can be solved
using the involution technique.

Theorem

x− c ∈ QM(g − g(c)). Furthermore, the sums of squares
certificates of the latter are computable.
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Key ideas

Use a truncated Gaussian polynomial to fix the negative intervals
of polynomials of the form:
(x− a)2m1+1

∏l
i=1 (x− ci)

2ni(x− b)2m2+1 where m1,m2, ni ∈ N,
a < c1 < · · · < cl < b and a, b ∈ ∂(S({g})).

Definition

We define Truncn(X) as the truncated Taylor series expansion of
e−X2/2 where the highest exponent is even and its leading

coefficient is positive, i.e. Truncn(X) :=
∑2n

k=0
(−1)k

2kk!
X2k
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Example

Consider g = −(x+ 2)3(x+ 1)x2(x− 1)(x− 2)3, we will find
certificates for (x+ 1)x2(x− 1).

Since (x+ 1)x2(x− 1) ∈ QM({g}), then
(x+ 1)x2(x− 1) = s0 + s1g, thus it is enough to find s1 such that

(x+ 1)x2(x− 1) + s1(x+ 2)3(x+ 1)x2(x− 1)(x− 2)3

We can factor out x2 and include it back without changing the
certificates problem for the original polynomial.

(x+ 1)(x− 1)(1 + s1(x+ 2)3(x− 2)3)
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Example

Figure: In-between case lifting step
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Example

In this case, since (x+ 2)3(x− 2)3 has (−2, 2) as negative
interval, it is enough to “shrink” by a suitable constant such that
s1(x+ 2)3(x− 2)3 completes the squares of (x+ 1)(x− 1).

Setting s1 = 1/27 we have that 1 + s1(x+ 2)3(x− 2)3 has
x = −1 and x = 1 as real roots and the rest of its roots are
complex conjugates. Thus, (x+ 1)(x− 1)(1 + s1(x+ 2)3(x− 2)3)
is a sums of squares.
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Example

Setting s0 = (x+ 1)(x− 1)(1 + s1(x+ 2)3(x− 2)3) we obtain

(x+ 1)(x− 1) = s0−s1(x+ 2)3(x+ 1)(x− 1)(x− 2)3

Thus,

(x+ 1)x2(x− 1) = x2s0−s1(x+ 2)3(x+ 1)x2(x− 1)(x− 2)3

= x2s0 + s1g
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Example

In general, we would expect the term g
in−between−factor to have

more than one negative interval.

Using a truncated Gaussian the goal is to minimize the negative
intervals outside the negative interval where the odd factors are
located such a suitable constant can be obtained to complete these
odd factors.
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Proposed work
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For the univariate case

Preliminary work:

Reduction from a general 2-basis quadratic module [SMK22]
to a monogenic problem.
Identify certificates in the preorder representation.

Work to be done:

Find certificates for the products in the preorder structure to
have certificates in terms of the quadratic module structure.
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For the bivariate subcase

Preliminary work:

Procedure to compute certificates for a special kind of
monogenic quadratic modules satisfying certain properties.

Work to be done:

Investigate if the identified prerequisites are enough for the
monogenic case or if the method can be generalized for
missing cases in the monogenic case.
Solve the certificates problem for a zero dimensional
polynomial systems
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Conclusions

1 We have presented a solution to computing certificates in the
monogenic case problem.

2 The method is symbolic and produces exact certificates.

3 We have compared a prototypical tool in Mathematica and
RealCertify [MD18] identifying strictly positive polynomials
which our approach can solve but RealCertify cannot.

4 Our current progress in the remaining work shows the
feasibility of the approach to be used for the general case.
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Thank you for your attention!
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