Computing certificates in compact quadratic modules in  $\mathbb{R}[x]$  and Archimedean monogenic quadratic modules in  $\mathbb{R}[x, y]$ Thesis Proposal Defense

Jose Abel Castellanos Joo

September 19, 2023

# Motivation

Let 
$$f = -x(x-1)^3$$
 and  $B = \{-(x+1)(x-1), -(x-1)^2\}$ 

• 
$$x - 1 = -\frac{1}{2}(-(x+1)(x-1)) + \frac{1}{2}(-(x-1)^2)$$

• 
$$x - 1 = -\frac{1}{2}(-(x+1)(x-1)) + \frac{1}{2}(-(x-1)^2)$$
  
•  $x - 1|f$ 

• 
$$x - 1 = -\frac{1}{2}(-(x + 1)(x - 1)) + \frac{1}{2}(-(x - 1)^2)$$
  
•  $x - 1|f$ 

$$f = -x(x-1)^{2}(x-1)$$
  
=  $\frac{1}{2}x(x-1)^{2}$  (-(x+1)(x-1))  $-\frac{1}{2}x(x-1)^{2}$  (-(x-1)^{2})

• 
$$x - 1 = -\frac{1}{2}(-(x + 1)(x - 1)) + \frac{1}{2}(-(x - 1)^2)$$
  
•  $x - 1|f$ 

$$f = -x(x-1)^{2}(x-1)$$
  
=  $\underbrace{\frac{1}{2}x(x-1)^{2}}_{\text{not a sum of squares}} (-(x+1)(x-1)) \underbrace{-\frac{1}{2}x(x-1)^{2}}_{\text{not a sums of squares}} (-(x-1)^{2})$ 

#### Reasoning over inequalities

If  $f = s_0 + s_1(-(x+1)(x-1)) + s_2(-(x-1)^2)$  where each  $s_i$  is a sums squares then  $f \ge 0$  over

$$\{x \in \mathbb{R} \mid -(x+1)(x-1) \ge 0, -(x-1)^2 \ge 0\}$$

# Reasoning over Inequalities

In fact,

# Reasoning over Inequalities

In fact,

$$x = \frac{1}{2}(x^2 + 1) + \frac{1}{2}(-(x - 1)^2)$$

# Reasoning over Inequalities

In fact,

$$x = \frac{1}{2}(x^2 + 1) + \frac{1}{2}(-(x - 1)^2)$$

$$-(x-1)^3 = \frac{1}{2}((x-1)^4 + (x-1)^2) + \frac{1}{2}x^2(-(x-1)^2)$$

#### Reasoning over Inequalities

In fact,

$$x = \frac{1}{2}(x^2 + 1) + \frac{1}{2}(-(x - 1)^2)$$

$$-(x-1)^3 = \frac{1}{2}((x-1)^4 + (x-1)^2) + \frac{1}{2}x^2(-(x-1)^2)$$

Thus,

#### Reasoning over Inequalities

In fact,

$$x = \frac{1}{2}(x^2 + 1) + \frac{1}{2}(-(x - 1)^2)$$

$$-(x-1)^3 = \frac{1}{2}((x-1)^4 + (x-1)^2) + \frac{1}{2}x^2(-(x-1)^2)$$

Thus,

$$f = \underbrace{\frac{1}{4} \left( (x^2 + 1)((x - 1)^4 + (x - 1)^2) + x^2(-(x - 1)^2)^2 \right)}_{\text{a sums of squares}} + \underbrace{\frac{1}{4} \left( ((x - 1)^4 + (x - 1)^2) + (x^2 + 1)x^2 \right) (-(x - 1)^2)}_{\text{a sums of squares}}$$

# Preliminaries

#### Definition

• A quadratic module in  $\mathbb{R}[\overline{X}] := \mathbb{R}[X_1, \dots, X_n]$  is a subset that is closed under addition and closed under multiplication with squares in  $\mathbb{R}[\overline{X}]$ .

- A quadratic module in  $\mathbb{R}[\overline{X}] := \mathbb{R}[X_1, \dots, X_n]$  is a subset that is closed under addition and closed under multiplication with squares in  $\mathbb{R}[\overline{X}]$ .
- Given a set of polynomials  $G = \{g_1, \ldots, g_n\} \subseteq \mathbb{R}[\overline{X}],$

- A quadratic module in  $\mathbb{R}[\overline{X}] := \mathbb{R}[X_1, \dots, X_n]$  is a subset that is closed under addition and closed under multiplication with squares in  $\mathbb{R}[\overline{X}]$ .
- Given a set of polynomials  $G = \{g_1, \ldots, g_n\} \subseteq \mathbb{R}[\overline{X}]$ ,
  - the quadratic module generated by G is the set  $QM(G) := \left\{ s_0 + \sum_{i=1}^n s_i g_i \mid s_i \in \sum \mathbb{R}[\overline{X}]^2 \text{ for } 0 \le i \le n \right\}.$

- A quadratic module in  $\mathbb{R}[\overline{X}] := \mathbb{R}[X_1, \dots, X_n]$  is a subset that is closed under addition and closed under multiplication with squares in  $\mathbb{R}[\overline{X}]$ .
- Given a set of polynomials  $G = \{g_1, \ldots, g_n\} \subseteq \mathbb{R}[\overline{X}]$ ,
  - the quadratic module generated by G is the set  $QM(G) := \left\{ s_0 + \sum_{i=1}^n s_i g_i \mid s_i \in \sum \mathbb{R}[\overline{X}]^2 \text{ for } 0 \le i \le n \right\}.$
  - the semialgebraic set of G is the set  $\mathcal{S}(G) := \{x \in \mathbb{R}^n \mid g_i(x) \ge 0 \text{ for } 1 \le i \le n\}$

- A quadratic module in  $\mathbb{R}[\overline{X}] := \mathbb{R}[X_1, \dots, X_n]$  is a subset that is closed under addition and closed under multiplication with squares in  $\mathbb{R}[\overline{X}]$ .
- Given a set of polynomials  $G = \{g_1, \ldots, g_n\} \subseteq \mathbb{R}[\overline{X}]$ ,
  - the quadratic module generated by G is the set  $QM(G) := \left\{ s_0 + \sum_{i=1}^n s_i g_i \mid s_i \in \sum \mathbb{R}[\overline{X}]^2 \text{ for } 0 \le i \le n \right\}.$
  - the semialgebraic set of G is the set  $\mathcal{S}(G) := \{x \in \mathbb{R}^n \mid g_i(x) \ge 0 \text{ for } 1 \le i \le n\}$
- A *compact quadratic module* is a quadratic module for which the semialgebraic set of its generators is compact.

In [Ste96], the author noticed

In [Ste96], the author noticed

$$1 - x^2 \notin QM(\{(1 - x^2)^3\})$$

In [Ste96], the author noticed

$$1-x^2\not\in \mathrm{QM}(\{(1-x^2)^3\})$$

• Otherwise, exists sums of squares  $s_0, s_1$  such that  $1 - x^2 = s_0 + s_1(1 - x^2)^3$ .

In [Ste96], the author noticed

$$1-x^2\not\in \operatorname{QM}(\{(1-x^2)^3\})$$

- Otherwise, exists sums of squares  $s_0, s_1$  such that  $1 x^2 = s_0 + s_1(1 x^2)^3$ .
- The left hand side vanishes at x = 1. The multiplicity of x 1 is one.

In [Ste96], the author noticed

$$1-x^2\not\in \operatorname{QM}(\{(1-x^2)^3\})$$

- Otherwise, exists sums of squares  $s_0, s_1$  such that  $1 x^2 = s_0 + s_1(1 x^2)^3$ .
- The left hand side vanishes at x = 1. The multiplicity of x 1 is one.
- The right hand side must vanish at x = 1. The multiplicity of x 1 in  $s_0$  would be even, which contradicts the left hand side.

#### Deciding membership in Quadratic module when n = 1

In [Aug08, p. 47], the author provided an algorithm to test the membership of polynomials in compact univariate quadratic modules.

# Deciding membership in Quadratic module when n = 1

In [Aug08, p. 47], the author provided an algorithm to test the membership of polynomials in compact univariate quadratic modules.

The algorithm relies on the orders and signs at the end points of the associated semialgebraic set of generators.

# Deciding membership in Quadratic module when n = 1

In [Aug08, p. 47], the author provided an algorithm to test the membership of polynomials in compact univariate quadratic modules.

The algorithm relies on the orders and signs at the end points of the associated semialgebraic set of generators.

#### Definition

Let  $f \in \mathbb{R}[x]$  with  $\deg(f) = n$ , the Taylor series of  $f \in \mathbb{R}[x]$  centered at  $a \in \mathbb{R}$  is

$$f = f(a) + f'(a)(x - a) + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

We define:

•  $\operatorname{ord}_a(f)$  as the least integer i such that  $\frac{f^{(i)}(a)}{i!}$  is not zero. •  $\epsilon_a(f)$  as 1 if  $\frac{f^{(i)}(a)}{i!} > 0$  where  $i = \operatorname{ord}_a(f)$  and -1 otherwise.

#### Definition

Let 
$$G := \{g_1, \dots, g_s\} \subseteq \mathbb{R}[x]$$
. We define:  
 $k_a(G) := \min_{1 \le i \le s} \{ \operatorname{ord}_a(g_i) \mid \operatorname{ord}_a(g_i) \in 2\mathbb{N}, \epsilon_a(g_i) = -1 \}$   
 $k_a^+(G) := \min_{1 \le i \le s} \{ \operatorname{ord}_a(g_i) \mid \operatorname{ord}_a(g_i) \in 2\mathbb{N} + 1, \epsilon_a(g_i) = 1 \}$   
 $k_a^-(G) := \min_{1 \le i \le s} \{ \operatorname{ord}_a(g_i) \mid \operatorname{ord}_a(g_i) \in 2\mathbb{N} + 1, \epsilon_a(g_i) = -1 \}$   
In any of the three cases we define  $k_a(G), k_a^+(G), k_a^-(G)$  to be  $\infty$ 

if the corresponding set is empty.

Theorem 2.18 in [Aug08, p. 47] provides a criterion to check membership in compact univariate quadratic modules.

Theorem 2.18 in [Aug08, p. 47] provides a criterion to check membership in compact univariate quadratic modules. A member must be non-negative over the associated semialgebraic set of the generators G and satisfy conditions involving the orders and signs at the endpoints of  $\mathcal{S}(G)$  using  $k_a, k_a^+, k_a^-$ .

Theorem 2.18 in [Aug08, p. 47] provides a criterion to check membership in compact univariate quadratic modules. A member must be non-negative over the associated semialgebraic set of the generators G and satisfy conditions involving the orders and signs at the endpoints of  $\mathcal{S}(G)$  using  $k_a, k_a^+, k_a^-$ .

$$x + 1 \notin QM(\{-(x + 1)^3(x - 1)^3\})$$

Theorem 2.18 in [Aug08, p. 47] provides a criterion to check membership in compact univariate quadratic modules. A member must be non-negative over the associated semialgebraic set of the generators G and satisfy conditions involving the orders and signs at the endpoints of  $\mathcal{S}(G)$  using  $k_a, k_a^+, k_a^-$ .

$$x + 1 \notin QM(\{-(x + 1)^3(x - 1)^3\})$$

$$(x+1)^3 = \frac{1}{8}(x+1)^4((x-2)^2+3) + \frac{1}{8}(-(x+1)^3(x-1)^3)$$
  

$$\in QM(\{-(x+1)^3(x-1)^3\})$$

# Monogenic case

#### Observations

#### Let $G \subseteq \mathbb{R}[x]$ . If $\mathcal{S}(G)$ is compact, then $\mathcal{S}(G) = \bigcup_{i=1}^n [a_i, b_i]$
#### Observations

Let  $G \subseteq \mathbb{R}[x]$ . If  $\mathcal{S}(G)$  is compact, then  $\mathcal{S}(G) = \bigcup_{i=1}^{n} [a_i, b_i]$ 

 $\bullet$  We will assume  $\mathcal{S}(G)$  is represented as ordered intervals.

Observations

Let  $G \subseteq \mathbb{R}[x]$ . If  $\mathcal{S}(G)$  is compact, then  $\mathcal{S}(G) = \bigcup_{i=1}^{n} [a_i, b_i]$ 

- We will assume  $\mathcal{S}(G)$  is represented as ordered intervals.
- We refer to the intervals  $a_i = b_i$  as *isolated points*.

#### Observations

Let  $G \subseteq \mathbb{R}[x]$ . If  $\mathcal{S}(G)$  is compact, then  $\mathcal{S}(G) = \bigcup_{i=1}^{n} [a_i, b_i]$ 

- We will assume  $\mathcal{S}(G)$  is represented as ordered intervals.
- We refer to the intervals  $a_i = b_i$  as *isolated points*.
- $S({f})$  is compact if and only if f has even degree and the leading coefficient of f is negative.

#### Observations

Let  $G \subseteq \mathbb{R}[x]$ . If  $\mathcal{S}(G)$  is compact, then  $\mathcal{S}(G) = \bigcup_{i=1}^{n} [a_i, b_i]$ 

- We will assume  $\mathcal{S}(G)$  is represented as ordered intervals.
- We refer to the intervals  $a_i = b_i$  as *isolated points*.
- $S({f})$  is compact if and only if f has even degree and the leading coefficient of f is negative.



Figure:  $S(-\frac{1}{10}(x+2)(x+1)^2x(x-1)^2(x-2)(x-3))$  is compact

# Removing quadratic irreducible factors don't change the problem

#### Theorem

Let  $G \subseteq \mathbb{R}[x]$ ,  $\mathcal{S}(G) = \bigcup_{i=1}^{n} [a_i, b_i]$  and  $f \in \mathbb{R}[x]$  be a polynomial such that  $f = f_1 * ((x - b)^2 + c^2)$  with  $b \in \mathbb{R}, c \in \mathbb{R} \setminus 0$ . If  $f \in QM(G)$  then  $f_1 \in QM(G)$ .

# Removing quadratic irreducible factors don't change the problem

#### Theorem

Let  $G \subseteq \mathbb{R}[x]$ ,  $\mathcal{S}(G) = \bigcup_{i=1}^{n} [a_i, b_i]$  and  $f \in \mathbb{R}[x]$  be a polynomial such that  $f = f_1 * ((x - b)^2 + c^2)$  with  $b \in \mathbb{R}, c \in \mathbb{R} \setminus 0$ . If  $f \in QM(G)$  then  $f_1 \in QM(G)$ .

Intuitively, this is because a polynomial of the form  $(x-b)^2 + c^2$  with  $c \neq 0$  does not change the semialgebraic set nor the orders of any polynomial f.

# Removing quadratic irreducible factors don't change the problem

#### Theorem

Let  $G \subseteq \mathbb{R}[x]$ ,  $S(G) = \bigcup_{i=1}^{n} [a_i, b_i]$  and  $f \in \mathbb{R}[x]$  be a polynomial such that  $f = f_1 * ((x - b)^2 + c^2)$  with  $b \in \mathbb{R}, c \in \mathbb{R} \setminus 0$ . If  $f \in QM(G)$  then  $f_1 \in QM(G)$ .

Intuitively, this is because a polynomial of the form  $(x-b)^2 + c^2$  with  $c \neq 0$  does not change the semialgebraic set nor the orders of any polynomial f.

Additionally, these are sums of squares already which can be absorbed by the sums of squares multipliers in the representation of the polynomial  $f_1$  above.

Consider  $f = 2 + 4x + x^2 - x^3 + x^4 + x^5$ . We want to check  $f \in QM(\{-(x+1)^3(x-1)^3\})$ 

Consider  $f = 2 + 4x + x^2 - x^3 + x^4 + x^5$ . We want to check  $f \in QM(\{-(x+1)^3(x-1)^3\})$ Notice that

$$f = ((x-1)^{2} + 1)(x+1)^{3}$$

$$= ((x-1)^{2} + 1)\left(\frac{1}{8}(x+1)^{4}((x-2)^{2} + 3) + \frac{1}{8}(-(x+1)^{3}(x-1)^{3})\right)$$

$$= \underbrace{\frac{1}{8}(x+1)^{4}((x-1)^{2} + 1)((x-2)^{2} + 3)}_{a \text{ sums of squares}}$$

$$+ \underbrace{\frac{1}{8}((x-1)^{2} + 1)(-(x+1)^{3}(x-1)^{3})}_{a \text{ sums of squares}}$$

$$\in QM(\{-(x+1)^{3}(x-1)^{3}\})$$

Consider  $f = 2 + 4x + x^2 - x^3 + x^4 + x^5$ . We want to check  $f \in QM(\{-(x+1)^3(x-1)^3\})$ Notice that

$$f = ((x-1)^2 + 1)(x+1)^3$$

$$= \underbrace{\frac{1}{8}(x+1)^4((x-1)^2+1)((x-2)^2+3)}_{a \text{ sums of squares}}$$
$$+ \underbrace{\frac{1}{8}((x-1)^2+1)(-(x+1)^3(x-1)^3)}_{a \text{ sums of squares}}$$
$$\in \mathrm{QM}(\{-(x+1)^3(x-1)^3\})$$

Consider  $f = 2 + 4x + x^2 - x^3 + x^4 + x^5$ . We want to check  $f \in QM(\{-(x + 1)^3(x - 1)^3\})$ Notice that

$$f = ((x-1)^2 + 1)(x+1)^3$$

$$\in \mathrm{QM}(\{-(x+1)^3(x-1)^3\})$$

Consider  $f = 2 + 4x + x^2 - x^3 + x^4 + x^5$ . We want to check  $f \in QM(\{-(x+1)^3(x-1)^3\})$ Notice that

$$f = ((x-1)^{2} + 1)(x+1)^{3}$$

$$= ((x-1)^{2} + 1)\left(\frac{1}{8}(x+1)^{4}((x-2)^{2} + 3) + \frac{1}{8}(-(x+1)^{3}(x-1)^{3})\right)$$

$$= \underbrace{\frac{1}{8}(x+1)^{4}((x-1)^{2} + 1)((x-2)^{2} + 3)}_{a \text{ sums of squares}}$$

$$+ \underbrace{\frac{1}{8}((x-1)^{2} + 1)(-(x+1)^{3}(x-1)^{3})}_{a \text{ sums of squares}}$$

$$\in QM(\{-(x+1)^{3}(x-1)^{3}\})$$

## Suitable components

#### Definition

Let  $g \in \mathbb{R}[x]$  be a polynomial. We define *suitable components*, denoted as  $\mathbb{R}_g$ , as  $\{x_i \in \mathbb{R} \mid g(x_i) > 0 \text{ and } g'(x_i) = 0\}$ , i.e., an ordered set by positive integers of local maxima of g, for which g is positive.

## Suitable components

#### Definition

Let  $g \in \mathbb{R}[x]$  be a polynomial. We define *suitable components*, denoted as  $\mathbb{R}_g$ , as  $\{x_i \in \mathbb{R} \mid g(x_i) > 0 \text{ and } g'(x_i) = 0\}$ , i.e., an ordered set by positive integers of local maxima of g, for which g is positive.

Observation: g' is a polynomial, then any  $\mathbb{R}_g$  is a finite collection of points in  $\mathbb{R}$ .

#### Suitable factors

#### Definition

The *suitable factors* of f with respect to g is the set of polynomials  $\{f_i \mid 0 \le i \le |\mathbb{R}_g|\}$  defined as:

$$f_i = c_i \prod_{\substack{r \in \mathbb{Z}(f) \\ x_i < r < x_{i+1} \\ (x_i, x_{i+1}) \in \mathbb{R}_q}} (x - r)^{\operatorname{ord}_r(f)}$$
(1)

where  $x_0:=-\infty, x_{l+1}:=\infty$ ,  $c_i=1$  if  $0\leq i<|\mathbb{R}_g|$ , and  $c_{|\mathbb{R}_g|}=-1.$ 

Let us consider

• 
$$g := -(x+2)^3(x+1)x^2(x-1)(x-2)^3$$
  
•  $f := -(x+2)^5(x+\frac{1}{2})x^2(x-\frac{1}{2})(x-3)$ 

Let us consider

• 
$$g := -(x+2)^3(x+1)x^2(x-1)(x-2)^3$$
  
•  $f := -(x+2)^5(x+\frac{1}{2})x^2(x-\frac{1}{2})(x-3)$ 

The components of  $\mathbb{R}_g$  are  $(-\infty, -\sqrt{2})$ ,  $(-\sqrt{2}, \sqrt{2})$ , and  $(\sqrt{2}, \infty)$ .

Let us consider

• 
$$g := -(x+2)^3(x+1)x^2(x-1)(x-2)^3$$
  
•  $f := -(x+2)^5(x+\frac{1}{2})x^2(x-\frac{1}{2})(x-3)$ 

The components of  $\mathbb{R}_g$  are  $(-\infty, -\sqrt{2})$ ,  $(-\sqrt{2}, \sqrt{2})$ , and  $(\sqrt{2}, \infty)$ .



Figure: Suitable factors of f with respect to  $\mathbb{R}_{q}$ 

# Example (Cont'd)



Figure: Suitable factors of f with respect to  $\mathbb{R}_q$ 

# Example (Cont'd)

The suitable factors of f with respect to  $\mathbb{R}_g$  are:

• 
$$(x+2)^5$$
  
•  $(x+\frac{1}{2})x^2(x-\frac{1}{2})$   
•  $-(x-3)$ 



Figure: Suitable factors of f with respect to  $\mathbb{R}_q$ 

1

2

3

#### Algorithm 1: Monogenic certificates

Input: 
$$f, g \in \mathbb{R}[x]$$
  
Output:  $s_0, s_1 \in \sum \mathbb{R}[x]^2$   
Requires:  $S(g) = \bigcup_{i=1}^n [a_i, b_i], f \in QM(\{g\})$   
Ensures:  $f = s_0 + s_1g$   
//  $\mathbb{R}_g$  is of the form  $\{x_1, \dots, x_m\}$  with  
 $x_1 < x_2 < \dots < x_m$   
Let  $\mathbb{R}_g$  be the suitable components of  $g$   
Let  $f_{Left}$  be the factors of  $f$  with roots  $r$  such that  $r \leq x$   
Let  $f_{InBetween}$  be the factors of  $f$  with roots  $r$  such that  $x_1 < r < x_m$ 

4 Let  $f_{Right}$  be the factors of f with roots r such that  $x_m \leq r$ 

 $\leq x_1$ 

Compute certificates  $s_{0,L}, s_{1,L}$  of left suitable factor of g 5 6 for r is root in  $f_{Left}$  do if r is equal to  $a_1$  then 7 Use  $s_{0,L}, s_{1,L}$  to compute certificates of  $(x - a_1)^{\operatorname{ord}_{a_1}(f)}$ 8 9 else Use  $s_{0,L}, s_{1,L}$  to compute certificates of (x - r)10 Use certificates of (x - r) to compute certificates of 11  $(x-r)^{\operatorname{ord}_r(f)}$ end if 12 13 end for

```
14 Compute certificates s_{0,R}, s_{1,R} of right suitable factor of g
15 for r is root in f_{Right} do
        if r is equal to a_m then
16
            Use s_{0,R}, s_{1,R} to compute certificates of
17
             -(x-a_m)^{\operatorname{ord}_{a_m}(f)}
        else
18
            Use s_{0,R}, s_{1,R} to compute certificates of -(x-r)
19
            Use certificates of -(x-r) to compute certificates of
20
              -(x-r)^{\operatorname{ord}_r(f)}
        end if
21
22 end for
```

23 for  $x_i \in \mathbb{R}_g$  do 24 Compute certificates  $s_{0,i,B}, s_{1,i,B}$  of  $\prod_{\substack{r \in \mathbb{Z}(f) \\ x_i < r < x_{i+1}}} (x-r)^{\mathrm{ord}_r(f)}$ 

25 end for

**26** Collect and rearrange certificates obtained in previous steps by multipliying each expression.

# Computing certificates for suitable factors

## Left Suitable Factor

Monomials of the form

$$(x-a_1)^{k_{a_1}^+}$$
 (2)

## Left Suitable Factor

Monomials of the form

$$(x-a_1)^{k_{a_1}^+}$$
 (2)

Two cases:

## Left Suitable Factor

Monomials of the form

$$(x-a_1)^{k_{a_1}^+}$$
 (2)

Two cases:

• Semialgebraic starts with interval

#### Left Suitable Factor

Monomials of the form

Two cases:

- Semialgebraic starts with interval
- Semialgebraic starts with isolated point

# Semialgebraic starts with interval

Generator 
$$g := (x - a_1)^{k_{a_1}^+} (x - b_1)^{k_{b_1}^-} g_2$$
 where  
 $g_2 = -\prod_{\substack{i=2\\a_i < b_i}}^{m} (x - a_i)^{k_{a_i}^+} (x - b_i)^{k_{b_i}^-} \prod_{\substack{i=2\\a_i = b_i}}^{m} (x - a_i)^{k_{a_i}}.$ 

## Semialgebraic starts with interval

Generator 
$$g := (x - a_1)^{k_{a_1}^+} (x - b_1)^{k_{b_1}^-} g_2$$
 where  
 $g_2 = -\prod_{\substack{i=2\\a_i < b_i}}^{m} (x - a_i)^{k_{a_i}^+} (x - b_i)^{k_{b_i}^-} \prod_{\substack{i=2\\a_i = b_i}}^{m} (x - a_i)^{k_{a_i}}.$ 

Problem: Find  $s_0, s_1 \in \sum \mathbb{R}[x]^2$  such that  $(x - a_1)^{k_{a_1}^+} = s_0 + s_1 g$ .

#### Semialgebraic starts with interval

Generator 
$$g := (x - a_1)^{k_{a_1}^+} (x - b_1)^{k_{b_1}^-} g_2$$
 where  
 $g_2 = -\prod_{\substack{i=2\\a_i < b_i}}^{m} (x - a_i)^{k_{a_i}^+} (x - b_i)^{k_{b_i}^-} \prod_{\substack{i=2\\a_i = b_i}}^{m} (x - a_i)^{k_{a_i}}.$ 

Problem: Find  $s_0, s_1 \in \sum \mathbb{R}[x]^2$  such that  $(x - a_1)^{k_{a_1}^+} = s_0 + s_1 g$ .

Approach: Find  $s_1 \in \sum \mathbb{R}[x]^2$  such that

$$(x-a_1)^{k_{a_1}^+} - s_1 g \in \sum \mathbb{R}[x]^2$$

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$  from previous example.

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$  from previous example. The left-most generalized natural generator is  $(x+2)^3$ .

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$  from previous example. The left-most generalized natural generator is  $(x+2)^3$ . Notice that  $(x+2)^3 = s_0 + s_1g$ . Hence,  $(x+2)^3 + s_1(x+2)^3(x+1)x^2(x-1)(x-2)^3$  is a sums of squares for some sums of squares  $s_1$ .

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$  from previous example. The left-most generalized natural generator is  $(x+2)^3$ . Notice that  $(x+2)^3 = s_0 + s_1g$ . Hence,  $(x+2)^3 + s_1(x+2)^3(x+1)x^2(x-1)(x-2)^3$  is a sums of squares for some sums of squares  $s_1$ .

$$(x+2)^{3}(1+s_{1}(x+1)x^{2}(x-1)(x-2)^{3})$$

We need to "complete" the root x = -2. Notice that  $(x+1)x^2(x-1)(x-2)^3|_{x\to -2} = -768$ . Setting  $s_1 = \frac{1}{768}$  forces a root at x = -2 in  $1 + s_1(x+1)x^2(x-1)(x-2)^3$ .
In this case, the roots of  $1 + s_1(x+1)x^2(x-1)(x-2)^3$  are a single real root at x = -2 and the rest are complex conjugates. We have completed the even root for  $(x+2)^3$ , thus  $s_0 = (x+2)^3(1+s_1(x+1)x^2(x-1)(x-2)^3)$  is a sums of squares.

In this case, the roots of  $1 + s_1(x+1)x^2(x-1)(x-2)^3$  are a single real root at x = -2 and the rest are complex conjugates. We have completed the even root for  $(x+2)^3$ , thus  $s_0 = (x+2)^3(1+s_1(x+1)x^2(x-1)(x-2)^3)$  is a sums of squares.

Setting  $s_1 = \frac{1}{768}$  we have

$$(x+2)^3 = s_0 + s_1 g$$

In this case, the roots of  $1 + s_1(x+1)x^2(x-1)(x-2)^3$  are a single real root at x = -2 and the rest are complex conjugates. We have completed the even root for  $(x+2)^3$ , thus  $s_0 = (x+2)^3(1+s_1(x+1)x^2(x-1)(x-2)^3)$  is a sums of squares. Setting  $s_1 = \frac{1}{768}$  we have

$$(x+2)^3 = s_0 + s_1 g$$

In general, we would expected that the expression  $1 - s_1 \frac{g}{\left(x-a_1\right)^{k_{a_1}^+}}$ 

to have negative intervals. Our algorithm fixes each negative interval by updating  $s_1$  with square terms at the midpoints of these negative intervals.

Consider

$$g = -x^{3}(x-1)^{5}(x-2)(x-3)(x-4)(x-7)$$
  
(x-8)(x-10)(x-14)(x-15)(x-16)^{2}(x-19)(x-20)

The left-most generalized natural generator is  $x^3$ .

Consider

$$g = -x^{3}(x-1)^{5}(x-2)(x-3)(x-4)(x-7)$$
  
(x-8)(x-10)(x-14)(x-15)(x-16)^{2}(x-19)(x-20)

The left-most generalized natural generator is  $x^3$ .

We first set  $s_1 = \frac{1}{274563072000}$  to complete the root.

Consider

$$g = -x^{3}(x-1)^{5}(x-2)(x-3)(x-4)(x-7)$$
  
(x-8)(x-10)(x-14)(x-15)(x-16)^{2}(x-19)(x-20)

The left-most generalized natural generator is  $x^3$ .

We first set 
$$s_1 = \frac{1}{274563072000}$$
 to complete the root.

We find that the negative intervals of  $1 - \frac{1}{274563072000}g$  are contained in the intervals  $(4,7) \cup (8,10) \cup (14,15) \cup (19,20)$ .

Consider

$$g = -x^{3}(x-1)^{5}(x-2)(x-3)(x-4)(x-7)$$
  
(x-8)(x-10)(x-14)(x-15)(x-16)^{2}(x-19)(x-20)

The left-most generalized natural generator is  $x^3$ .

We first set 
$$s_1 = \frac{1}{274563072000}$$
 to complete the root.

We find that the negative intervals of  $1 - \frac{1}{274563072000}g$  are contained in the intervals  $(4,7) \cup (8,10) \cup (14,15) \cup (19,20)$ .

The following plots illustrate the updates to  $s_1$  and how the polynomial  $1 - s_1 g$  becomes strictly positive to the right of x = 0.

# Example (Cont'd)



Figure:  $s_1 = \frac{1}{274563072000}$ 

# Example (Cont'd)



Figure:  $s_1 = \frac{1}{8305532928000}(x - (4+7)/2)^2$ 

### Example (Cont'd)



Figure: 
$$s_1 = \frac{1}{600074754048000} (x - (4+7)/2)^2 (x - (8+10)/2)^2$$

### Example (Cont'd)



Figure:

 $s_1 = \frac{1}{126165717038592000} (x - (4 + 7)/2)^2 (x - (8 + 10)/2)^2 (x - (14 + 15)/2)^2$ 

# Example (Cont'd)



Figure:  $s_1 = \frac{1}{18242308911967332192000} (x - (4 + 7)/2)^2 (x - (8 + 10)/2)^2 (x - (14 + 15)/2)^2 (x - (19 + 20)/2)^4$ 

### **Right Suitable Factor**

Key ideas:

### **Right Suitable Factor**

Key ideas:

• Sum of squares are closed by involution maps:  $x\mapsto -x$ 

### **Right Suitable Factor**

Key ideas:

- Sum of squares are closed by involution maps:  $x\mapsto -x$
- Applying a involution map, we reduce the problem to the Left Suitable Factor case.

### **Right Suitable Factor**

Key ideas:

- ullet Sum of squares are closed by involution maps:  $x\mapsto -x$
- Applying a involution map, we reduce the problem to the Left Suitable Factor case.
- A second involution maps the reduced problem to the original one.

### Properties

### Proposition

If 
$$s \in \sum \mathbb{R}[x]^2$$
 then  $s^{\diamond} \in \sum \mathbb{R}[x]^2$ 

### Properties

### Proposition

If 
$$s \in \sum \mathbb{R}[x]^2$$
 then  $s^{\diamond} \in \sum \mathbb{R}[x]^2$ 

### Proposition

If  $f \in \mathbb{R}[x]$  belongs to a compact quadratic module QM(G) for some  $G = \{g_i \mid 1 \le i \le m\}$  then  $f^{\diamond} \in QM(G^{\diamond})$ .

### Properties

### Proposition

If 
$$s \in \sum \mathbb{R}[x]^2$$
 then  $s^\diamond \in \sum \mathbb{R}[x]^2$ 

#### Proposition

If  $f \in \mathbb{R}[x]$  belongs to a compact quadratic module QM(G) for some  $G = \{g_i \mid 1 \le i \le m\}$  then  $f^{\diamond} \in QM(G^{\diamond})$ .

#### Theorem

The involution of the left (resp. right)-most generalized natural generator of a compact quadratic module QM(G) for some  $G = \{g_i \mid 1 \le i \le m\}$  is the right (resp. left) most generalized natural generator of  $QM(G^{\diamond})$ .

### Strictly Positive Left Suitable Factor

These are monomials of the form:

### Strictly Positive Left Suitable Factor

These are monomials of the form:

• x - c where c < S(G), (denoted as left strictly positive linear factor), or

### Strictly Positive Left Suitable Factor

These are monomials of the form:

- x c where c < S(G), (denoted as left strictly positive linear factor), or
- -(x-c) where c > S(G) (denoted as right strictly positive linear factor).

### Strictly Positive Left Suitable Factor

These are monomials of the form:

- x c where c < S(G), (denoted as left strictly positive linear factor), or
- -(x-c) where c > S(G) (denoted as right strictly positive linear factor).

It is enough to consider the left case as the right one can be solved using the involution technique.

### Strictly Positive Left Suitable Factor

These are monomials of the form:

- x c where c < S(G), (denoted as left strictly positive linear factor), or
- -(x-c) where c > S(G) (denoted as right strictly positive linear factor).

It is enough to consider the left case as the right one can be solved using the involution technique.

#### Theorem

 $x - c \in QM(g - g(c))$ . Furthermore, the sums of squares certificates of the latter are computable.

Key ideas

Use a truncated Gaussian polynomial to fix the negative intervals of polynomials of the form:  $(x-a)^{2m_1+1}\prod_{i=1}^l (x-c_i)^{2n_i}(x-b)^{2m_2+1}$  where  $m_1, m_2, n_i \in \mathbb{N}$ ,  $a < c_1 < \cdots < c_l < b$  and  $a, b \in \partial(\mathcal{S}(\{g\}))$ .

#### Definition

We define  $\operatorname{Trunc}_n(X)$  as the truncated Taylor series expansion of  $e^{-X^2/2}$  where the highest exponent is even and its leading coefficient is positive, i.e.  $\operatorname{Trunc}_n(X) := \sum_{k=0}^{2n} \frac{(-1)^k}{2^k k!} X^{2k}$ 

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$ , we will find certificates for  $(x+1)x^2(x-1)$ .

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$ , we will find certificates for  $(x+1)x^2(x-1)$ . Since  $(x+1)x^2(x-1) \in QM(\{g\})$ , then  $(x+1)x^2(x-1) = s_0 + s_1g$ , thus it is enough to find  $s_1$  such that

$$(x+1)x^{2}(x-1) + s_{1}(x+2)^{3}(x+1)x^{2}(x-1)(x-2)^{3}$$

Consider  $g = -(x+2)^3(x+1)x^2(x-1)(x-2)^3$ , we will find certificates for  $(x+1)x^2(x-1)$ . Since  $(x+1)x^2(x-1) \in QM(\{g\})$ , then  $(x+1)x^2(x-1) = s_0 + s_1g$ , thus it is enough to find  $s_1$  such that

$$(x+1)x^{2}(x-1) + s_{1}(x+2)^{3}(x+1)x^{2}(x-1)(x-2)^{3}$$

We can factor out  $x^2$  and include it back without changing the certificates problem for the original polynomial.

$$(x+1)(x-1)(1+s_1(x+2)^3(x-2)^3)$$



Figure: In-between case lifting step

In this case, since  $(x + 2)^3(x - 2)^3$  has (-2, 2) as negative interval, it is enough to "shrink" by a suitable constant such that  $s_1(x + 2)^3(x - 2)^3$  completes the squares of (x + 1)(x - 1).

In this case, since  $(x + 2)^3(x - 2)^3$  has (-2, 2) as negative interval, it is enough to "shrink" by a suitable constant such that  $s_1(x + 2)^3(x - 2)^3$  completes the squares of (x + 1)(x - 1). Setting  $s_1 = 1/27$  we have that  $1 + s_1(x + 2)^3(x - 2)^3$  has x = -1 and x = 1 as real roots and the rest of its roots are complex conjugates. Thus,  $(x + 1)(x - 1)(1 + s_1(x + 2)^3(x - 2)^3)$ is a sums of squares.

Setting 
$$s_0 = (x+1)(x-1)(1+s_1(x+2)^3(x-2)^3)$$
 we obtain

$$(x+1)(x-1) = s_0 - s_1(x+2)^3(x+1)(x-1)(x-2)^3$$

Setting 
$$s_0 = (x+1)(x-1)(1+s_1(x+2)^3(x-2)^3)$$
 we obtain

$$(x+1)(x-1) = s_0 - s_1(x+2)^3(x+1)(x-1)(x-2)^3$$

Thus,

$$(x+1)x^{2}(x-1) = x^{2}s_{0} - s_{1}(x+2)^{3}(x+1)x^{2}(x-1)(x-2)^{3}$$
$$= x^{2}s_{0} + s_{1}g$$

In general, we would expect the term  $\frac{g}{in-between-factor}$  to have more than one negative interval.

In general, we would expect the term  $\frac{g}{in-between-factor}$  to have more than one negative interval.

Using a truncated Gaussian the goal is to minimize the negative intervals outside the negative interval where the odd factors are located such a suitable constant can be obtained to complete these odd factors.

# Proposed work
• Preliminary work:

- Preliminary work:
  - Reduction from a general 2-basis quadratic module [SMK22] to a monogenic problem.

#### Preliminary work:

- Reduction from a general 2-basis quadratic module [SMK22] to a monogenic problem.
- Identify certificates in the preorder representation.

#### Preliminary work:

- Reduction from a general 2-basis quadratic module [SMK22] to a monogenic problem.
- Identify certificates in the preorder representation.
- Work to be done:

#### Preliminary work:

- Reduction from a general 2-basis quadratic module [SMK22] to a monogenic problem.
- Identify certificates in the preorder representation.
- Work to be done:
  - Find certificates for the products in the preorder structure to have certificates in terms of the quadratic module structure.

- Preliminary work:
  - Procedure to compute certificates for a special kind of monogenic quadratic modules satisfying certain properties.

- Preliminary work:
  - Procedure to compute certificates for a special kind of monogenic quadratic modules satisfying certain properties.
- Work to be done:

- Preliminary work:
  - Procedure to compute certificates for a special kind of monogenic quadratic modules satisfying certain properties.
- Work to be done:
  - Investigate if the identified prerequisites are enough for the monogenic case or if the method can be generalized for missing cases in the monogenic case.

- Preliminary work:
  - Procedure to compute certificates for a special kind of monogenic quadratic modules satisfying certain properties.
- Work to be done:
  - Investigate if the identified prerequisites are enough for the monogenic case or if the method can be generalized for missing cases in the monogenic case.
  - Solve the certificates problem for a zero dimensional polynomial systems

## Conclusions

We have presented a solution to computing certificates in the monogenic case problem.

- We have presented a solution to computing certificates in the monogenic case problem.
- O The method is symbolic and produces exact certificates.

- We have presented a solution to computing certificates in the monogenic case problem.
- O The method is symbolic and produces exact certificates.
- We have compared a prototypical tool in Mathematica and RealCertify [MD18] identifying strictly positive polynomials which our approach can solve but RealCertify cannot.

- We have presented a solution to computing certificates in the monogenic case problem.
- O The method is symbolic and produces exact certificates.
- We have compared a prototypical tool in Mathematica and RealCertify [MD18] identifying strictly positive polynomials which our approach can solve but RealCertify cannot.
- Our current progress in the remaining work shows the feasibility of the approach to be used for the general case.

# Thank you for your attention!

## References I

Augustin, Doris. "The Membership Problem for quadratic modules with focus on the one dimensional case". In: *Ph.D. thesis.* Ph.D. thesis. 2008.

Magron, Victor and Mohab Safey El Din. RealCertify: a Maple package for certifying non-negativity. 2018. DOI: 10.48550/ABXIV.1805.02201 UBL:

https://arxiv.org/abs/1805.02201.

Shang, Weifeng, Chenqi Mou, and Deepak Kapur. "Algorithms for Testing Membership in Univariate Quadratic Modules over the Reals". In: *Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation*. ISSAC '22. Villeneuve-d'Ascq, France: Association for Computing Machinery, 2022, pp. 429–437. ISBN: 9781450386883. DOI: 10.1145/3476446.3536176. URL: https://doi.org/10.1145/3476446.3536176. Motivation Preliminaries Suitable Factors Computing certificates Proposed work Conclusions References

## References II

Stengle, Gilbert. "Complexity Estimates for the Schmüdgen Positivstellensatz". In: Journal of Complexity 12.2 (June 1996), pp. 167–174. ISSN: 0885-064X. DOI: 10.1006/jcom.1996.0011. URL: http://dx.doi.org/10.1006/jcom.1996.0011.