
CS 251 - Lab 004
TA: Kage Weiss
Office Hours: R 2-2:50 FEC 2000, or by appointment.
Contact: mmweiss@unm.edu
Website: http://cs.unm.edu/~kageweiss/TA/cs251.html -- SLIDES POSTED

• Sign in sheet located on desk by TA

• Today we are working on Markov (Lab 7)

How I Grade Your Code:

• Chenoweth provides the rubric and occasionally tester code.
• I write tester code that thoroughly tests your code.
• If your code runs as expected with my tester, I’m happy.
• I then review your code (.java) to make sure it follows CS251 Code Standards.

• That means variable and method names, comments, privacy, NO TABS, etc.

• I can tell how much work you put into your code.
• I can tell who didn’t cite StackOverflow.
• If you obviously put work in, I’m happy to give points and comments!
• If you obviously didn’t put work in, I have to really look at your code and end up

finding (and counting off for) minor infractions.
• Every point I take off is listed in the comments for the grade. Read them.

Markov
• WORK ON UNDERSTADING FILE IO, if you can’t import the files

properly, it will never work.

• Read her Markov slides

• Read her entire lab pdf before starting

• Markov is one of the most difficult labs understand properly

• It is all based on your understanding of collections (map)

• I would definitely recommend spending at least 10 minutes
sketching on a piece of paper how a Markov generator works

Markov/Trie Algorithm
• The Markov/Trie Algorithm is a mapping algorithm utilizing a migratory
relationship between keys and a collection of their data. The key is almost always
of equal or greater order than their data.

• For example: String -> Char, Library -> Book, String -> String, and
Collection<String> -> String, would all be useful sets.

• The starting key in a Trie is generally an anchor that all branches will start
from, and is mapped to all the top level keys. In a Markov, the order determines
how many instances of the data level object constitute a key, in a Trie, that
ordering can be set or dynamic depending on the implementation.
• M/T generally serves one of two purposes, either as a qualifying data set or as
a disqualifying dataset. The predictive text on your phone is an example of a
qualifier, where the M/T is providing what it thinks could come next. A searching
algorithm may use a M/T to deterministically eliminate branches of trees that do
not benefit the program.

Markov/Trie Algorithm
The Trie we will be using in an effective WordSearch is a disqualifier, eliminating
branches of our input dictionary so we can search through both the input and the
puzzle only once each.

In theory a Trie looks something like this:
• Note the anchor, and the fact that the

following data is an extension of its key
• This is a Trie<String, Char>
• The word list here is:

to, tea, ted, ten, inn, A, I, in, inn

Image Source: Wikipedia: Trie

Markov/Trie Algorithm
In practice, a Trie (String -> Char) will look more like this:

null

• A

• B

A

• t

• n

• “”

B

• a

• e

At

• “”

An

• t

• d

• “”

Ba

• a

• d

Be

• e

• “”

Ant

• “”

And

• “”

Baa

• “”

Bad

• “”

Bee

• “”

Notice how it’s technically the
tree, but because Java maps
don’t internally branch, we fake
it by creating successive keys.
The end of each branch is also
denoted, in this case by our
empty string. This means
wherever we have “” as one of
our possible branches, the key
itself is a completed dataset.

Word List: A, At, An, And, Ant, Baa, Bad, Be, Bee

Markov/Trie Algorithm
In practice, a Markov<String, String>, order 2, will look more like this:

null null

• A

• The

null A

• look

A look

• into

look into

• the

into the

• past.

past. A

• vision

vision of

• the

of the

• future.

• present.

the future.

• null

future. null

• null

The future

• of

future of

• the

the present.

• null

present. null

• null

Still not a tree as we think of it, and
this is null/null rooted/terminated.

Input Text: A look into the past. A vision of the future.
The future of the present.

Why is (1) not “repeated” but (2/3) is?

(1) (2) (3)

Markov/Trie Algorithm
For our purposes, if we map out all of our inputs, we can use the Trie as a
qualifier to generate proper-sounding text. Because we are examining words,
trying to make more words, we will set our Trie to be the exactly that: a collection
of Strings that will tell us what Strings might follow.
Our steps then would resemble the following:
1. Create our trie of (order) String keys to a collection of Strings

1. Remember to start and end with (order) number of anchors
2. Input each set of strings from our dictionary, mapping it piece by piece to the

immediately following word
1. Remember to check if our key already exists instead of always just

creating a new one
3. Starting from your main anchor, randomly choose a suffix and output it, shift

your key, and keep doing so until you’ve generated enough words.

Markov
Once you understand the theory of markov tries, a simple
implementation is very straightforward, but start by considering a
couple things:

• You must read in a file. How (or how not) do you want to store
the information?

• if(map.contains(key)){put(key, new val());}
is tedious, there’s probably a method that does that

• Test small datasets first, with small chunks of code. Don’t wait
until you have your parser and printer all written to try either of
them!

• At least try printing out the map of a small dataset

Info Block, tells who/when/what

Method is public, so it gets
a JavaDoc comment}

}

Method is public, so it gets
a JavaDoc comment, this
one’s a bit longer because it
has three fields

}

Indentations must be spaces, NOT Tabs

Info Block, tells who/when/what
No room on the slide, but you need a class comment too.

Method is public, so it gets a JavaDoc comment.
It takes no arguments, but what does it do?}

}

Nested class is private, so no need for
JavaDoc, but comments are still a part
of documenting your code, what is this
class?

}

Constructors you write need comments too}

