
A New Algorithm for Computing Comprehensive
Gröbner Systems ∗

Deepak Kapur
Dept. of Computer Science
University of New Mexico
Albuquerque, NM, USA
kapur@cs.unm.edu

Yao Sun
Key Laboratory of

Mathematics Mechanization
Academy of Mathematics and

Systems Science, CAS
Beijing, China

sunyao@amss.ac.cn

Dingkang Wang
Key Laboratory of

Mathematics Mechanization
Academy of Mathematics and

Systems Science, CAS
Beijing, China

dwang@mmrc.iss.ac.cn

ABSTRACT
A new algorithm for computing a comprehensive Gröbner
system of a parametric polynomial ideal over k[U][X] is pre-
sented. This algorithm generates fewer branches (segments)
compared to Suzuki and Sato’s algorithm as well as Nabeshi-
ma’s algorithm, resulting in considerable efficiency. As a re-
sult, the algorithm is able to compute comprehensive Gröb-
ner systems of parametric polynomial ideals arising from ap-
plications which have been beyond the reach of other well
known algorithms. The starting point of the new algorithm
is Weispfenning’s algorithm with a key insight by Suzuki
and Sato who proposed computing first a Gröbner basis of
an ideal over k[U, X] before performing any branches based
on parametric constraints. Based on Kalkbrener’s results
about stability and specialization of Gröbner basis of ideals,
the proposed algorithm exploits the result that along any
branch in a tree corresponding to a comprehensive Gröb-
ner system, it is only necessary to consider one polynomial
for each nondivisible leading power product in k(U)[X] with
the condition that the product of their leading coefficients
is not 0; other branches correspond to the cases where this
product is 0. In addition, for dealing with a disequality para-
metric constraint, a probabilistic check is employed for rad-
ical membership test of an ideal of parametric constraints.
This is in contrast to a general expensive check based on
Rabinovitch’s trick using a new variable as in Nabeshima’s
algorithm. The proposed algorithm has been implemented in
Magma and experimented with a number of examples from
different applications. Its performance (vis a vie number of
branches and execution timings) has been compared with
the Suzuki-Sato’s algorithm and Nabeshima’s speed-up al-
gorithm. The algorithm has been successfully used to solve
the famous P3P problem from computer vision.

∗The first author is supported by the National Science Foun-
dation award CCF-0729097 and the last two authors are sup-
ported by NSFC 10971217, 10771206 60821002/F02.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC 2010,25–28 July 2010, Munich, Germany.
Copyright 2010 ACM 978-1-4503-0150-3/10/0007 ...$10.00.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]

General Terms
Algorithms

Keywords
Gröbner basis, comprehensive Gröbner system, radical ideal
membership, probabilistic check.

1. INTRODUCTION
A new algorithm for computing a comprehensive Gröb-

ner system (CGS), as defined by Weispfenning [18] for para-
metric ideals (see also [7] where a related concept of para-
metric Gröbner system was introduced) is proposed. The
main advantage of the proposed algorithm is that it gener-
ates fewer branches (segments) compared to other related
algorithms; as a result, the algorithm is able to compute
comprehensive Gröbner systems for many problems from dif-
ferent application domains which could not be done previ-
ously. In the rest of this section, we provide some moti-
vations for comprehensive Gröbner systems and approaches
used for computing them.

Many engineering problems are parameterized and have
to be repeatedly solved for different values of parameters
[4]. A case in point is the problem of finding solutions of
a parameterized polynomial system. One is interested in
finding for what parameter values, the polynomial system
has a common solution; more specifically, if there are solu-
tions, one is also interested in finding out the structure of
the solution space (finitely many, infinitely many, in which
their dimension, etc.). One recent application of compre-
hensive Gröbner systems is in automated geometry theorem
proving [2] and automated geometry theorem discovery [11].
In the former, the goal is to consider all possible cases aris-
ing from an ambiguous problem formulation to determine
whether the conjecture is generic enough to be valid in all
cases, or certain cases have to be ruled out. In the latter,
one is interested in identifying different relationship among
geometric entities for different parameter values. Another
recent application is in the automatic generation of loop in-
variants and inductive assertions of programs operating on
numbers using quantifier elimination methods as proposed in
[8]. The main idea is to hypothesize invariants/assertions to
have a template like structure (such as a polynomial in which

the degree of every variable is ≤ 2, or a polynomial with a
predetermined support), in which the presence/coefficient of
a power product is parameterized. Verification conditions
from the program are then generated which are formulas in-
volving parameterized polynomial equations. The objective
is to generate conditions on parameters which make these
verification conditions to be valid. See [8] for more details.

Let k be a field, R be the polynomial ring k[U] in the
parameters U = {u1, · · · , um}, and R[X] be the polyno-
mial ring over the parameter ring R in the variables X =
{x1, · · · , xn} and X ∩U = ∅, i.e., X and U are disjoint sets.

Given a polynomial set F ⊂ R[X], we are interested in
identifying conditions on parameters U such that the solu-
tion structure of the specialized polynomial system F for the
values of U satisfying these conditions is different from other
parameter values. One way to do this is to compute a com-
prehensive Gröbner system as introduced by Weispfenning,
which is a finite set of triples of the form (Ei, Ni, Gi), where
Ei, Ni are finite sets of polynomials in k[U] and σ(Gi) is a
Gröbner basis of σ(F), for every specialization σ such that
for every ei ∈ Ei, ei vanishes and for at least one ni ∈ Ni, ni

does not vanish; we will say that in that case σ satisfies the
parametric constraints. Furthermore, for every specializa-
tion, there is at least one triple whose parametric constraints
satisfy it. We will call each triple as a branch (also called a
segment) in a comprehensive Gröbner system.

In 1992, Weispfenning [18] gave an algorithm for comput-
ing a comprehensive Gröbner system but it suffered from the
problem of too many branches, many of which leading to the
Gröbner basis {1}.1 Since then, many improvements have
been made to improve these algorithms to make them useful
for different applications; see [10, 14, 15, 9]. A major break-
through was an algorithm proposed by Suzuki and Sato [16]
(henceforth called the SS algorithm) in which they showed
how traditional implementations of Gröbner basis algorithms
for polynomial rings over a field could be exploited for com-
puting a comprehensive Gröbner basis system.

The main idea of the SS algorithm is to compute a Gröb-
ner basis G from the parametric ideal basis in k[U, X] using
the block ordering in which U ¿ X. In case G has poly-
nomials purely in the parameters U , there are branches cor-
responding to each such polynomial being not equal to 0 in
which case the Gröbner basis is {1} for the specialization.
For the branch when all these polynomials are 0, the Gröb-
ner basis is G minus these polynomials under the additional
condition that the leading coefficient of each polynomial is
nonzero. In addition, there are branches corresponding to
the cases when each of these leading coefficients is 0.

Nabeshima’s speed-up algorithm [12] improves upon the
SS algorithm by using the fact that (i) for every leading
power product, only one coefficient needs to be made nonzero,
and (ii) Rabinovitch’s trick of introducing a new variable
can be used to make that polynomial monic. Nabeshima
reported that these tricks led to fewer branches of the SS-
algorithm for most examples.

The algorithm proposed in this paper uses ideas from the
construction proposed by Weispfenning[19] for computing
a canonical comprehensive Gröbner basis of a parametric
ideal as the starting point. The proposed algorithm inte-
grates the ideas about essential and inessential specializa-
tions from Weispfenning’s construction with the key insight

1Kapur’s algorithm for parametric Gröbner bases suffered
from similar weaknesses.

in the Suzuki-Sato (SS) algorithm based on Kalkbrener’s
results about specialization of ideals and stability of their
Gröbner bases.

First, let G be the the reduced Gröbner basis of a paramet-
ric ideal 〈F 〉 ⊂ k[U, X] w.r.t. ≺X,U , and let Gr = G ∩ k[U],
the polynomials in parameters only in G. A noncompara-
ble set Gm, which is defined in section 4, is extracted from
G\Gr, consisting only of polynomials with nondivisible pow-
erproducts in X in G. Let h be the product of the leading
coefficients of the polynomials in Gm. (Gr, {h}, Gm) is one
of the branches of the comprehensive Gröbner system of F .
Based on case analysis over the leading coefficients of the
polynomials in Gm, it is possible to compute the remaining
branches of a comprehensive Gröbner system.

For computing a Gröbner basis for specializations along
many branches, it is useful to perform radical membership
check of a parametric constraint in an ideal of other para-
metric constraints for checking consistency. Instead of using
Rabinovitch’s trick of introducing a new variable for radi-
cal membership check as proposed in Nabeshima’s speed-up
version of the SS algorithm, we have developed a collec-
tion of useful heuristics for this check based on case anal-
ysis on whether the ideal whose radical membership is being
checked, is 0-dimensional or not. In case of a positive dimen-
sional ideal, a probabilistic check is employed after randomly
specializing the independent variables of the ideal. The gen-
eral check is performed as a last resort.

The paper is organized as follows. Section 2 gives no-
tations and definitions used. Section 3 briefly reviews the
Suzuki-Sato algorithm. Section 4 is the discussion of the key
insights needed for the proposed algorithm; the new algo-
rithm is presented there as well. Section 5 discusses heuris-
tics for checking radical membership of an ideal. Section
6 illustrates the proposed algorithm on a simple example.
Empirical data and comparison with the SS-algorithm and
Nabeshima’s speed-up algorithm are presented in Section 7.
Concluding remarks follow in Section 8.

2. NOTATIONS AND DEFINITIONS
Let k be a field, R be the polynomial ring k[U] in the

parameters U = {u1, · · · , um}, and R[X] be the polynomial
ring over R in the variables X = {x1, · · · , xn} and X∩U = ∅.

Let PP (X), PP (U) and PP (U, X) be the sets of power
products of X, U and U ∪X respectively. ≺X,U is an admis-
sible block term order on PP (U, X) such that U ¿ X. ≺X

and ≺U is the restriction of ≺X,U on PP (X) and PP (U),
respectively.

For a polynomial f ∈ R[X] = k[U][X], the leading power
product, leading coefficient and leading monomial of f w.r.t.
the order ≺X are denoted by lppX(f), lcX(f) and lmX(f)
respectively. Since f can also be regarded as an element of
k[U, X], in this case, the leading power product, leading co-
efficient and leading monomial of f w.r.t. the order ≺X,U are
denoted by lppX,U (f), lcX,U (f) and lmX,U (f) respectively.

Given a field L, a specialization of R is a homomorphism
σ : R −→ L. In this paper, we assume L to be the algebraic
closure of k, and consider the specializations induced by the
elements in Lm. That is, for ā ∈ Lm, the induced homo-
morphism σā is denoted as σā : f −→ f(ā), f ∈ R. Every
specialization σ : R −→ L extends canonically to a homo-
morphism σ : R[X] −→ L[X] by applying σ coefficient-wise.

Definition 2.1. Let F be a subset of R[X], A1, · · · , Al

be algebraically constructible subsets of Lm and G1, · · · , Gl

be subsets of R[X], and S be a subset of Lm such that S ⊆
A1 ∪ · · · ∪ Al. A finite set G = {(A1, G1), · · · , (Al, Gl)} is
called a comprehensive Gröbner system on S for F if σā(Gi)
is a Gröbner basis of the ideal 〈σā(F)〉 ⊂ L[X] for ā ∈ Ai

and i = 1, · · · , l. Each (Ai, Gi) is called a branch of G. If
S = Lm, G is called a comprehensive Gröbner system for F .

Definition 2.2. A comprehensive Gröbner system G =
{(A1, G1), · · · , (Al, Gl)} on S for F is said to be minimal if
for every i = 1, · · · , l, (i) for each g ∈ Gi, σā(lcX(g)) 6= 0
for any ā ∈ Ai, (ii) σā(Gi) is a minimal Gröbner basis of
the ideal 〈σā(F)〉 ⊂ L[X] for ā ∈ Ai, and (iii) Ai 6= ∅, and
furthermore, for each i, j = 1 · · · l, Ai ∩ Aj = ∅ whenever
i 6= j.

For an F ⊂ R = k[U], the variety defined by F in Lm

is denoted by V (F). In this paper, the constructible set Ai

always has the form: Ai = V (Ei) \ V (Ni) where Ei, Ni are
subsets of k[U]. If Ai = V (Ei) \ V (Ni) is empty, the branch
(Ai, Gi) is redundant.

Definition 2.3. For E, N ⊂ R = k[U], a pair (E, N)
is called a parametric constraint. A parametric constraint
(E, N) is said to be consistent if the set V (E) \ V (N) is not
empty. Otherwise, (E, N) is called inconsistent.

It is easy to see that the consistency of (E, N) can be
checked by ensuring that at least one f ∈ N is not in the
radical of 〈E〉.

3. THE SUZUKI-SATO ALGORITHM
In this section, we briefly review the key ideas of the

Suzuki-Sato algorithm [16]. The following two lemmas serve
as the basis of the SS algorithm. The first lemma is a corol-
lary of the Theorem 3.1 given by Kalkbrener in [6].

Lemma 3.1. Let G be a Gröbner basis of the ideal 〈F 〉 ⊂
k[U, X] w.r.t. the order ≺X,U . For any ā ∈ Lm, let G1 =
{g ∈ G|σā(lcX(g)) 6= 0}. Then σā(G1) = {σā(g)|g ∈ G1} is
a Gröbner bases of 〈σā(F)〉 in L[X] w.r.t. ≺X if and only if
σā(g) reduces to 0 modulo σā(G1) for every g ∈ G.

The next lemma, which follows from the first lemma, plays
the key role in the design of the SS algorithm.

Lemma 3.2. Let G be a Gröbner basis of the ideal 〈F 〉 ⊂
k[U, X] w.r.t. the order ≺X,U . If σā(lcX(g)) 6= 0 for each
g ∈ G \ (G ∩ R), then σā(G) is a Gröbner basis of 〈σā(F)〉
in L[X] w.r.t. ≺X for any ā ∈ V (G ∩R).

The main idea of the SS algorithm is to first compute a
reduced Gröbner basis, say G, of 〈F 〉 ⊂ k[U, X] w.r.t. ≺X,U ,
which is also a Gröbner basis of the ideal 〈F 〉 ⊂ k[U][X]
w.r.t. ≺X . Let {h1, · · · , hl} = {lcX(g) | g ∈ G \ R} ⊂
R. By the above lemma, (G ∩ k[U], V (h1) ∪ · · · ∪ V (hl), G)
forms a branch of the comprehensive Gröbner system for F .
That is, for any ā ∈ V (G ∩ k[U]) \ (V (h1) ∪ · · · ∪ V (hl)),
σā(G) is a Gröbner basis of 〈σā(F)〉 in L[X] w.r.t. ≺X . To
compute other branches corresponding to the specialization
ā ∈ V (h1)∪· · ·∪V (hl), Lemma 3.2 is used for each F ∪{hi},
the above steps are repeated. Since hi /∈ 〈F 〉, the algorithm
terminates in finitely many steps.

As stated earlier, this algorithm can be easily implemented
in most of the computer algebra systems already supporting

an efficient implementation of a Gröbner basis algorithm over
a polynomial ring over a field. It has very good performance
since it can take advantage of well-known fast implementa-
tions for computing Gröbner bases.

The algorithm however suffers from certain weaknesses.
The algorithm does not check whether V (G ∩ R) \ V (h) is
empty; as a result, many redundant/unnecessary branches
may be produced. In [16], an improved version of the al-
gorithm is reported which removes redundant branches. To
reduce the number of branches generated from the SS al-
gorithm, Nabeshima proposed a speed-up algorithm in [12].
The main idea of that algorithm is to exploit disequality
parametric constraints for simplification. For every lead-
ing power product in G \ R that is a nontrivial multiple of
any other leading product in it, a branch is generated by
asserting its leading coefficient hi to be nonzero. The cor-
responding polynomial is made monic using Rabinovitch’s
trick of introducing a new variable to handle the disequal-
ity hi 6= 0, and the Gröbner basis computation is performed
again, simplifying polynomials whose leading power prod-
ucts are multiples, including their parametric coefficients.

4. THE PROPOSED ALGORITHM
We present below a new algorithm for computing a com-

prehensive Gröbner system which avoids unnecessary branches
in the SS algorithm. This is done using the radical ideal
membership check for parametric constraints asserted to be
nonzero. Heuristics are employed to do this check; when
these heuristics fail, as exhibited by Table 2 in Section 7
on experimental results, only then the general check is per-
formed by introducing a new variable, since this check is very
inefficient because of the extra variable. Further, all para-
metric constraints leading to the specialized Gröbner basis
being 1 are output as a single branch, leading to a compact-
ified output.

Another major improvement of the proposed algorithm is
that along any other branch for which the specialized Gröb-
ner basis is different from 1, exactly one polynomial from
G \ R per minimal leading power product is selected. This
is based on a generalization of Kalkbrener’s Theorem 3.1.
All these results are integrated into the proposed algorithm,
resulting in considerable efficiency over the SS algorithm
and Nabeshima’s improved algorithm by avoiding expensive
Gröbner basis computations along most branches.

The proposed algorithm is based on the following theorem.
The definitions below are used in the theorem.

Definition 4.1. Given a set G of polynomials which are
a subset of k[U, X] and an admissible block order with U ¿
X, let Noncomparable(G) be a subset, called F , of G such
that (i) for every polynomial g ∈ G, there is some polynomial
f ∈ F such that lppX(g) is a multiple of lppX(f) and (ii) for
any two distinct f1, f2 ∈ F , neither lppX(f1) is a multiple
of lppX(f2) nor lppX(f2) is a multiple of lppX(f1).

It is easy to see that 〈lppX(Noncomparable(G)〉 = 〈lppX(G)〉.
The following simple example shows that Noncomparable(G)
may not be unique.

Let G = {ax2 − y, ay2 − 1, ax− 1, (a + 1)x− y, (a + 1)y−
a} ⊂ Q[a, x, y], with the lexicographic order on terms with
a < y < x. Then F = {ax− 1, (a + 1)y− a} and F ′ = {(a +
1)x−y, (a+1)y−a} are both Noncomparable(G). It is easy
to verify 〈lppX(F)〉 = 〈lppX(F ′)〉 = 〈lppX(G)〉 = 〈x, y〉.

Definition 4.2. Given F ⊂ k[U, X] and p ∈ k[U, X], p
is said to be divisible by F if there exists an f ∈ F such that
some power product in X of p is divisible by lppX(f).

Theorem 4.3. Let G be a Gröbner basis of the ideal 〈F 〉 ⊂
k[U, X] w.r.t. an admissible block order with U ¿ X. Let
Gr = G ∩ k[U] and Gm = Noncomparable(G \Gr). Denote
h =

Q
g∈Gm

lcX(g) ∈ k[U]. If σ is a specialization from k[U]

to L such that σ(g) = 0 for g ∈ Gr and σ(h) 6= 0, then
σ(Gm) is a Gröbner basis of 〈σ(F)〉 in L[X] w.r.t. ≺X .

Proof. Consider any p ∈ G \ (Gr ∪ Gm); p is divisible
by Gm. p can be transformed by multiplying it with the
leading coefficients of polynomials in Gm and then reduced
using Gm, and then this process can be repeated on the re-
sult. Let r be the remainder of p w.r.t. Gm in X obtained
by multiplying p by the leading coefficient of g ∈ Gm such
that r does not have any power product that is a multiple
of any of the leading power products of polynomials in Gm

(r could be different depending upon the order in which dif-
ferent polynomials in Gm are used to transform p). Thus,

(lcX(g1))
α1 · · · (lcX(gs))

αsp = q1g1 + · · ·+ qsgs + r, (1)

where gi ∈ Gm, qi ∈ k[U, X] for i = 1, · · · , s, r ∈ k[U, X]
such that no power product of r in X is a multiple of any of
the leading power products of Gm. Since p ∈ 〈F 〉, r ∈ 〈F 〉.
Since G is a Gröbner basis of 〈F 〉 in k[U, X], r reduces to 0
by G. However, r is reduced (in normal form) w.r.t Gm in X
(and hence reduced w.r.t G\Gr in X also, by the definition of
Gm); so r reduces to 0 by Gr only and further no new power
products in X can be introduced during the simplification
of r by Gr. So r ∈ 〈Gr〉 ⊂ k[U, X]. Additionally, lppX(p) º
lppX(qigi) since lcX(gi) ∈ k[U].

Let c = (lcX(g1))
α1 · · · (lcX(gs))

αs . Apply σ to the both
sides of (1), then we have:

σ(c)σ(p) = σ(q1)σ(g1) + · · ·+ σ(qs)σ(gs) + σ(r).

Since σ(h) 6= 0 by assumption, σ(lcX(g)) 6= 0 for g ∈ Gm;
σ(g) = 0 for g ∈ Gr which implies that σ(r) = 0. Notice
0 6= σ(c) ∈ L and lppX(p) º lppX(qigi), using the following
lemma, σ(Gm) is a Gröbner basis of 〈σ(G)〉 = 〈σ(F)〉.

In the above theorem, if Gr = ∅, then Gm is actually a
Gröbner basis of the ideal 〈F 〉 ⊂ k(U)[X].

We assume that the reader is familiar with the concept of
t-representations which is often used to determine if a set of
polynomials is a Gröbner basis; for details, consult [1].

Lemma 4.4. Let G be a Gröbner basis of 〈G〉 ⊂ k[U, X]
w.r.t. an admissible block order with U ¿ X. Let G1 =
{g1, · · · , gs} ⊂ G and σ be a specialization from k[U] to L
such that σ(lcX(gi)) 6= 0 for i = 1, · · · , s. If for each p ∈
G \ G1, there exist p1, · · · , ps ∈ L[X] such that: σ(p) =
p1σ(g1) + · · · + psσ(gs), where lppX(p) º lppX(piσ(gi)) for
i = 1, · · · , s, then σ(G1) is a Gröbner basis of 〈σ(G)〉 in L[X]
w.r.t. ≺X .

Proof. By the hypothesis, it is easy to check σ(G) ⊂
〈σ(G1)〉 and hence σ(G1) is a basis of 〈σ(G)〉. So it remains
to show σ(G1) is a Gröbner basis.

For each gj , gk ∈ G1, we compute the s-polynomial of
σ(gj) and σ(gk) in L[X]. Since σ(lcX(gj)) 6= 0 and σ(lcX(gk)) 6=
0, we have

spoly(σ(gj), σ(gk)) = cσ(spolyX(gj , gk)), (2)

where c is a nonzero constant in L and spolyX(gj , gk) ∈
k[U][X] is the s-polynomial of gj and gk w.r.t. X.

Assume G \ G1 = {gs+1, · · · , gl}. Since G is a Gröb-
ner basis of 〈G〉 ⊂ k[U, X] and spolyX(gj , gk) ∈ 〈G〉 ⊂ k[U, X],
there exist h1, · · · , hl ∈ k[U, X] such that

spolyX(gj , gk) = h1g1 + · · ·+ hlgl,

where lcm(lppX(gj), lppX(gk)) Â lppX(higi) for i = 1, · · · , l.
Substitute back to (2), then obtain:

spoly(σ(gj), σ(gk)) = c(σ(h1)σ(g1) + · · ·+ σ(hl)σ(gl)), (3)

where lcm(lppX(σ(gj)), lppX(σ(gk))) = lcm(lppX(gj), lppX(gk))
Â lppX(higi) º lppX(σ(hi))lppX(gi) for i = 1, · · · , l. The
next step is to use the hypothesis that for each p ∈ G \G1,
there exist p1, · · · , ps ∈ L[X] such that: σ(p) = p1σ(g1) +
· · ·+psσ(gs), where lppX(p) º lppX(piσ(gi)) for i = 1, · · · , s.
Substitute these representations back to (3), we get

spoly(σ(gj), σ(gk)) = p′1σ(g1) + · · ·+ p′sσ(gs), (4)

where p′1, · · · , p′s ∈ L[X] and lcm(lppX(σ(gj)), lppX(σ(gk))) Â
lppX(p′iσ(gi)) for i = 1, · · · , s. In fact, (4) is a t-representation
of spoly(σ(gj), σ(gk)) with t ≺ lcm(lppX(σ(gj)), lppX(σ(gk))).
Therefore, by the theory of t-representations, σ(G1) is a
Gröbner basis. The lemma is proved.

4.1 Algorithm
We are now ready to give the algorithm for computing

a minimal comprehensive Gröbner system. Its proof of cor-
rectness uses Theorem 4.3. Its termination can be proved in
a way similar to the SS algorithm presented in [16].

In order to keep the presentation simple so that the cor-
rectness and termination of the algorithm are evident, we
have deliberately avoided tricks and optimizations such as
factoring h below. All the tricks suggested in the SS algo-
rithm can be used here as well. In fact, our implementation
incorporates fully these optimizations.
Algorithm PGBMain
Input: (E, N, F): E, N , finite subsets of k[U]; F , a finite

subset of k[U, X].
Output: a finite set of 3-tuples (Ei, Ni, Gi) such that

{(V (Ei) \ V (Ni), Gi)} constitute a minimal compre-
hensive Gröbner system of F on V (E) \ V (N).

begin
if V (E) \ V (N) = ∅ then return ∅ end if
G← ReducedGröbnerBasis(F ∪ E, ≺X,U)
if 1 ∈ G then return {(E, N, {1})} end if
Gr←G ∩ k[U] # V (Gr) ⊂ V (E)
if (V (E) \ V (Gr)) \ V (N) = ∅

then PGB←∅
else PGB←{(E, Gr ∧N, {1})}

end if
if V (Gr) \ V (N) = ∅

then return PGB;
else Gm← Noncomparable(G \Gr)

{h1, · · · , hs}←{lcX(g) : g ∈ Gm}
h←lcm{h1, · · · , hs};
if (V (Gr) \ V (N)) \ V (h) 6= ∅ then

PGB←PGB ∪ {(Gr, N ∧ {h}, Gm)}
end if
PGB←PGB ∪ PGBMain(Gr ∪ {h1}, N, G \Gr)∪

PGBMain(Gr ∪ {h2}, N ∧ {h1}, G \Gr)∪
PGBMain(Gr ∪ {h3}, N ∧ {h1h2}, G \Gr)∪
· · · · · ·

PGBMain(Gr ∪ {hs}, N ∧ {h1 · · ·hs−1}, G \Gr)
return PGB

end if
end

In the above algorithm, A ∧ B = {fg|f ∈ A, g ∈ B}.
Checking whether V (A)\V (B) is empty, is equivalent to the
inconsistency of the parametric constraint (A, B). Similarly
checking whether (V (A) \ V (B)) \ V (C) = V (A) \ (V (B) ∪
V (C)) is empty, is equivalent to checking whether (A, B ∧
C) is inconsistent. The next section focuses on how the
consistency check of a parametric constraint is performed.

As should be evident, a branch is never generated for
the case when (Ei, Ni) is inconsistent. Further, the con-
structible sets are disjoint by construction. More impor-
tantly, branching is done only based on the leading coeffi-
cients of Gm = Noncomparable(G\Gr), instead of the whole
G\Gr. As a result, the number of branches generated by the
above algorithm is strictly smaller than that of the branches
in the SS algorithm. In addition, efficient heuristics are em-
ployed to perform the consistency check; as a last resort
only when other heuristics do not work, we introduce a new
variable to do the consistency check. In fact, this general
check is rarely performed as confirmed by experimental data
discussed in Section 7. Because of these optimizations, the
proposed algorithm has a much better performance than the
SS algorithm as well as Nabeshima’s speed-up algorithm, as
experimentally shown in Section 7.

As shown in [16], a comprehensive Gröbner basis can be
computed by adapting the above algorithm for computing
a comprehensive Gröbner system by using a new variable.
The same technique can be applied to the above algorithm
as well for computing a comprehensive Gröbner basis.

5. CONSISTENCY OF PARAMETRIC CON-
STRAINTS

As should be evident from the above description of the
algorithm, there are two main computational steps which are
being repeatedly performed: (i) Gröbner basis computations,
and (ii) checking consistency of parametric constraints. As
stated above, a parametric constraint (E, N), E, N ⊂ k[U]
is inconsistent if and only if for each f ∈ N , f is in the
radical ideal of 〈E〉. This section discusses heuristics we have
integrated into the implementation of the algorithm for the
check whether (E, {f}) is inconsistent. In this section, we
always assume that E itself is a Gröbner basis.

A general method to check whether f ∈
p
〈E〉 is to intro-

duce a new variable y and compute the Gröbner basis Gy of
〈E ∪ {fy− 1}〉 ⊂ k[U, y] for any admissible monomial order.

If Gy = {1}, then f ∈
p
〈E〉 and (E, {f}) is inconsistent.

Otherwise, (E, {f}) is consistent. However, this method can
be, in general, very expensive partly because of introduction
of a new variable. Consequently, this method is used only
as a last resort when other heuristics fail.

The first heuristic is to check whether f is in the ideal
generated by E; since in the algorithm, a Gröbner basis of
E is already available, the normal form of f is computed; if
it is 0, then f is in the ideal of E implying that (E, {f}) is
inconsistent. This heuristic turns out to be quite effective as
shown from experimental results in Section 7.

Otherwise, different heuristics are used depending upon
whether E is 0-dimensional or not. In case E is 0-dimensional,
the method discussed in the next subsection for the radical

membership check is complete, i.e., it decides whether f is
in the radical ideal of E or not. In case E is of positive
dimension, then roughly, independent variables are assigned
randomly, hopefully, resulting in a 0-dimensional ideal, for
which the radical membership check can be done. However,
this heuristic is not complete. If this heuristic cannot deter-
mine whether (E, {f}) is inconsistent, then another heuristic

is employed that checks whether f2k

is in the ideal of E for
a suitably small value of k.

5.1 Ideal(E) is 0-dimensional
For the case when E is 0-dimensional, linear algebra tech-

niques can be used to check the radical membership in E.
The main idea is to compute the characteristic polynomial
of the linear map associated with f , which can be efficiently
done using a Gröbner basis of E.

Let A = k[U]/〈E〉. Consider the map induced by f ∈ k[U]:
mf : A −→ A, [g] 7−→ [fg], where g ∈ k[U] and [g] is its
equivalence class in A.

See [3, 17] for the proofs of the following lemmas.

Lemma 5.1. Assume that the map mf is defined as above.
Then,
(1) mf is the zero map exactly when f ∈ 〈E〉.
(2) For a univariate polynomial q over k, mq(f) = q(mf).
(3) pf (f) ∈ 〈E〉, where pf is the characteristic polynomial
of mf .

Lemma 5.2. Let pf ∈ k[λ] be the characteristic polyno-
mial of mf . Then for α ∈ L, the following statements are
equivalent.
(1) α is a root of the equation pf (λ) = 0.
(2) α is a value of the function f on V (E).

Using these lemmas, we have:

Proposition 5.3. Let pf ∈ k[λ] be the characteristic poly-
nomial of mf and d = deg(pf).

(1) pf = λd if and only if f ∈
p
〈E〉.

(2) pf = q and λ - q if and only if there exists g ∈ k[U] such
that gf ≡ 1 mod 〈E〉.
(3) pf = λd′q, where 0 < d′ < d and λ - q if and only if

f /∈
p
〈E〉 and there exists g /∈

p
〈E〉 such that fg ∈

p
〈E〉.

Proof. (1) ⇒) If pf = λd, then pf (f) = fd ∈ 〈E〉 by

lemma 5.1, which shows f ∈
p
〈E〉. ⇐) Since f ∈

p
〈E〉, 0

is the sole value of the function f on V (E). By lemma 5.2,
pf = λd.

(2) ⇒) If pf = q and λ - q, then there exist a, b ∈ k[λ]
such that aλ + bpf = 1. Substitute λ by f . Then obtain
a(f)f + b(f)pf (f) = 1. pf (f) ∈ 〈E〉 shows a(f)f ≡ 1 mod
〈E〉. ⇐) If there exists g ∈ k[U] such that gf ≡ 1 mod 〈E〉,
then all the values of the function f on V (f) are not 0, which
means the roots of pf (λ) = 0 are not 0 as well by the above
lemma. So λ - pf .

(3) ⇒) If pf = λd′q, where 0 < d′ < d and λ - q, then we

have f /∈
p
〈E〉 by (1). By lemma 5.1, pf (f) = fd′q(f) ∈

〈E〉, and hence, fq(f) ∈
p
〈E〉. It remains to show q(f) /∈p

〈E〉. We prove this by contradict. If q(f) ∈
p
〈E〉, then

there exists an integer c > 0 such that qc(f) ∈ 〈E〉, which
implies mqc(f) = qc(mf) = 0. Thus, qc is a multiple of
the minimal polynomial of mf and hence all the irreducible
factors of pf should be factors of qc. But this contradicts

with λ - q. ⇐) Since f, g /∈
p
〈E〉 and fg ∈

p
〈E〉, both

f and g are nonzero functions on V (E), but fg is a zero
function on V (E). This implies that f vanishes on some but

not all points of V (E). By lemma 5.2, pf = λd′q, where
0 < d′ < d and λ - q.

For the case (2) of proposition 5.3, clearly V (E) \ V (f) =
V (E) holds. For the case (3), it is easy to check V (E) \
V (f) = V (E ∪ {q(f)}) by Lemma 5.2. So the parametric
constraint (E, {f}) is equivalent to (E ∪ {q(f)}, {1}), which
converts the disequality constraint into equality constraint.
Both (2) and (3) will speed up the implementation of the
new algorithm.

If E is zero-dimensional, then k[U]/〈E〉 is a finite vector
space and the characteristic polynomial of mf can be gener-
ated in [3]. Since in our algorithm, E itself is a Gröbner basis,
the complexity of doing radical membership check is of poly-
nomial time, which is much more efficient than the general
method based on Rabinovitch’s trick.

The following algorithm is based on the above theory:
Algorithm Zero-DimCheck
Input: (E, {f}): E is the Gröbner basis of the zero dimen-

sional ideal 〈E〉; f , a polynomial in k[U].
Output: true (consistent) or false (inconsistent).
begin
pf← characteristic polynomial of mf defined on k[U]/〈E〉
d←deg(pf)
if pf 6= λd then return true else return false end if
end

5.2 Ideal(E) is of positive dimension
We discuss two heuristics, CCheck and ICheck, for radical

membership check; neither one is complete.
A subset V of U is independent modulo the ideal I if k[V]∩

I = {0}. An independent subset of U is maximal if there is
no independent subset containing V properly.

The following proposition is well-known.

Proposition 5.4. Let I ⊂ k[U] be an ideal and ≺U be
a graded order on k[U]. If k[V] ∩ lppU (I) = ∅, then k[V] ∩
I = ∅. Furthermore, the maximal independent subset modulo
lppU (I) is also a maximal independent subset modulo I.

A maximal independent subset modulo the monomial ideal
of 〈E〉 can be easily computed; the above proposition thus
provides a method to compute the maximal independent
subset modulo an ideal.

The following theorem is obvious, so the proof is omitted.

Theorem 5.5. Let 〈E〉 ⊂ k[U] with positive dimension,
V be a maximal independent subset modulo 〈E〉, and ᾱ be
an element in kl where l is the cardinality of V . If f |V =ᾱ /∈p
〈E|V =ᾱ〉, then f /∈

p
〈E〉 i.e. (E, {f}) is consistent.

Since V is a maximal independent subset modulo 〈E〉,
the ideal 〈E〉 becomes a zero dimensional ideal in k[U \ V]
with probability 1 by setting V to a value in kl randomly
when the characteristic of k is 0. In this case, we can use
the technique provided in the last subsection to check if
f |V =ᾱ /∈

p
〈E|V =ᾱ〉. If (E|V =ᾱ, f |V =ᾱ) is consistent, then

(E, {f}) is consistent. This gives an algorithm for checking

the consistence of (E, {f}). When f /∈
p
〈E〉, this algorithm

can detect it efficiently.
Algorithm CCheck
Input: (E, {f}): E is the Gröbner basis of 〈E〉 w.r.t. a

graded monomial order ≺U ; f , a polynomial in k[U].
Output: true (consistent) or false .
begin
V← independent variables of 〈lppU (E)〉
ᾱ← a random element in kl

spE← GröbnerBasis(E|V =ᾱ,≺U)
if 〈spE〉 is zero dimension in k[U \ V] then

if Zero-DimCheck(spE, f |V =ᾱ) =true then
return true

end if
end if ;
return false
end

In the above algorithm, we only need to compute the
Gröbner basis of 〈EV =ᾱ〉 which is usually zero dimensional
and has fewer variables. So CCheck is more efficient than the
general method which needs to compute the Gröbner basis
of 〈E ∪ {fy − 1}〉 whose dimension is positive.

If CCheck(E, {f}) returns true, then (E, {f}) is consis-
tent. However, if CCheck(E, {f}) returns false, it need not
be the case that (E, {f}) is inconsistent.

The following simple heuristic ICheck checks whether f2k

is in the ideal generated by E by repeatedly squaring the

normal form of f2i

in an efficient way.
Algorithm ICheck
Input: (E, {f}): E is the Gröbner basis of 〈E〉 w.r.t. ≺U ;

f , a polynomial in k[U].
Output: true (inconsistent) or false .
begin
loops← an integer given in advance
p←f
for i from 1 to loops do

{m1, · · · , ml}← monomials of p
s←0
for m ∈ {m1, · · · , ml} do

s←s+NormalForm(p ·m, E)
end for
if s = 0 then return true end if
p←s

end for
return false
end

Clearly, if ICheck(E, {f}) returns true, then (E, {f}) is
inconsistent.

5.3 Putting All Together
The above discussed checks are done in the following or-

der for checking the consistency of a parametric constraint
(E, {f}). First check whether f is in the ideal of E; this
check can be easily done by computing the normal form of f
using a Gröbner basis of E which is readily available. If yes,
then the constraint is inconsistent. If no, then depending
upon the dimension of the ideal of E, either Zero-DimCheck
or CCheck is performed. If E is 0-dimensional, then the
check is complete in that it decides whether the constraint
is consistent or not. If E is of positive dimension then if
CCheck returns true, the constraint is consistent; otherwise,
ICheck is performed. If ICheck succeeds, then the constraint
is inconsistent. Finally, the general check is performed by
computing a Gröbner basis of E ∪ {fy − 1 = 0}, where y is
a new variable different from U .

6. A SIMPLE EXAMPLE
The proposed algorithm is illustrated on an example.

Example 6.1. Let F = {ax − b, by − a, cx2 − y, cy2 −
x} ⊂ Q[a, b, c][x, y], with the block order ≺X,U , {a, b, c} ¿
{x, y}; within each block, ≺X and ≺U are graded reverse
lexicographic orders with y < x and c < b < a, respectively.

(1) We have E = ∅, N = {1}: the parametric constraint
(E, N) is consistent. The reduced Gröbner basis of 〈F 〉 w.r.t.
≺X,U is G = {x3 − y3, cx2 − y, ay2 − bc, cy2 − x, ax− b, bx−
acy, a2y−b2c, by−a, a6−b6, a3c−b3, b3c−a3, ac2−a, bc2−b};
Gr = G∩Q[a, b, c] = {a6−b6, a3c−b3, b3c−a3, ac2−a, bc2−b}.
It is easy to see that (E, Gr) and (E, Gr ∧N) are consistent.
This leads to the trivial branch of the comprehensive Gröb-
ner system for F : (∅, Gr, {1}).

(2) G\Gr = {x3−y3, cx2−y, ay2−bc, cy2−x, ax−b, bx−
acy, a2y − b2c, by − a}; Gm = Noncomparable(G \ Gr) =
{bx−acy, by−a}. Further, h = lcm{lcX(bx−acy), lcX(by−
a)} = b. This results in another branch of the comprehensive
Gröbner system for F corresponding to the case when all
polynomials in Gr are 0 and b 6= 0: (Gr, {b}, Gm). Notice
that (Gr, {b}) is consistent, which is detected using the Zero-
DimCheck.

(3) The next case to consider is when b = 0. The Gröb-
ner basis of Gr ∪ {b} is {a3, ac2 − a, b}. This is the input
E′ in the recursive call of PGBMain, with the other input
being N ′ = {1} and F ′ = G \ Gr. It is easy to see that
(E′, N ′) is consistent. The reduced Gröbner basis for F ′∪E′

is: G′ = {x3−y3, cx2−y, cy2−x, a, b} of which G′r = {a, b}.
It is easy to check the parametric constraint (E′, G′r) is in-
consistent: the check for a being in the radical ideal of E′ is
confirmed by Icheck; b is in the ideal of E′. So no branch is
generated from this case.

G′m = Noncomparable(G′ \G′r) = {cx2 − y, cy2 − x} and
h′ = lcm{lcX(cx2 − y), lcX(cy2 − x)} = c. This results in
another branch: (G′r, {c}, G′m).

(4) For the case when h′ = c = 0, E′′ = {a, b, c} is the
Gröbner basis of G′r ∪ {c} and N ′′ = {1}, F ′′ = {x3 −
y3, cx2 − y, cy2 − x}. The Gröbner basis for F ′′ ∪ E′′ is
G′′ = {x, y, a, b, c}. Then G′′r = {a, b, c} and G′′m = {x, y}.
Since h′′ = lcm{lcX(x), lcX(y)} = 1, this gives another
branch: (G′′r , {1}, G′′m). As h′′ = 1, no other branches are
created and the algorithm terminates.

The result is a comprehensive Gröbner system for F :

8
>>>>>><
>>>>>>:

{1}, if a6 − b6 6= 0 or a3c− b3 6= 0 or b3c
−a3 6= 0 or ac2 − a 6= 0 or bc2 − b 6= 0,

{bx− acy, by − a}, if a6 − b6 = a3c− b3 = b3c− a3

= ac2 − a = bc2 − b = 0 and b 6= 0,
{cx2 − y, cy2 − x} if a = b = 0 and c 6= 0,
{x, y} if a = b = c = 0.

7. IMPLEMENTATION AND COMPARATIVE
PERFORMANCE

The proposed algorithm is implemented in the system
Magma and has been experimented with a number of exam-
ples from different application domains including geometry
theorem proving and computer vision. Since the algorithm
is able to avoid most unnecessary branches and computa-
tions, it is efficient and can compute comprehensive Gröb-
ner systems for most problems in a few seconds. In par-
ticular, we have been successful in completely solving the

famous P3P problem for pose-estimation from computer vi-
sion, which is investigated by Gao et al [5] using the charac-
teristic set method; see the polynomial system below.

We have compared our implementation with the imple-
mentations of Suzuki and Sato’s algorithm as well as Nabeshi-
ma’s speed-up version as available in the PGB (ver20090915)
package implemented in Asir/Risa system. We have picked
examples F3, F5, F6 and F8 from [12] and the examples
E4 and E5 from [11]; many other examples can be solved
in essentially no time. To get more complex examples, we
modified problems from the F5, F6 and F8 in [12] slightly,
and they are labeled as S1, S2 and S3.

The polynomials for S1, S2, S3 and P3P are given below:
S1 = {ax2y+bx2+y3, ax2y+bxy+cy2, ay3+bx2y+cxy}, X =
{x, y}, U = {a, b, c};
S2 = {x4 + abx3 + bcx2 + cdx + da, 4x3 + 3abx2 + 2bcx +
cd}, X = {x}, U = {a, b, c, d};
S3 = {ax2 +byz +c, cw2 +by+z, (x−z)2 +(y−w)2, 2dxw−
2byz}, X = {x, y, z, w}, U = {a, b, c, d};
P3P = {(1− a)y2 − ax2 − py + arxy + 1, (1− b)x2 − by2 −
qx + brxy + 1}, X = {x, y}, U = {p, q, r, a, b}.

Table 1: Timings
Example Algorithm Sys. Br. time(sec.)

pgbM Magma 6 0.016
F3 Suzuki-Sato Risa/Asir 31 0.5148

Nabeshima Risa/Asir 22 0.8268
pgbM Magma 8 0.016

F5 Suzuki-Sato Risa/Asir 11 0.0156
Nabeshima Risa/Asir 54 16.04

pgbM Magma 8 0.078
F6 Suzuki-Sato Risa/Asir 875 35.97

Nabeshima Risa/Asir 17 0.078
pgbM Magma 18 0.140

F8 Suzuki-Sato Risa/Asir − > 1h
Nabeshima Risa/Asir − > 1h

pgbM Magma 9 0.016
E4 Suzuki-Sato Risa/Asir 15 0.0468

Nabeshima Risa/Asir 24 0.7644
pgbM Magma 38 0.546

E5 Suzuki-Sato Risa/Asir 98 24.09
Nabeshima Risa/Asir 102 12.53

pgbM Magma 29 3.167
S1 Suzuki-Sato Risa/Asir − > 1h

Nabeshima Risa/Asir − > 1h
pgbM Magma 15 1.420

S2 Suzuki-Sato Risa/Asir − > 1h
Nabeshima Risa/Asir 49 5.413

pgbM Magma 30 3.182
S3 Suzuki-Sato Risa/Asir − > 1h

Nabeshima Risa/Asir − > 39m Error
pgbM Magma 42 6.256

P3P Suzuki-Sato Risa/Asir − > 1h
Nabeshima Risa/Asir − > 28m Error

In the above table, the algorithm pgbM is the proposed al-
gorithm; the algorithm cgs1 stands for the Suzuki-Sato’s al-
gorithm, and the algorithm cgs con1 stands for the Nabeshi-
ma’s algorithm from Nabeshima’s PGB package [13] were
used. All the timings in the table are obtained on Core2
Duo3.0 with 4GB Memory running WinVista64.

As is evident from Table 1, the proposed algorithm gen-

erates fewer branches. This is why our algorithm has better
performance than the others.

An efficient check for the consistency of parametric con-
straints is critical for the performance of the proposed al-
gorithm. The role of various checks discussed in Section 5
has been investigated in detail. This is reported in Table 2
below, where Tri, 0-dim, C, I, and Gen stand, respectively,
for the trivial check, Zero-DimCheck, the CCheck, ICheck,
and the general method.

Table 2: Info about various consistence checks
Exp Tri. 0-dim pos-dim Gen. Total

C. I.
F3 Num 10 2 3 0 0 15

≈ % 67% 13% 20% 0% 0%
F5 Num 22 0 10 0 0 32

≈ % 69% 0% 31% 0% 0%
F6 Num 22 0 7 8 1 38

≈ % 58% 0% 18% 21% 3%
F8 Num 47 0 29 0 0 76

≈ % 62% 0% 38% 0% 0%
E4 Num 10 7 3 0 0 20

≈ % 50% 35% 15% 0% 0%
E5 Num 67 10 55 0 6 138

≈ % 49% 7% 40% 0% 4%
S1 Num 115 21 36 0 11 183

≈ % 63% 11% 20% 0% 6%
S2 Num 36 0 27 6 0 69

≈ % 52% 0% 39% 9% 0%
S3 Num 110 9 45 1 0 165

≈ % 67% 5% 27% 1% 0%
P3P Num 144 4 63 3 13 227

≈ % 63% 2% 28% 1% 6%

About 61% of the consistency check is settled by the trivial
check that a polynomial is in the ideal; about the remain-
ing 36% of the consistency check is resolved by the Zero-
DimCheck, CCheck and ICheck. The general method for
checking consistency using Rabinovitch’s trick of introduc-
ing a new variable is rarely used (almost 3%). We believe
that this is one of the main reasons why our proposed algo-
rithm has a vastly improved performance over Nabeshima’s
speed-up algorithm which relies on using the general check
for the consistency of the parametric constraints.

8. CONCLUDING REMARKS
A new algorithm for computing a comprehensive Gröb-

ner system has been proposed using ideas from Kalkbrener,
Weispfenning, Suzuki and Sato. Preliminary experiments
suggest that the algorithm is far superior in practice in com-
parison to Suzuki and Sato’s algorithm as well as Nabeshima’s
speed-up version vis a vis the number of branches generated
as well as execution speed. Particularly, we are able to do
examples such as the famous P3P problem from computer
vision, which have been found extremely difficult to solve
using most symbolic computation algorithms.

We believe that the proposed algorithm can be further im-
proved. We are exploring conditions under which the radical
membership ideal check is unwarranted and additional ideas
to make this check more efficient whenever it is needed. We
also plan to compare our implementation with other imple-
mentations of comprehensive Gröbner system algorithms.

9. REFERENCES
[1] Becker, T. and Weispfenning, V. (1993). Gröbner

Bases, A Computational Approach to Commutative
Algebra. Springer-Verlag. ISBN 0-387-97971-9.

[2] Chen, X.F., Li, P., Lin, L., Wang, D.K.(2005) Proving
geometric theorems by partitioned-parametric
Gröbner bases. In: Hong, H., Wang, D. (eds.) ADG
2004. LNAI, vol. 3763, 34-44. Springer.

[3] Cox, D., Little, J., O’Shea, D. (2004). Using Algebraic
Geometry. New York, Springer. 2nd edition. ISBN
0-387-20706-6.

[4] Donald, B., Kapur, D., and Mundy, J.L.(eds.) (1992).
Symbolic and Numerical Computation for Artificial
Intelligence. Academic Press.

[5] Gao, X.S., Hou, X., Tang, J. and Chen, H. (2003).
Complete Solution Classification for the
Perspective-Three-Point Problem, IEEE Tran. on
PAMI, 930-943, 25(8).

[6] Kalkbrener, K. (1997). On the stability of
Gröbner bases under specialization, J. Symb. Comp.
24, 1, 51-58.

[7] Kapur, D.(1995). An approach to solving systems of
parametric polynomial equations. In: Saraswat, Van
Hentenryck (eds.) Principles and Practice of
Constraint Programming, MIT Press, Cambridge.

[8] Kapur, D.(2006). A Quantifier Elimination based
Heuristic for Automatically Generating Inductive
Assertions for Programs, J. of Systems Science and
Complexity, Vol. 19, No. 3, 307-330.

[9] Manubens, M. and Montes, A. (2006). Improving
DISPGB Algorithm Using the Discriminant Ideal, J.
Symb. Comp., 41, 1245-1263.

[10] Montes, A. (2002). A new algorithm for discussing
Gröbner basis with parameters, J. Symb. Comp. 33,
1-2, 183-208.

[11] Montes, A., Recio, T.(2007). Automatic discovery of
geometry theorems using minimal canonical
comprehensive Gröbner systems. ADG 2006, LNAI
4869, Springer, 113-138.

[12] Nabeshima, K.(2007) A Speed-Up of the Algorithm for
Computing Comprehensive Gröbner Systems. In
Brown, C., editor, ISSAC2007, 299-306.

[13] Nabeshima, K.(2007) PGB: A Package for Computing
Parametric GröbnerBases and Related Objects.
Conference posters of ISSAC 2007, 104-105.

[14] Suzuki, A. and Sato, Y. (2002). An alternative
approach to Comprehensive Gröbner bases. In Mora,
T., editor, ISSAC2002, 255-261.

[15] Suzuki, A. and Sato, Y. (2004) Comprehensive
GröbnerBases via ACGB. In Tran, Q-N.,editor,
ACA2004, 65-73.

[16] Suzuki, A. and Sato, Y. (2006) A Simple Algorithm to
compute Comprehensive GröbnerBases using
Gröbner bases. In ISSAC2006, 326-331.

[17] Wang, D.K. and Sun, Y. (2009) An Efficient
Algorithm for Factoring Polynomials over Algebraic
Extension Field. arXiv:0907.2300v1.

[18] Weispfenning, V. (1992). Comprehensive
Gröbner bases, J. Symb. Comp. 14, 1-29.

[19] Weisphenning, V. (2003). Canonical Comprehensive
Gröbner bases, J. Symb. Comp. 36, 669-683.

