
CS 251 - Lab 004
TA: Kage Weiss
Office Hours: R 2-2:50 FEC 2000, or by appointment.
Contact: mmweiss@unm.edu
Website: http://cs.unm.edu/~kageweiss/TA/cs251.html -- SLIDES POSTED

• Sign in sheet located on desk by TA

• Today we are working on finishing up GUI Practice (Lab 8), and
starting the final project Bubble Shooter (Lab 9)

How I Grade Your Code:

• Chenoweth provides the rubric and occasionally tester code.
• I write tester code that thoroughly tests your code.
• If your code runs as expected with my tester, I’m happy.
• I then review your code (.java) to make sure it follows CS251 Code Standards.

• That means variable and method names, comments, privacy, NO TABS, etc.

• I can tell how much work you put into your code.
• I can tell who didn’t cite StackOverflow.
• If you obviously put work in, I’m happy to give points and comments!
• If you obviously didn’t put work in, I have to really look at your code and end up

finding (and counting off for) minor infractions.
• Every point I take off is listed in the comments for the grade. Read them.

GUIs
• Frames

• Panels

• Layouts and placing

• Buttons, clicks

• Events

• Action Listeners

• Labels

• Images/Drawing

• repaint()

Don’t forget:

• frame.pack();

• frame.setDefaultCloseOperation(JFrame.EXIT…);

• frame.setLocationRelativeTo(null);

• frame.setVisible(true);

Making a Game
You just wrote a simple GUI, so you know how complex they are,
any guesses as to how complex it would be to try and make your
GUI run a game? 251 me would never recommend that mess.

That’s why we break down the problem into pieces, we’ll let the
GUI do GUI things and only GUI things later on when we write it,
and we’ll write the game as a simple program by itself: Bubble
Manager

• Bubble Manager is the core of your game, and by reading the
pdf (and maybe the linked article) you will be able to write the
game so that you can use a tester to “play” it.

• This allows you to keep game issues and GUI issues separate.

Making a Game
Organization

• The GUI comes after your base program is running smoothly

• A GUI is graphical, so maybe draw your plan for what you
want it to look like before you build it.

• The only methods your GUI should be calling are those your
BubbleTester called.

• Fancy graphics aren’t worth any points if your game doesn’t
run properly.

• Remember to work in your instance, if you can’t run two
completely separate windows of the game, you have too
many static variables and methods.

Making a Game
Organization

• A main class merges your manager and GUI instances

• Though possible to do in your GUI, a main class allows for
separating out the startup from the internal game.

• It also allows an easy new game solution by simply replacing
the old manager in your current GUI with a new Manager OR
calling a newGame() method on your Manager.

• You’ll learn a lot more about this in 351!

Info Block, tells who/when/what

Method is public, so it gets
a JavaDoc comment}

}

Method is public, so it gets
a JavaDoc comment, this
one’s a bit longer because it
has three fields

}

Indentations must be spaces, NOT Tabs

Info Block, tells who/when/what
No room on the slide, but you need a class comment too.

Method is public, so it gets a JavaDoc comment.
It takes no arguments, but what does it do?}

}

Nested class is private, so no need for
JavaDoc, but comments are still a part
of documenting your code, what is this
class?

}

Constructors you write need comments too}

Though it may not seem like much, every character is important to
the composition of a work of code.

