
Midterm Review
Topics
• Java Basics and Structure
• Variables
• Branching
• Loops
• Methods
• Arrays

Midterm Review
Kage Weiss
Lab 001 TA, SPR 17

Java Basics and Structure
Class{

class variables;
methods{

method variables;
statements;

}
}

Java Basics and Structure
Code blocks (classes, methods) are defined by braces { }

Classes: <publicity> class <name> {/* code here*/}
Methods: <publicity> <return type> <name>

(<parameter1 type> <parameter1 name>,<param2>…)
{/* code here*/}

Variables only exist in the code block they’re defined in:
block{ var x; }}

X does not exist anymoreX exists

}

Variables
Variables are used to store information of declared data types.

<data type> <variable name>; (e.g. int x;)
<data type> <variable name> = <value>; (e.g. int x = 5;)

Variables are assigned data via the assignment operator =
e.g. int x = 5;

Converting between the types can be done with type casting
float y = (float) x; (y now equals 5.0)

Variables must be declared before usage.
Variables are either primitive data types or object data types

Variables
Primitive data types:
• boolean - true or false - 1 bit
• char - Unicode Characters (2 bytes)
• byte - One byte (8 bits)
• short - Short integer (2 bytes)
• int - Regular integer (4 bytes) (−2 31 =⇒ (231 − 1))
• long - Large integer (8 bytes)
• float - Floating point (4 bytes)
• double - Floating point (8 bytes)

Relational Operators
A == B // Is A equal to B?
A != B // Is A not equal to B?
A < B // Is A less than B?
A > B // Is A greater than B?
A <= B // Is A less than or equal to B?
A >= B // Is A greater than or equal to B?

All of these operations return Booleans, true or false depending
on the values of A and B

Assignment Operators
x = y; //x now has the value from y
x -= y; // same as: x = x - y;
x += y; // same as: x = x + y;
x *= y; // same as: x = x * y;
x /= y; // same as: x = x / y;
x %= y; // same as: x = x % y; (for integers x, y)
q &&= p; // same as: q = q && p; (for booleans q, p)

Increment and decrement:
x++; // same as: x = x + 1;
x--; // same as: x = x - 1;

Control Structures
Branching
• Branching allows for code with choices and options, and is

often used hand-in-hand with variables to clean and optimize
code.
• Switch/case/default
• if/then, if/else if/else

Loops
• Loops allow you to repeat a set of statements until certain

conditions are met.

Branching
The main options are if statements and switch statements:

switch(test) {
case <option>:

//code here
case <option2>:

//code here
break;

default:
//code here

}

if(test) {
//code here

} else if(test2) {
//code here

} else {
//code here

}

If Statements
If statements are a simple code block inside a test, if the test fails
it won’t enter the block. If you place an else (or an else if) it will
be evaluated when and only when the test fails.

if(x > 0) {
x /= 2;

} else if(x < 0) {
x *= -1;

} else {
x = 9;

}

Remember the order of tests
matters, if its passes the first it
will not check any more.

Switch Statements
Switch statements are similar to sets of if/else if/else if/else if/…
tests. Based on the result of one test it will chose an option (case)
//String x;
switch(x) {

case “Op1”:
//code here

case “Op2”:
//code here
break;

default:
//code here

}

If you don’t break after a case,
the program will “fall through”
into the next code block inside
the switch until it hits a break
or a return statement.

Branching
Remember all tests must be binary (return a Boolean), and don’t
forget your Boolean operators.
A && B // AND : Are both A and B true ?
A || B // OR: Are either A or B true?
!A // NOT : Negate value of A (opposite)

This can be used to string tests together inside one big test:
//int x, y, z;
if(x < 0 || y > 0 || ((z == x) && (z == y))) { /*Code here*/ }

Just remember: if it passes an OR or fails an AND before it
completes all the tests, it wont bother testing them all.

Loops
The main options are for loops and while loops:

for(initial value; test; increment) {
//code here

}

while(test) {
//code here

}

Loops will continue until they fail their test, or until the program
either “break”s or “return”s. A break will kick the program out of
a loop, a return will leave the current method with the value
included.

For Loops
For loops generally operate on an index: declaring it, testing it,
completing the code block, and then changing the index

for(int i = 0; i < 9; i++) {
System.out.println(i);

}

For loops give you an index (i)
to use inside the loop.

Enhanced for loops give us a
variable value instead of an
index, if you know how to use
them.

While Loops
While loops just keep testing. (So make sure it’ll fail the test at
some point, or break/return.)

//int x, y;
while(x != y) {

x += ((y - x)/2);
if(x > y) {

break;
}

}

While loops also have a special
version. Want to run your
block before you test? Use a
do { } while(test);

Loops
Remember that loops will continue until their tests fail, so be sure
the test has to fail at some point, or if you want it to loop
infinitely, then be sure it’ll break or return. Some infinite loops
are shown here.

for(int i = 100; true; i--) {
//code here, with an index

}

while(true) {
//code here

}

for(; ;) {
//code here
//a for loop without an index?!?

}

Methods
Methods are small (normally) blocks of code that are useful ore
repeated so instead of typing out the full code or rewriting with a
bunch of different variables, you use method calls. Methods are
defined using the form:
<publicity> <return type> <name>(<param1 type> <param1 name>,

<param2>…) {
/* code here*/

}
You call a method with the form:
<name>(<params>);

Methods
If an object has its own methods, you can call the methods for that
object by saying <object>.<method>(<params>);
For example, if we have a String x, and we want to see if it contains
the letter “y”, we would say:
boolean containsY = x.contains(“y”);
Where “x” is our object (String), “contains” is our method, and “y” is
the String parameter we are passing in. Contains returns a Boolean,
so we store the value of “x.contains(“y”)” in our variable “containsY”.
If we write our own method:
public void methodName() { /*code here*/ }
We call it by saying:
methodName();

Methods
If there are two versions of a method that have different parameters,
we call this overloading. Both exist, and java will determine which to
call based on the parameters you give it in the method call.

A method must return the type it declares as its return type.

Methods for Strings
• String y = x.replace(“<String1>”, “<String2>”);

• Replaces all instances of String1 in x with String2
• x.contains(“<String>”)

• Returns true if “<String>” exists in
• x.indexOf (“<String>”)

• Returns the index of the first appearance of “<String>”
• x.charAt (int i)

• Returns the character at the index “i”
• x.toUpperCase ()

• Returns the String x in all caps

• x.substring(int beginIndex, int endIndex)
• Returns the String from beginIndex to endIndex in x

Arrays
An array is a variable that is an indexed collection of data.
To declare an array, we use the format:
<type>[] <name>;
When we initialize it we must give it a size, the size for an array
cannot change. W initialize an array as such:
<type>[] <name> = new <type>[<size>];

For example if I wanted an array, book, of 30 Strings, I would say:
String[] book = new String[30];
We can also initialize an array with set values:
String[] book = { “Arrays”, “are”, “fun”, “and”, “quite”, “useful”, “.”};

Arrays
To reference a value in an array, we say <name>[<index>]
These values work just like any other variable:
book[0] = “Words”;

Arrays don’t come pre-filled with nice values, arrays of numbers
contain all 0’s, arrays of reference types contains all null.

Remember, arrays indices start at 0, so an array of 30 Strings
would have a String at book[0] and at book[29], but not at
book[30]. You can always find the length of an array (number of
values it hold) by saying <name>.length

Arrays
You can also overwrite arrays, because as variables they are
references to the information, not the information itself:
String [] arr1 = { " Hello", " World" };
String [] arr2 = { " Goodbye", " World" };
arr1 = arr2 ;
arr1 and arr2 both now point to the data { " Goodbye", " World" }
{ "Hello", "World" } gets thrown away because arr1 no longer
references it.

Combinations
Combinations of variables, arrays, methods, loops, and classes
allow us to accomplish anything possible in java, though if you
limit yourself to just these then some things might be very
difficult. When writing any program start simple with what you’re
comfortable doing, and build from there both on your own
knowledge and on your program.

