
Session 4
let -> lambda

Kage Weiss

CS 357 - Lab 002

CS 357 - Lab 002
TA: Kage Weiss
Office Hours: Email or by appointment.
Contact: mmweiss@unm.edu
Website: http://cs.unm.edu/~kageweiss/TA/cs357.html -- SLIDES POSTED

• No sign in quiz today, though we’ve already said several times this will be
on the exam, so up to you if you stay

• Today we are prepping for the exam by practicing let -> lambda
conversions

• The EXAM is WEDNESDAY the 24th, details on the next slide

EXAM 1

• Wednesday Feb. 24th

• Opens immediately after lecture:
Exam will be available at noon Wed.

• Once you start, you will have 2
hours to submit your exam file.

• A skeleton will be provided, USE IT.

• Exam closes after 24 hours:
Exam will no longer be available at
noon Thurs. the 25th

Come prepared to:

1. Download a skeleton file

2. Open your editor and
interpreter/compiler

3. Fill in the skeleton file with your answers

4. Upload your completed skeleton file

let, let*, letrec

let
• Allows for scoped definitions

• Does not allow for individual
definitions to reference each
other

• Does not allow for individual
definitions to reference
themselves

let, let*, letrec

let*
• Allows for scoped definitions

• Allows for individual definitions
to reference each other

• Does not allow for individual
definitions to reference
themselves

let, let*, letrec

letrec
• Allows for scoped definitions

• Allows for individual definitions
to reference each other

• Allows for individual definitions
to reference themselves

let, let*, letrec

let
• Allows for scoped definitions

• Does not allow for individual
definitions to reference each
other

• Does not allow for individual
definitions to reference
themselves

let, let*, letrec

let
• Allows for scoped definitions

• Does not allow for individual
definitions to reference each
other

• Does not allow for individual
definitions to reference
themselves

• Definitions are all at the same
level

• They cannot reference each other,
and so are simply “assigned” to
values

• What other notation do we have
for naming values for use in code?
• (hint what is this lecture?)

• It’s Lambda notation

let, let*, letrec

let*
• Allows for scoped definitions

• Allows for individual definitions
to reference each other

• Does not allow for individual
definitions to reference
themselves

let, let*, letrec

let*
• Allows for scoped definitions

• Allows for individual definitions
to reference each other

• Does not allow for individual
definitions to reference
themselves

• Now we need to be able to refer
to values named higher up the
let*

• Not possible if they’re all the same
level… How can we solve this?

• Nested Lambda scopes!

let, let*, letrec

letrec
• Allows for scoped definitions

• Allows for individual definitions
to reference each other

• Allows for individual definitions
to reference themselves

let, let*, letrec

letrec
• Allows for scoped definitions

• Allows for individual definitions
to reference each other

• Allows for individual definitions
to reference themselves

• Now they have to be able to refer
to themselves

• I’ll leave this one to the book and
the internet, but it’s absolutely
good practice

• Try to avoid infinite recursion,
that’ll come later in Haskell

Go forth,
write your software.

Remember, these slides are available:

cs.unm.edu/~kageweiss/TA/cs357.html

CS 357 - Lab 002

