CS 357 - Lab 002

Session 4
let -> [ambda

Kage Weiss

CS 357 - Lab 002

TA: Kage Weiss
Office Hours: Email or by appointment.

Contact: mmweiss@unm.edu
Website: http://cs.unm.edu/~kageweiss/TA/cs357.html -- SLIDES POSTED

* Nosignin quiz today, though we’ve already said several times this will be
on the exam, so up to you if you stay

 Today we are prepping for the exam by practicing let -> [ambda
conversions

e The EXAM is WEDNESDAY the 24th details on the next slide

EXAM 1

Come prepared to:

1.
2.

3.
4.

Download a skeleton file

Open your editor and
interpreter/compiler

Fill in the skeleton file with your answers

Upload your completed skeleton file

* Wednesday Feb. 24th

* Opens immediately after lecture:
Exam will be available at noon Wed.

* Once you start, you will have 2
hours to submit your exam file.

* A skeleton will be provided, USE IT.

e Exam closes after 24 hours:
Exam will no longer be available at
noon Thurs. the 25th

let, let™, letrec

let

Allows for scoped definitions

Does not allow for individual
definitions to reference each
other

Does not allow for individual
definitions to reference
themselves

(define fn
(let
(;; definitions
(1d1l defl)
(1d2 def2)

)

(;; usage
(lambda (x V)

)

(1d2 (idl x

)))

let, let™, letrec

let*

Allows for scoped definitions

Allows for individual definitions
to reference each other

Does not allow for individual
definitions to reference
themselves

(define fn
(let*
(;; definitions
(1d1l defl)

(1d2 (... def2 ..

)

(;; usage
(lambda (x vVy)

)

idl ..))

(1d2 (1d1l x

)))

let, let™, letrec

letrec

Allows for scoped definitions

Allows for individual definitions
to reference each other

Allows for individual definitions
to reference themselves

(define fn
(letrec

(;7

)

ey

)

definitions
(idl (... idl

usage
(lambda (x vVy)

))
(1d2 (.. def2 ..

defl ..))

(1d2 (idl x

)))

let, let™, letrec

let

Allows for scoped definitions

Does not allow for individual
definitions to reference each
other

Does not allow for individual
definitions to reference
themselves

(define fn
(let
(;; definitions
(1d1l defl)
(1d2 def2)

)

(;; usage
(lambda (x V)

)

(1d2 (idl x

)))

let, let*, letrec * Definitions are all at the same

level
let * They cannot reference each other,
. o 0 7)
* Allows for scoped definitions and SO are Slmply aSSIgHEd to
« Does not allow for individual values
definitions to reference each .
other What other notation do we have
+ Does not allow for individual for naming values for use in code?
definitions to ref . .
tfel:]'sé?\?; 0 TEIETENEE * (hint what is this lecture?)

* [t’s Lambda notation

let, let™, letrec

let*

Allows for scoped definitions

Allows for individual definitions
to reference each other

Does not allow for individual
definitions to reference
themselves

(define fn
(let*
(;; definitions
(1d1l defl)

(1d2 (... def2 ..

)

(;; usage
(lambda (x vVy)

)

idl ..))

(1d2 (1d1l x

)))

let, let™, letrec

let*

* Allows for scoped definitions

* Allows for individual definitions
to reference each other

 Does not allow for individual
definitions to reference
themselves

* Now we need to be able to refer
to values named higher up the
let*

* Not possible if they’re all the same
level... How can we solve this?

* Nested Lambda scopes!

let, let™, letrec

letrec

Allows for scoped definitions

Allows for individual definitions
to reference each other

Allows for individual definitions
to reference themselves

(define fn
(letrec

(;7

)

ey

)

definitions
(idl (... idl

usage
(lambda (x vVy)

))
(1d2 (.. def2 ..

defl ..))

(1d2 (idl x

)))

let, let™, letrec

letrec

Allows for scoped definitions

Allows for individual definitions
to reference each other

Allows for individual definitions
to reference themselves

* Now they have to be able to refer
to themselves

* I’ll leave this one to the book and
the internet, but it’s absolutely
good practice

* Try to avoid infinite recursion,
that’ll come later in Haskell

CS 357 - Lab 002

Go forth,
write your software.

Remember, these slides are available:

cs.unm.edu/~kageweiss/TA/cs357.html

