
CS 251 - Lab 004
TA: Kage Weiss
Office Hours: R 2-2:50 FEC 2000, or by appointment.
Contact: mmweiss@unm.edu
Website: http://cs.unm.edu/~kageweiss/TA/cs251.html -- SLIDES POSTED

• Sign in sheet located on desk by TA

• Today we are working on finishing Othello (Lab 2)

• FizzBuzz has been graded, look at the grading comments you
received to ensure you don’t lose the same points on Othello.

• I was disappointed by the number of students who submitted
for FizzBuzz. Why? Because coding standards were 25% of the
grade, and an empty file would be worth ~60% of that. Your info
comment, and a class comment (WITHOUT EVEN A CLASS) would
get you the full 25% credit on this lab.

How I Grade Your Code:

• Chenoweth provides the rubric and occasionally tester code.
• I write tester code that thoroughly tests your code.
• If your code runs as expected with my tester, I’m happy.
• I then review your code (.java) to make sure it follows CS251 Code Standards.

• That means variable and method names, comments, privacy, NO TABS, etc.

• I can tell how much work you put into your code.
• I can tell who didn’t cite StackOverflow.
• If you obviously put work in, I’m happy to give points and comments!
• If you obviously didn’t put work in, I have to really look at your code and end up

finding (and counting off for) minor infractions.
• Every point I take off is listed in the comments for the grade. Read them.

Othello Line Detection
Finding a matching line of pieces in a direction takes two sets of information,
the original location on the board (x, y), and the direction pair (Δx, Δy). From
our starting point (x, y) we need to count steps in our direction to look for
matching pieces. This can be done with a for(i < size of board) loop, or a
while(true) loop, as long as we have an index to “step” with.
You would do this with something similar to the following format:
Loop(){

if(location exists in the board){
if(our pieces match){

return how many found;
}

}
}
return how many found;

Othello Line Detection
The way we step in a direction with an offset is rather simple,
We take our original location: (x, y)
We decide how many steps we’re taking: i
We decide how long our steps are: (Δx, Δy)
And then we add the distance to our position: (x + i*Δx, y + i*Δy)

So, i steps from (x, y) in (Δx, Δy) direction means we will be at the location
((x + i*Δx), (y + i*Δy))

So to find the number of pieces in a line, start from the played piece and
check one step in our direction, if the ith piece in board matches the piece at
our ith new location, we can keep looking until we run out of room or no
longer match. Just add up the number from each direction pair, add our
center, and remember to flip the pieces as you go!

Othello Line Detection
Depending on the location of (0, 0) our board will rotate, but should look
something like this:

N

S

W E

NW NE

SW SE

(0, 0)

(0, -1)

(1, 0)

(1, -1)(-1, -1)

(-1, 0)

(0, 1)

(1, 1)(-1, 1)

Othello Win Detection
Finding a win is all about checking whether there are no more plays, which
can happen in two ways.
• The first is easy, no empty spots on the board means no more plays

possible.
• The second takes more work: for each empty spot on the board:

• If the player whose turn it is can play there, the game is not over,
• if they can’t play in any of the available spots, the game is over.

Info Block, tells who/when/what

Method is public, so it gets
a JavaDoc comment}

}

Method is public, so it gets
a JavaDoc comment, this
one’s a bit longer because it
has three fields

}

Indentations must be spaces, NOT Tabs

Though it may not seem like much, every character is important to
the composition of a work of code.

