
CS 251 - Lab 004
TA: Kage Weiss
Office Hours: R 2-2:50 FEC 2000, or by appointment.
Contact: mmweiss@unm.edu
Website: http://cs.unm.edu/~kageweiss/TA/cs251.html -- SLIDES POSTED

• Sign in sheet located on desk by TA

• Today we are working on finishing Inheritance (Lab 3)

• Kage was out due to unforeseen circumstances.

Inheritance
This lab is all about using inheritance through interfaces and parentage to
simplify the code you have to write.
Think about:
• What you must have every time (things that change)
• What you want to avoid having every time (things that don’t change)
• Things that you already have elsewhere, and how that helps you where

you are (Inheritance)
• What use are your parents?

• What use are their parents?
• Am I doing anything myself that they have already done for me?

Exceptions
This lab is all about using exceptions to trigger behavior when something
wrong (but expected) happens, and writing your own exception using
Inheritance.
Think about:
• try{ /* code */ } catch(<Type of exception> <name>) { /* code */}

• NOTE: for this lab, when it says to throw the exception, that does not
mean to throw and then catch your own exception, just throw it.

• What is it that throws the exception?
• What do we want to do when the exception is thrown?
• Where all could this be useful?
• What is the difference between a checked and an unchecked exception?

How I Grade Your Code:

• Chenoweth provides the rubric and occasionally tester code.
• I write tester code that thoroughly tests your code.
• If your code runs as expected with my tester, I’m happy.
• I then review your code (.java) to make sure it follows CS251 Code Standards.

• That means variable and method names, comments, privacy, NO TABS, etc.

• I can tell how much work you put into your code.
• I can tell who didn’t cite StackOverflow.
• If you obviously put work in, I’m happy to give points and comments!
• If you obviously didn’t put work in, I have to really look at your code and end up

finding (and counting off for) minor infractions.
• Every point I take off is listed in the comments for the grade. Read them.

Info Block, tells who/when/what

Method is public, so it gets
a JavaDoc comment}

}

Method is public, so it gets
a JavaDoc comment, this
one’s a bit longer because it
has three fields

}

Indentations must be spaces, NOT Tabs

Info Block, tells who/when/what
No room on the slide, but you need a class comment too.

Method is public, so it gets a JavaDoc comment.
It takes no arguments, but what does it do?}

}

Nested class is private, so no need for
JavaDoc, but comments are still a part
of documenting your code, what is this
class?

}

Constructors you write need comments too}

