CS 357 - Lab 002

Session 5
let-> [ambda (revisited)

reduce/fold(r)

Kage Weiss

CS 357 - Lab 002

TA: Kage Weiss
Office Hours: email, or by appointment.
Contact: mmweiss@unm.edu

Website: http://cs.unm.edu/~kageweiss/TA/cs357.html -- SLIDES POSTED
 Today we are working with the reduce pattern

* NOTE: Homework 2 are up, exam grades in progress

| know who cheated on the homework, and that is your loss, this

does mean that we do have to watch your exam answers more
closely though

let, let™, letrec

let

Allows for scoped definitions

Does not allow for individual
definitions to reference each
other

Does not allow for individual
definitions to reference
themselves

(define fn

(let
(;; definitions
(1d1l defl)
(1d2 def2)
)

(7, usage
(lambda (x V)
)

(1d2 (1dl x

)))

let, let™, letrec

let*

Allows for scoped definitions

Allows for individual definitions
to reference each other

Does not allow for individual
definitions to reference
themselves

(define fn
(let*
(;; definitions
(1d1l defl)

(1d2 (.. def2 ..

)

(;; usage
(lambda (x vVv)

)

idl ..))

(1d2 (1idl x

)))

let, let™, letrec

letrec

Allows for scoped definitions

Allows for individual definitions
to reference each other

Allows for individual definitions
to reference themselves

(define fn
(letrec

(;7

)

(77

)

definitions
(1dl (.. idl

usage
(lambda (x vy)

))
(1d2 (.. def2 ..

defl ..))

(1d2 (idl x

)))

let, let™, letrec

let

Allows for scoped definitions

Does not allow for individual
definitions to reference each
other

Does not allow for individual
definitions to reference
themselves

(let

;palirs of names to defintions
(1d]l defintionl)
(1d2 defintion?2)

; begin scope of idl, 1id2
(map (idl i1d2) '"())
; end scope of idl, -i1dZ2

let, let™, letrec

(let
(
;palirs -of names to defintions
(1d]l defintionl)
(1d2 defintion?)
)

(; begin scope of idl, idZ2

(map (idl id2) '())
) ; end scope of idl, 1idZ2

r

((Lambda
(idl id2) - ;names

(; ‘begin scope of idl, -id2
(map (idl id2) "))
) ; end scope of 1idl, -id2

) defintionl defintion?2?)

; application -of defintions to names

let, let™, letrec

;7 let* - as let (s)

(let
(
(tet? R ety
(i , , (1d?2 defintion?)
;pairs of names to defintions)
(1idl defintionl) (; begin scope- of idl, id2
(1d2 defintion?2?) (let
(1d3 (id1l id2)) (
) ;pairs of names to -defintions
(; begin scope of idl, id2, id3 | (1d3 (idl 1d2))
1 1
. - : : (; begin scope of id3
) ; end scope-of idl, - id2, id3

(map id3 '())
; end scope-of - id3

) ; end scope -of idl, id2

let, let™, letrec

(let*
(. . . ;7 let* as-lambda(s)
;pairs of names to defintions ((lambda
(idl defintionl) (1dl 1d?2) ;names . .
. . . (; begin scope of idl, id?2
(1d?2 defintion?2?) 1 (Alsriscls:
(1d3 (idl 1d2)) (id3) ;names o
(; ‘begin scope of - 1d3
) (map id3 ' ())
(; begin scope of idl, id2, id3)i end scope of 1d3 o
-) (idl id2)) ; application of defintions to names
(map id3 ! ())) ; end scope-of -idl, -id2
) - end scope of id1l id?2 id3) defintionl defintionZ?) ; application of defintions to names
r = B = ’ ’

let, let™, letrec

;75 let* as let (s)
(let
(
;pairs -of names to -defintions
(1dl defintionl)
(1d?2 defintion?)

(; begin scope of idl, 1id2
(let
(
;pairs of names to -defintions
(id3 (id1l id2))

(; begin scope of id3
(map id3 ' ())
) ; end scope of id3
)
) ; end scope of idl, id2

;7 let* as lambda(s)
((lambda
(idl id2?) ;names

(; begin scope of idl, id?2

((lambda
(1id3) ;names

(; begin scope of 1d3

(map id3

"0)

) ; end scope - -of id3
) (idl id2)) ; application of defintions to names
) ; end scope of idl, -id2

) defintionl defintion?2)

; application of defintions to names

fold(r)

fold

* Allows for abstract definitions
over lists

* Parameters:
e combiner function
e seed value
* list to be applied to

(define test ' ())
(define list-reduce
(Lambda args
(foldr ;;727?27
)

)
(equal? (apply list-reduce test) test)

CS 357 - Lab 002

Go forth,
write your software.

Remember, these slides are available:

cs.unm.edu/~kageweiss/TA/cs357.html

CS 357 - Lab 002

Basic info has been put in the provided file for you.
Running (C-x h, C-c C-r) should result in:

> #t

> > #t

> > #t

> > #t

Note: you do not have to define map to properly handle varargs lists for this, or to
handle functions that take varargs

e.g (map + test test test) =>'(3 69 12 15)

e.g (map-reduce + test test test) =>; map-reduce: arity mismatch; ...

BUT: (map +-reduce test test test) => (369 12 15)

