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More Snapshots: Kids Are Smart

As in chapter 3, I want to discuss what has already happened with our
prototype computational medium, Boxer, in order to think about what
may happen if we achieve a new, computationally enhanced literacy. We
should be attentive to the goals and actions suggested in these snapshots,
which can help speed and enhance the development of a new literacy.

In contrast to chapter 3, we now have a refined basis for considering
examples. Chapters 4 and 5 developed improved ways to look at learning.
Extending the discussion of cognitive and social pillars for new literacies
in chapter 1, I emphasized different sorts of knowledge and competence
to which we should attend. We should consider intuitive knowledge to
be both a goal and a resource; we should also realize that embedding
learning in extended activities that feel coherent and meaningful likewise
constitutes both a critical subgoal of improving learning and also a goal
in its own right. Chapters 6 and 7 focused on understanding how compu-
tational media work—how we can learn them and learn with them. This
discussion shored up and extended our understanding of the material
pillar of possible new literacies. Altogether, reading the messages in the
examples in this chapter benefits significantly from the preparation in
chapters 4-7.

The principal theme in this chapter is the cleverness we can find in
people if we know where to look. In the chapter subtitle, “Kids Are
Smart,” I emphasize children, but of course teachers, curriculum develop-
ers, parents, people in general are included in my hopes and in the possi-
bilities that are afforded by new computational literacies. I single out
children partly because educational discussion usually (and appropriately)
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centers on students, but also because they are more vulnerable than others
to being painted as incompetent. The new views of knowledge and the
importance of activity I previously introduced are antidotes to an easy
willingness on the part of adults to characterize kids as empty-headed,
willing to do anything (“good” students), or unwilling to do anything
(“bad” students). Whatever they are, children are not empty-headed, and
it is as bad to think that some students are always unwilling to engage
as it is to believe that others engage simply because they are willing.

An easy interpretation of some examples I present here is that they
represent the discovery of new knowledge, intelligence, or competence
that people already have, but which we have for some reason neglected
to see. In a sense, this interpretation is reasonable, but a more powerful
interpretation is that we are discovering possibilities for new intelligences
based on a combined people-and-media thinking system. Material intelli-
gence is not just an improved “pure” intelligence; it depends intimately
on the properties of the medium that liberates it.

Unlike chapter 3, which started with an easy example, this chapter
begins with a long and difficult one. Nevertheless, the example is particu-
larly important. It introduces a new way to think about what computa-
tional media can afford, beyond what’s offered by static media.

Metarepresentation Meets a Metamedium

In 1989, during our physics course for sixth graders, we had a remarkable
experience. In about five days, our sixth-grade students seemed to invent
graphing as a way of depicting and thinking about motion. Graphing, as
you may recall, was actually invented by Descartes, after Galileo took
the first quantitative steps toward a science of motion. This was before
Newton extended algebra with calculus to complete the understanding
of motion that has become known as Newtonian physics. (Yes, Galileo
did his work with neither algebra nor graphing! That’s one reason he
gets so much credit in my book.)

Can sixth-grade children invent graphing? I have been told in public
at scientific meetings that children could not possibly invent graphing
because such young children are too concrete or have some other limita-
tion. I have*been told that it could not possibly happen again, even if it
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did happen once. The children or teacher were exceptional beyond any
reasonable reality test. Nevertheless, we have the children inventing
graphing on videotape; it did happen. What’s more, we have repeated
the activity several times since. Although it may be a bit overdramatic to
say that these children “‘invented graphing” and hence compare them to
Descartes, what happened is important to understand, and it has pro-
found implications for the future of computational media.

The beginning of this tale takes us back to the start of our motion
course. We started with a unit that taught students Boxer programming,
In particular, we instructed them how to write simple programs to draw
pictures on the computer screen. The first official activity about motion
was an assignment to use their programming knowledge to show a few
simple, real-world motions, such as what happens when you drop or toss
a ball. For the dropped ball, one group developed a program that pro-
duced the picture in figure 8.1.

To most scientifically literate people, the depiction just looks wrong.
It appears to show an object slowing down, but almost everybody—in-
cluding this group of children—knows that objects speed up when they
fall. To make matters worse, running their program reinforces the impres-
sion that something is wrong. The program takes about the same time
to draw each dot and to move to the next, so as it draws the dots from
top to bottom, the “ball” (graphics cursor) actually does slow down.

What is going on? Are these children so incompetent at programming
that they can’t show what they know is going on? Or have they somehow

Figure 8.1
A student depiction of a ball falling faster and faster.
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forgotten what happens in the real world under the influence of the “arti-
ficial” computer context?

The resolution to this puzzle provided the first suggestion of the new
intelligence we discovered in inventing graphing. It is surprisingly simple.
When asked by a graduate student about the puzzling “slowing down”
in the students’ depiction, one of the pair who had worked on it said that
they had not intended to “show it speeding up,” but that they wanted
to show “zhat it sped up.” They believed they had done it quite well.
More speed is shown as more dots.

If this representation is wrong in any sense, it is wrong only in using
an unusual convention. Scientists usually pick equal time intervals as a
basic method of cutting up events that unfold over time. From that point
of view, the natural representation is to show where the ball is at the end
of each time interval; dots get farther apart. You could, however, choose
equal distances as a standard instead of equal times. Then you would
want to show decreasing times to traverse the same distance. If we inter-
pret the vertical axis as time, dots closer together toward the bottom
could show decreasing intervals to move the constant distance.

These children were not so sophisticated as to be showing decreasing
time intervals. We believe they really intended “more dots means more
speed.” Still, they showed a surprising sophistication. The students were
not caught by the concrete and literal impulse to “show speeding up.”
Instead, they clearly intended to make a meaningful representation of
speeding up. This distinction is exactly the transition from showing
speeding up to showing that it sped up. That is, the students are not
making a picture at all, but a representation in the true sense: a system
of inscriptions with abstract rules of interpretation to show things about
the world. Indeed, they invented a new representation, for they couldn’t
have learned this one at school!

Saying that these children designed a representation is not an example
of a fancy description that applies to an everyday competence, like the
bourgeois gentilhomme who discovered he had been speaking prose all
his life. Instead, their design is a hint that children know a lot more about
representations than we might suspect. Thar competence is consequential.
Hold onto-your hats as these students really get going!

3
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Later in the course, when it came time to teach graphing as the most
important standard representation we could plausibly teach sixth-grade
students, I convinced my research group and Tina, the teacher, to try an
unusual strategy. Instead of presenting graphing, why not ask the class
to see what they could come up with to show motion? Tina was a good
sport, although she said she expected this exercise would just show us a
little about what they already knew about graphing; then we could move
on and teach.

In the narrative of the students’ exploring representations, I have to
eliminate a lot of interesting detail. In particular, I show only what I
consider landmark representations that the children developed. To illus-
trate their representations, I also depict only the first motion they were
assigned to show—an object that gradually slows to a stop, paus.es a
while, then accelerates away. I also, in some cases, strip some picto-
graphic detail from the students’ representations: the students were pre-
sented with motions in the context of “cover stories.” For example, the
initial motion was presented as someone driving a car through the desert,
stopping for a drink from a cactus beside the road, then resuming the
trip. Students at first included elements of the story, for example, the
cactus, which I won’t reproduce.

Figure 8.2 shows an early representation, which the children called
Dots. Note that, now, these students were using the standard scientific
convention of equal time intervals, rather than their original “more dots
means more speed.” Shifting to a more conventional representation was
probably due to the fact that, by this time, they had spent hours making
realistic simulations, rather than representations, of motion on the com-
puter. The dots representation can be produced from a simulation of the
motion in question simply by making a dot after each step in the program.

The chalk representation in figure 8.3 highlights speed by showing it
more explicitly in the length of lines rather than implicitly in the distance

Figure 8.2

The “dots” representation of an object slowing to a stop, pausing, then accelerat-
ing away.
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Figure 8.3
The “chalk” representation.

Figure 8.4
The “sonar” representation.
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Figure 8.5
The slant of the line represents how fast the object is moving.

between dots. This change is a suggestive step toward considering the
task to be designing a representation rather than just drawing a related
picture. That is, it seems to reignite the “showing that”’ idea evident in
the representation of the dropping ball. Students were quite clear that
measuring the length of the line was intended to be the method of de-
termining the speed at which the object was moving at a particular time.
Figure 8.4 shows what may well be a critical step. Although one may
say that Sonar, as the students called this representation, merely rotates
each line of Chalk, its real innovation is to introduce a new representa-
tional resource into the pool students could use. The vertical dimension
shows speed, independent of the “story line”” horizontal dimension. This
is really beginning to look like graphing. Still, we are not there yet.
Slants, figure 8.5, is a remarkable contribution. Jan carefully explained
that the length of the lines in Slants doesn’t represent anything. Instead,
the slant of the line shows speed. Here is another representational re-
source, line’ “slantiness.” Jan also explained that he meant the horizontal
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direction to mean “as fast as it can go” and the vertical direction to repre-
sent stop. Evidently, he didn’t care which way the line slanted; the same
speed in the slowing-down portion of the representation (left half of the
figure) was shown with slant opposite to the speeding-up segment (right
half). Another student pointed out the ambiguity, and Jan acknowledged
it without changing his representation.

Figure 8.6, Ts, evidently combines the ideas of Chalk and Sonar. Ts
was a response to a critical difficulty with all the representations up to
this point. Tina had asked several times if one could see how long the
object was stopped, from which the students recognized that no represen-
tation yet could capture this piece of information. The students under-
stood and responded to the problem. The T representation was the result.
In it, the horizontal line reverts to showing speed, and the vertical line
now shows time—‘how long the object stays at each speed.” One of the
students said explicitly, “We have two dimensions; one can mean one
thing and another can mean another.” One of the students even went so
far as to observe that you could multiply those two numbers, speed and
time, to get the distance that the object moved during each depicted
segment of motion. He said you could add those numbers up to find
exactly how far the object had moved. I come back to this observation
shortly.

“Early during the third class in this sequence, Jan introduced an im-
provement of his slants representation, which quickly precipitated the
first unambiguous graph. He described it as an “awesome idea” that com-
bined several previous ideas and that could get “everything we want at
the same time.” The essence of the idea was that his slants had used only
one part of the representational richness of line segments. He had used

411

Figure 8.6
The “Ts” representation.
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the slant, but the length was available to represent a second aspect of
motion, either distance or time. At the board to explain his idea, he im-
provised: you could even connect all these slanted lines together! At every
position along this newly unified line, you could see speed by attending
to the slant of the line. Jan’s first connected line had straight segments
joined together, but successors showed a connected line that continuously
changed slant as speed varied.

In order to understand what an excellent idea Jan had, you need to
recall some aspects of Newton’s great invention, calculus. One of the two
cent;al operations of the calculus, called the derivative, converts knowl-
edge of the position of an object mechanically and perfectly into a knowl-
edge of speed. If you imagine a graph of position versus time, it turns
out that measuring the slant of the line provides the derivative; it converts
from position to speed. So Jan has anticipated Newton in one crucial
respect. He (and his fellow students) have learned the representational
skill to look at a graph and see its slant at ‘each point. Later in their
schooling, those skills will become “seeing the derivative.”

The other fundamental operation in calculus, the integral operation, is
the opposite of the derivative. It converts speed into distance. The student
observation—that with the T representation, one can multiply times and
speeds and add them up to get total distance—is the equivalent of integra-
tion. See the discussion of calculus and, in particular, the discussion of the
Fundamental Theorem of Calculus in the tick-model portion of chapter 2.
Of course, it would be better if these children understood that the deriva-
tive is the opposite of the integral, and if they could use these operations
independent of representational form, but what do you want from sixth-
-grade students before instruction?

Figure 8.7a comes from a standard calculus textbook. It depicts the
derivative operation. Can you see Jan’s slants? Figure 8.7b shows the
integral. Rectangles substitute for Ts, but the process of adding up alti-
tudes times widths is just the same.

Another student, Sean, extended Jan’s continuous slants idea. Why
don’t you just place a grid over this line of changing slant? That way
you could read numbers off it exactly. A grid would provide a two-
dimensional ruler that measures the two aspects of motion (speed and
time, or speed and distance) clearly and precisely (figure 8.8).
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Hlustrations from a calculus text. (a) Teaching students to see slant (derivative)
as rate. (b) Integration is adding up widths times heights. A “T”’ is emphasized
between x; and x,.

Source: Figures from Calculus by Dennis Berkey, copyright © by Saunders College
Publishing, reproduced by permission of the publisher.

Figure 8.8
Laying a grid over a continuous line can allow precise reading off of two facets
of the representation.

The students didn’t seem to notice that this grid idea had transformed
Jan’s idea of showing speed via slant. They had returned to using vertical
distance to show speed, but the image jointly produced by the students
seemed to seize the floor, and it commanded attention in its own right.
Although other representations were suggested, and although some stu-
dents (gradually fewer and fewer) retained a preference for earlier repre-
sentations, the students in the end voted nearly unanimously that what
we would call “graphing speed versus time” was their best representation.
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What is this inventing graphing activity about? Clearly, it is about
bright children, but calling these students intelligent is another case of
masking powerful, if unusual, knowledge. I believe they are actually more
knowledgeable than abstractly bright. They know a lot intuitively about
representation, the art of creating concrete, visual forms to express ideas.
In the description above, I emphasized their inventive capabilities. They
could see how lines, slants, and so on could represent things, and they
could play effectively with putting multiple correspondences together.
What I did not emphasize so much was their ability to critique representa-
tions. When any student proposed a new representation, others discussed
both its advantages and disadvantages compared to other representa-
tions. We noticed at least a dozen different criteria for good representa-
tions, including;:

* Transparency (The representation needs little explanation.)

* Compactness (All else being equal, representations that are smaller are
better.)

* Precision (All else being equal, representations that allow more precise
readout are better.) /

* Completeness (You can get all the information you need from the repre-
sentation.)

* Homogeneity (There are no extraneous symbols that don’t relate to
others.)

* Objectivity (It’s better if making the representation can be automatic
and strictly rule based, if it “could be done by a computer.”)

* Faithfulness (For example, continuous representations show continu-
ous speed changes better than discrete representations.)

The students made clear that they understood other aspects of the art
of representation. They showed that they knew representations are for
people. Alice, in particular, showed constant concern for whether a repre-
sentation would be comprehensible to people outside this class. Jan,
among others, showed particularly good ability to explain representa-
tions. He explained his slanted lines: “This [short line] has just the same
slant as this [longer line], so they show the same speed. So we can use
the length to show something else.”

To put.it in a nutshell, this activity shows that children have much
more expeitise with representations than most would give them credit
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for. I call this knowledge metarepresentational because it is about repre-
sentation. (One standard use of meta is “about.”) To this day, I am still a
bit in awe of how much metarepresentational competence these students
showed. It wasn’t a fluke, however. As I mentioned before, we have
watched children inventing graphing several times. We haven’t always
been able to count on the richness and energy of our first group, but every
instance of this activity has shown substantial capabilities. I don’t believe
there is any question that metarepresentation names a pool of competence
children have, a competence that has largely been ignored.

It’s nice to find some surprising understanding in children that we
didn’t know about before, but what does this have to do with computa-
tional media? Indeed, this activity didn’t involve computers at 4ll. (Stu-
dents did want to begin building representations on the computer, but
we didn’t really see at the time what this activity was about. We thought
it was just about graphing, and Tina kept them from exploring computa-
tional versions, at least until after the main design was finished.)

To make my points, I need to build a bridge between metarepresenta-
tional knowledge and computational media. I’ll make the bridge first on
the basis of principle and then with examples.

You can probably guess the rough shape of the bridge. We have identi-
fied a native pool of intuitive resources that, it seems, children develop
well and fairly early—without explicit instruction. These resources are
the abilities to mold and interpret visual presentations as representations
for conveying information, reasoning, and all the other purposes that
inscriptions, representations, and, indeed, literacies serve. Computational
media can provide a context in which these competencies can grow and
transform into a qualitatively different capability. In terms I introduced
in chapter 1, we want to see how computational media can implement
a different material intelligence—a new representational intelligence—
starting with representational talents people seem naturally to have.

One element of a new representational intelligence seems obvious.
Computers give people unprecedented control over form and space.
Words and the essentially one-dimensional run of text can give way to
wonderful new structures for representing. Boxer’s boxes within boxes
and ports to connect distant parts of a world, like hypertext, provide a
hint of what is possible. Yet at least two additional substantial stages are
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possible with computational media. First, representations can be dynamic
as well as static. All of the power evolution has conveyed to humans to
interpret change in a visual presentation can be harnessed in a way that
shames what can be done with text and static pictures. I'll get to a fairly
elaborate new example soon, but for now we can look back to chapter 2.
The boring, inert arrows and numbers of textual vectors become
dynamic on the computer screen. One can watch and interpret changing
vectors and write simple programs that show the meaning of a vector in
controlling motion. Indeed, this humble example also illustrates the sec-
ond stage of transformation that computers allow beyond textual liter-
acy:.the dimension of interaction. Vectors succeeded with our children
not only because they moved and connected with motion in illuminating
ways, but because they became things that children acted on. From'the
point of view of representation, computers mean that action and reaction
can enter the expressive mode. You can act on text (and standard pic-
tures) only in the limited sense of writing it down (or drawing it), and
what you thus create doesn’t react at all.

This part of the story seems widely recognized, at least implicitly.
Unfortunately, the larger literacy implications go unappreciated. The
burgeoning representational landscape is easy to see in the educational
design community, where an extraordinary number of representational
forms are being developed by experts. New visual representations for
important ideas, from fractions to force and beyond, are an everyday
occurrence. A look at professional science alerts us to the fact that this
is not just a modest innovation or one only for schools. The infrastructure
of science is fundamentally changing because computationally imple-
mented representations are blossoming like flowers after a spring rain.
Graphs don’t just sit there anymore. They wriggle and twist with adjust-
able parameters. Data are not just a long list of numbers anymore.
Swarms of data points fly around in changing multidimensional “slices.”
Visual data analysis now virtually means using new techniques with com-
puters to allow people better use of their spatial/dynamic interpretive
capabilities.

The less recognized part of the story is from whom, when, and how
new computational representations will emerge. Let’s start with “from
whom.” Of course experts will make new dynamic and interactive
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representations, but a fundamental assumption of this book is that a mass
literacy surpasses a literacy of the elite. Ordinary folks—including teach-
ers and students—should be allowed to get in on the game. Otherwise,
we’ll have one of those half-a-loaf consumer literacies I discussed rather
than a real two-way literacy. Can we expect ordinary folks not only to
control a computational medium, but to create genuinely new representa-
tions? That’s where inventing graphing surprises us. Yes, they can, and
probably they do all the time, without our having noticed.

“When” people can make new representations provides as much
ground for surprise as “who,” I predict. As I have constantly reminded
you, great people and great products attract our attention far more than
the commonplace, but a true computational medium can give the law of
the little its revenge. I believe that creating new representational forms
can become an almost everyday event, not just an eccentric, if wonderful,
aberration.

There is an important technical side of making representational inven-
tion commonplace. Way back in chapter 1, I noted that some media,
some literacy substrates, can comfortably enclose subforms. Text neatly
encloses algebra, for example. The computer is the protean master of this
trick if we design computational systems well. Not only can independent
representational forms coexist in computational media, but they can in-
teract, evolve, and change, so an esserntial part of what can allow repre-
sentational design to emerge as an everyday activity is that computational
representations can be modified or cut apart or combined. Recall the im-
age of organic growth of software at the end of chapter 7 (see figure 7.1).
A producer computational medium is a metamedium, in which hundreds
of microrepresentational forms can be created, combined, and extended
constantly. Not every child will create a completely new representation
everyday, but very often everyone can make easy extensions, combina-
tions, and modifications; occasionally, really new things will appear. Rep-
resentation will be a richly tooled, flexible, adaptive, and improvisatory
activity far beyond what exists now with textual literacy.

I want to be clear on preconditions for this transformation to happen.
First, we can’t use just any old computer system to realize it. A consumer-
only medium, for example, won’t support it. Second, the range of the
representational forms that are allowed will be highly constrained by the
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properties of the medium. If the world standardizes what is now called
multimedia as its new literacy base, I fear new representational forms
will be limited to successor variations of rock video. Naturally, I believe
that vectors and hundreds of other such forms can enhance learning sci-
ence and mathematics, but many current versions of computational me-
dia won’t support analytic, science-relevant representation.

Finally, the emergence of representation as an explicit, valued activ-
ity——as any important component of literacy—will be a cultural accom-
plishment. A “literature” of representational forms must emerge, as well
as an awareness of and commitment to their value. It is a plain and simple
fact that technology by itself isn’t enough.

I used the example of inventing graphing to argue that metarepresenta-
tion is a fundamental competence humans have. Then I argued abstractly
that computational media can liberate and extend this intelligence in par-
ticular ways. Now I want to give some specific examples to put meat on
these wonderful but bare bones. _

Let me start with examples from some very new work. We have re-
cently started looking specifically at student representational creativity in
computational media. In particular, we taught a class of middle and high
school students mainly about scientific visualization—making pictures of
scientific data for visual analysis. Visualization is a part of professional
scientific practice that has been radically changed by computational rep-
resentations. One fairly simple but important technique is colorizing im-
ages to bring out particular detail or relations.

Instead of giving students closed scientific tools, we built some open
tools in Boxer so that they could get their hands on the guts of the pro-
grams. In particular, we made it easy for them to design and construct
the palettes of colors used to display images. Figure 8.9 shows an image
taken from the Hubble telescope (top left), modified by one student with
different palettes. The first thing Sam did was to change the color at the
top of the scale, the color that showed the brightest parts of the image.
In these pictures, all data that are above a certain brightness show with
the color at the top of the scale. Any variation in brightness above this
level just can’t show in the representation; there are no more colors. In
effect, Sam is showing what part of the picture has been completely
washed outﬁby the limits of the display system. He picked red for that
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Figure 8.9
Images from the Hubble satellite telescope, modified by a student.

color, and you have to imagine the small, gray regions in the center of
the bright spots (top-right image) standing out vividly. I have not seen
the same idea in any professional system. Perhaps experts don’t need a
warning, but Sam’s idea dramatically shows which parts of the picture
have no detail.

The lower-left panel of figure 8.9 shows another of Sam’s innovations.
Again, we are limited to black-and-white printing in this book, so your
imagination is important. In order to show shape and detail better, Sam
built a palette that alternates a sequence of colors with a constant back-
ground color. (Successively brighter parts of the image “climb up” Sam’s
sequence of colors, touching base with a constant background color in
between.) The result is something like a topographical map, in which
contours show places of constant altitude. Here, the contours show
constant brightness. The shapes of objects are much easier to see in this
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representation, as is how quickly light is getting brighter. (Rings that are
closer together show that the image is getting brighter more quickly.)
Sam’s idea is better than standard contour maps in at least one respect.
The color coding he put between contour lines (which were made of the
constant “background color”) shows brightness unambiguously. In con-
trast, if you use only black-and-white contour lines, you can’t tell whether
brightness is growing or waning; either direction results in more rings.
The black-and-white contours of the last frame (lower right) can’t distin-
guish between a “donut” nebula—which gets brighter, then darker to-
ward its center—from a circular object that gets continuously brighter.
The light gray tones near the center of the biggest galaxy in Sam’s contour
image (the lower-left image) make it unambiguously clear that the center
of the galaxy is brighter than the surround.

What you can’t see at all in these images is the spectacular impression
made by the colors Sam chose. Sam was an artist, and he spent almost
as much effort making things pretty as making them scientifically better.
Think “committed learning,” and you’ll understand why his pursuing art
as well as science didn’t bother us at all.

One of Sam’s colleagues, Mohammed, made use of the palette system
for an even more personal purpose. He modified a computer game he
had written so that the numerical score was not only shown but color
coded. That way the game player could tell how far she had progressed
without taking her eyes off the action. Besides being a nice representa-
tional idea, Mohammed’s color coding the game’s score both suggests
the power of personalization and reminds us of the law of the little. Mo-
hammed’s creation may not be grand, but it is his. More, it suggests the
thousands of little innovations awaiting students’ creativity when any
representational fragment that already exists in the medium can become
part of their private constructions.

The final example of students’ invented representations in computa-
tional media is not visually spectacular, but it is an intellectually spectacu-
lar and huge project by a high school student.

Ted got his first experience with Boxer in Henri’s Boxer statistics
course, which I mentioned in chapter 3. Ted, like Mickey, the young
Boxer manual writer, was dedicated to helping others, and he continued
working with Boxer after the course’s end. He wanted to design and build
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Figure 8.10 ‘
Part of a dynamic figure that illustrates an algorithm for naming molecules.

tools to help students and teachers approach particular subjects. One pro-
gram he wrote, of which I'll show a tiny part, was called the molecular
toolkit, and it provided resources for students and teachers to make inter-
active presentations about chemistry. Parts of the program could show.
pictures of molecules based on their formulas, compute such things as
the weight of a molecule, and even name molecules by their formulas.
Figure 8.10 shows one-third of a representation Ted invented to show
how the naming process worked. The representation is a decision tree
that you work down, one branch at a time, by answering certain ques-
tions. At the top level, you need to count the number of oxygen atoms
in the molecule. The portion of the tree in figure 8.10 corresponds to one
oxygen molecule; zero and two oxygens are branches not shown to the
left and right. At the second level, you have to decide whether the mole-
cule is an alcohol, an aldehyde, a ketone, or an ether, and so on at lower
levels. While Ted’s program finds the name of a particular molecule, the
ball at the top of figure 8.10 moves down the various arms of the tree,
and text explains what is going on. When the ball gets to the bottom,
the program spits out the scientific name of the molecule: Methane (CH,),
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ethane (C,Hg), methanol (CH;OH), ethanol (C,H;OH), ethene (C,H.,),
2-propanone (C;H4O, with the oxygen double bonded to the middle car-
bon), methylpropene. . . .

This is a wonderful dynamic representation of naming molecules. I
have never seen any version of it (even a static one) in a textbook, and
it almost certainly was Ted’s invention. Even better, Ted clearly under-
stood that his overall project was providing tools that others would ex-
tend and modify. As I mentioned, he explicitly considered this a toolkit
to build presentations, not a “teaching program” on its own. I believe
he intuitively understood the flexibility and organic growth of representa-
tions and microrepresentations in a computational medium about which
I spoke earlier.

Ted’s program is among the best-organized Boxer programs I have
seen. His data structures are elegant. For example, he invented a new
notation for organic molecules that is easy for humans both to understand
and to produce, as well as computationally ¢lean and efficient.

Figure 8.11 shows an example of Ted’s Boxer code corresponding to
the decision branch based on number of oxygens. The command ifs

ifs

oxygens = 0

inform —
I The molecule has no oxygen atoms. ‘ ‘

hydrocarbons

I
=

oxygens
trace-arm 1 2 ‘
inform ¢ ==

The molecule has one oxygen atom.

alc-ald-ket-eth . 5

oxygens = 2 f - ———
trace-arm 1 3
inform r

trace-arm 1 1 W

| The molecule has two oxygen atoms. 1

carboxylic-acids-esters J

Figure 8.11

A part of Fed’s program for naming molecules, displaying the algorithm for
naming.
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presents a number of “if” possibilities (1 £ oxygens = 0, etc.) and what
to do if those possibilities are realized. In each action branch, you can
see the command to animate the decision tree by moving the ball down
the appropriate branch (trace-arm), the textual information presented
to the viewer (inform), and the next decision (e.g., alc-ald-ket-eth
makes the decision about the second level of figure 8.10). A well-
structured program is a representational achievement in its own right.
Not only does such a program make it easy for others to inspect, under-
stand, and modify the program itself, but it can even be a directly instruc-
tional representation. I am not sure that Ted’s program is the best
representation of the molecule-naming algorithm, but it is pretty good.
It contains all the detail missing from the visual tree. On the other hand,
the programs for the fractal shapes designed by the students in Henri’s
infinity class almost certainly are the best representations I know for con-
ceiving and knowing how to build those shapes—provided, of course,
you are programming literate. _

The argument I am making has several parts. By this time, I hope you’ll
concede the first point—that the computer is the protean mother of meta-
representational systems. It surpasses text and inert, noninteractive
graphics as if they were baby steps and not the giant leaps of human
material intelligence we know they have been.

The next point is that representations are a fundamental part of science.
This part is still not at all the most difficult, although it is not a common
story. Galileo invented pictorial, quantitative ways of thinking about mo-
tion that supported his investigations. Descartes invented analytic ge-
ometry and graphing. Newton and Leibniz invented the calculus and,
simultaneously, ways of denoting their new ideas, ways that are concep-
tually suggestive and easy to manipulate and reason with. Richard Feyn-
man invented Feynman diagrams to denote interactions of elementary
particles. Lest the grand obscure the everyday, I note (again) that even
grand representational accomplishments really happened gradually, in lit-
tle bits and pieces, over years of use by the scientific community. Further-
more, scientists are constantly adapting and inventing, in dribs and drabs,
ways of making ideas clear to others and ways to help themselves think.

Next generation students will have a bewildering array of new repre-
sentational forms to master if they are to learn the science scientists are
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now beginning to practice. Luckily, from inventing graphing and similar
experiences, we can have more confidence that students are up to the job,
but here’s the really difficult part of the argument that I am making: I
believe we need to see putting computers and students together as liberat-
ing students’ own creativity at designing representational forms, just as
it has done for scientists.

The role of representational creativity in learning is just now beginning
to be demonstrated scientifically. Examples can’t prove the case, but look
at Ted’s remarkable accomplishment. He invented two marvelous new rep-
resentations of the process of naming molecules. His dynamic decision tree
is impressive enough, but the program that actually carries out the naming
is a showstopper. Could we imagine his doing such a thing without under-
standing every nook and cranny of the process of naming molecules? Tech-
nical reexpression of ideas, like what Ted did, tests and improves
understanding at each step in the process of construction. Success indicates
a mastery that surpasses anything an ordinary school test could hope to
show. (Also—although I'm getting ahead of myself—constructing repre-
sentations like this is a personal accomplishment that puts typical school
tests to shame in the personal value it can have for a student.)

Ted’s case is too extraordinary to be convincing about the everyday
future. That’s the trouble with a short text in which an author is limited
to a few examples—they had better be dramatic (hence, unconvincing as
examples of things that will become ordinary). Sam and Mohammed’s
little representational achievements help, but they may also be unconvinc-
ing: it is relatively easy to imagine students doing those things, but is
profound new learning at issue?

Let me sketch a pattern that may be easier to see than these examples
as a new and important wrinkle in science education. Essays have been
a staple of literary instruction for as long as there has been organized
instruction. What happens when a student writes an essay? She needs to
think hard about the subject, formulate a personal position, and system-
atically lay out an argument for that position. As an extra bonus, the
teacher gets a great deal of insight into how the student is thinking, which
would be impossible in a short test or conversation.

Essays are not nearly so popular in science or mathematics, probably
because natliral language is not sufficiently tuned toward the particular
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nuances of meaning that are important for science. Equations? They are
better in some ways, perhaps, but hopelessly sparse and too impersonal
to be really expressive of a student’s way of understanding scientific ideas.
But what about a computational essay? A computational essay can use
text to describe and hypertext to organize. It can have diagrams, even
moving diagrams, like Ted’s decision tree. It can have little programs for
the reader to play with, like the ones the students in Henri’s infinity class
created. Indeed, their final projects were nice examples of a budding genre
of computational essay. A computational essay can have dynamic models.
It can also include any sort of tool or computational subsystem the
teacher or curriculum developer might supply to help students think and
work in a particular area, modified appropriately by the student for her
expressive purposes. A nice subgenre is the computational essay express-
ing the results of a scientific investigation, which is particularly useful to
hand to other students so that they can examine the data that might be
enclosed, using their own tools or models. Other students can also “bor-
row” tools or microrepresentations invented by their colleagues. Another
subgenre already in use, at least among some researchers, is a computa-
tional essay that a student writes in order to teach another student about
some subject matter. Above all else, a computational essay invites and em-
powers students to innovate representationally to help themselves think
and to express their ideas about scientific and mathematical subjects.

We have had limited experience with computational essays as a way of
learning. Sadly, exploring all the promising possibilities of computational
media at once is just not feasible, especially with limited resources, but
what has become fairly systematic in our work is to make each explor-
atory microworld also a place where students can easily collect and anno-
tate their work to explain it to others.

One of the most exciting types of computational essays, which T call
a knowledge space, we have only barely begun to investigate. A knowl-
edge space explores the organization and relationships of the many parts
of understanding any particular scientific topic. It’s best to think of con-
structing a knowledge space as a culminating activity in which students
or a whole class working together use a spatial metaphor to organize
and show relationships they feel are critical. Of course, if they are really
learning, students may already have developed intuitive mental maps of
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the connections between the various aspects of what they learn about
photosynthesis or organic molecules or Newton’s laws, but identifying
the core ideas, finding an explicit and systematic external form in which
to relate them to each other, linking in more peripheral ideas—pushing
toward a completeness in showing and connecting things, which text or
intuitive thinking cannot reach—are the distinctive activities of making
a knowledge space.

An Activities Perspective on Metarepresentation

I organized my description of the inventing graphing activity as a se-
quence of representational ideas, which is a beautiful way to tell the story
because it highlights the emergence of recognizably powerful, important
knowledge out of previously unrecognized human competence. That is
a central theme of this chapter. There are, however, always other ways
to tell a story. In this case, my research group did not even know there
would be a good knowledge story in inventing graphing when we started.
It was just, after all, a curricular lark. Instead, we stood at attention and
turned on the video cameras for an entirely different reason.

In simplest terms, what attracted us first to collect video data about
this event was the remarkable enthusiasm and interest it engendered in
the students. From the beginning, we could see that something special
was going on. To put it in a different way, we could smell a good example
of committed learning coming. In a larger framework, the ideas story of
inventing graphing misses the critical activities perspective that we devel-
oped in chapters 4 and 5 to complement a knowledge perspective on
learning. I want to redress this omission, at least briefly. I'll use inventing
graphing exclusively, even though, as I hinted, the other student represen-
tational examples have interesting activity stories about them as well.

Let me start with a few vignettes and descriptions to give a sense of
how we perceived the inventing graphing episode and, more importantly,
how it must have felt for the participants.

Enthusiasm

The enthusiasm the students brought to this activity was extraordinary,
almost from beginning to end. They were champing at the bit to get in
and explain their ideas. Commitment and passion ran high. The class-
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room was often bustling to the point of chaos. Many times Tina couldn’t
even get into the conversation, and she would repeatedly try, wait gra-
ciously if rebuffed until the students quieted down, then step in to make
her points and to help direct the inquiry. One of Tina’s special strengths
was cultivating the personal investment of students, and she systemati-
cally tried to create situations in which she was irrelevant to the activity.
At this stage of scientific study, I think clever teachers like Tina know
much more about activities and how to cultivate group committed learn-

ing than researchers do.

Participation ’

This was not a class of super students, even if they were bright. They all
had different inclinations and styles. At least two of the students were
very quiet, and a couple seemed to want to dominate every activity. One
unusual thing about inventing graphing was that it elicited much more
even participation than other activities. Even the quietest student made
critical contributions, and at various times all wanted to have the atten-
tion of the class. One of the quieter girls in the class took on the responsi-
bility of sticking up for the poor “average person” who might walk into
the classroom and find a jumble of uninterpretable squiggles on the
board. How would a visitor, she kept asking, make any sense of these
representations? She had the passion of a political activist defending the
rights of the downtrodden.

Ownership

The “dance of ownership,” as we came to call it, was amazing during
inventing graphing. Students were proud of their accomplishments. Sue
added a copyright notice to many of her drawings. I recall her walking
past the camera at the end of one class and deliberately asking the video
viewer, “Isn’t my drawing nice?”

Ownership was also communal, however. Students borrowed others’
ideas freely, usually with acknowledgment. Here’s where the dance meta-
phor comes in—the ebb and flow of students’ leading, following, building
on each other’s contributions. They could see something developing that
was too big for any one of them to take credit for alone. The teacher was
dancing, too. In pointing out Tina’s attention to student ownership, I
don’t want to imply she did not want to be part of the conversation. She
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had ideas she wanted to share, her own ideas about “good representa-
tions,” and several times I was stunned at how direct and imperious her
criticisms of student ideas were, but students took the criticism with re-
markable confidence. They seemed to acknowledge good points when
Tina made them, and they certainly knew she could make them stick if
she wanted to, but they often conveyed the sense that they were not con-
vinced and that their conviction mattered. In retrospect, I feel Tina’s skill
was not either in being direct or in withdrawing, but in knowing when
to act in which of these ways. '

Taking It Home

We saw many signs that this activity carried on outside of class. The most
vivid for me was Jan’s “awesome idea,” adapting slants to do “everything
at once.” His awesome idea came right at the beginning of class. He had
to have come to class with the idea because it didn’t follow any context
set by the discussion to that point. Classroom barrier breaking is a fin-
gerprint of committed learning.

Momentum

Probably the most fundamental question about any activity is whether it
can continue on its own energy. Inventing graphing had plenty of such
energy, but any extended activity is patterned with waves of greater and
lesser intensity. The teacher’s role is particularly important in the waning
periods. We could almost see Tina selecting and introducing a new hill
to aim toward for the class’s activity roller coaster, a hill that would suit
their current skills and current attention, but also one that would stress
their current understanding and thus develop the ability to climb new
representationalhillst “Can you do this with your representation?”
“Would you want to do that?” “Let’s just spend some time practicing
this or that representation.”

An emblem of the success of this entire activity came when Tina de-
cided it was time to quit and go on to other things. She summarized what
they had accomplished and why it was important, and then she began to
explain what the class would be doing next. A student raised his hand
as if to ask for clarification, and Tina turned to him, but he started again
asking about how they could pursue the last issue that had come up in
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inventing graphing! The whole class laughed at the non sequitur and the
fact that Tina evidently was not succeeding in shutting down the discus-
sion. As the bell rang, the class dispersed, and as they left, a small group
discussed among themselves whether they could get a good answer to
their question from NASA scientists.

Childlike

It is critically important that a good activity be continuous with the lives
of the participants. Knowledge is important, of course, and in this case,
inventing graphing couldn’t have happened without the untutored meta-
representational expertise of these students, but, just as important, this
activity picked up and extended patterns of engagement. One fundamen-
tal thread was how the students attended sincerely to the contributions
of their peers. School is ordinarily not like this. “Right and wrong” is
always the point, and the teacher is the knighted arbiter. The teacher is
even obliged to take up this role, or students will complain she is not
teaching. Tina worked very hard in making students’ ideas the focus for
discussion. She talked to us about how difficult it was to turn students’
attention away from the teacher and away from “‘right answers,” espe-
cially in a school where teacher-centered instruction was the norm, but
she succeeded in making student ideas the center of the discussion with
this set of children, admitting occasional lapses.

I want to emphasize continuity by explicitly acknowledging the compo-
nents of inventing graphing that were not adultlike and scientific. The
participants in the activity were sixth-grade students, after all. There was
plenty of teasing, complaining, and general off-task dallying. As a minia-
ture example, when some enthusiastic exchanges broke out, one student
egged his peers on with, “Let’s yell at each other and stuff!” Stories about
children and learning that paint them purely as little scientists leave me
cold. Those stories are at best well-intentioned lies or proof that, what-
ever is happening, committed learning doesn’t live at that address.

Final point: Inventing graphing illustrates one of the general ideas I intro-
duced in chapter 5. An enrichment frame turns knowledge into an activity
structure. Inventing graphing illustrates one of the simplest and most of-
ten successful enrichment frames: instead of showing students something,

*.




190 Chapter 8

have them design it. They will surely learn more about how the thing
they design serves its purpose—the function of the intended structure—
and they will also learn a lot about alternatives that may be desirable in
particular situations.

This painfully simple idea, “have them design it,” has been a constant
theme in our work. Student invention works far better with a computa-
tional medium and in tool-rich culture than with other media in other
contexts. I'm sorely tempted to tell you another story about how a group
of our high school students designed Newton’s laws! Couldn’t happen?
Don’t be so sure.

Did these sixth-grade students learn more about graphing than other
students who might have gotten a four-day lecture and seat exercises?
Perhaps. Perhaps not. But they certainly explored the space of representa-
tional possibilities more thoroughly. More directly to the activity point,

they had a rollicking good time being creative around important scientific
ideas.

Dynamic Representations: Intuitive Knowledge in Action

Metarepresentational competence is a lovely example of important intu-
itive knowledge on which computational media can build, but some read-
ers may find it a bit too rich to wrap their heads around—like having
both apple pie and cheesecake for dessert. The following example is not
nearly so outer space exotic, but it makes a similar point about the ade-
quacy of a medium for engaging natural human competence and about
implementing new intelligence,

This example concerns the capacity people have for giving meaning to
dynamic presentations. This is only a tiny part of what computational
media can add to textual media, yet it happens to be particularly impor-
tant because of how good people are at understanding moving things.

Imagine we have control of a magical railroad flatcar. It isn’t so magi-
cal; it’s just that, instead of being stuck on a one-dimensional track, it
can move around in any way that we command it (except up in the air—
it can’t levitate). Imagine also that there is a little robot on top of the
flatcar. You -might think about this robot as a programmable “turtle”
that you can ¢ommand to move around in whatever way you want. (No
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Figure 8.12 ' . "
The path of a turtle moving in a circle but also being moved along in a straight

line.

levitating turtles, either.) Suppose we ask the turtle to move continuously
around in a circle on top of the flatcar. That’s simple enough. But what
if the flatcar is moving too? To start simply, let’s say the flatcar is moving
smoothly along in a straight line. Let’s say it’s going to Chicag?, Now,
if you were to watch the turtle from an unmoving perch, above, it Vk.rould
still be moving in circles, but also going along with the flatcar to Chicago
at the same time. Figure 8.12 shows what you would see for the path of
the turtle, .

Physicists and mathematicians would call this a problem of composing
motions. Composing, in this case, simply means putting together. The
loopy path in figure 8.12 is the result of composing a circular motlo'n
with a straight line motion. Composing motions is usually introducefi in
high school or early in college after all sorts of mathematica'l preparatlol?.
I won’t tire you with the details, but understanding the topic mtathematl-
cally entails a number of things—for example, that the veloc1.ty of the
turtle at any particular moment is the vector sum of the Veloc1t.y of Fhe
flatcar plus the velocity of the turtle in its circular motion, ignoring
the flatcar. How far can children come in understanding composing mo-
tions without the usual formal preparation?

I will tell this story in miniature by showing what one pair of sixth-
grade students did with one fairly advanced problem. This pair of stu-
dents was in a laboratory study before our full-fledged course. Let me
show you just a little of what the students did before they got to the
problem I want to present in some detail. -

Figure 8.13a schematically represents the case where the flatcar %s mov-
ing from left to right, and the turtle is also moving from left .to right on
top of the flatcar, at the same speed. Intuitively, this is a very suTlple case.
Any number of p-prims can get the right prediction for the motion of the

_—
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Figure 8.13
Four pairs of motions.

turtle as viewed from a fixed viewpoint. For example, you can see both
motions as influences on the turtle’s global motion and, in this case, they
clearly “reinforce” each other. The net result should therefore be a
“stronger”” motion of the same sort; that is, the result should be faster
motion to the right. A mathematical description of this case is colinear
(in the same direction) vector addition. Children almost always guess the
right magnitude, that the turtle’s net motion is twice its own or the flat-
car’s motion.

Figure 8.13b represents a case that is still fairly easy. Here, the flatcar
is moving toward the right, but the turtle is crawling in a perpendicular
direction, across the flatcar (up, in figure 8.13b). Surprisingly, most chil-
dren in upper elementary school also have a good sense of this case. They
see the need for some kind of “compromise.” The obvious compromise
is a direction at 45 degrees, between the motions of the turtle itself and
the flatcar. Even better, children can almost always extend this insight to
the case where either the turtle or the flatcar is moving faster than the
other. They guess correctly a compromise, but one oriented more toward
the stronger motion. The cases of figure 8.13b with equal and unequal
motion are excellent qualitative versions of vector addition in the “or-
thogonal” (perpendicular) case. When children do have trouble with per-
pendicular,motions, they usually guess, for example, that the net motion
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will alternate small motions to the right with small motions in the perpen-
dicular direction. Actually, alternating small motions in one direction and
another is a beautiful way to think about composing motion in general,
but you need to think about these little motions as being really tiny. Cal-
culus allows you to think of them as being infinitesimally small.

The last preliminary case is where the motions are opposite, as depicted
in figure 8.13c. Here the correct p-prim is canceling. Canceling happens
to be a very compelling idea, and it usually takes little or no time for
students to guess that there may be canceling in this case. Students always
see canceling in retrospect, if they don’t guess it. Concretizing canceling
with a little mental model is helpful. Imagine walking down the up escala-
tor at exactly the same rate as the escalator is moving up. The escalator
takes you up one step length, and you take a step down. The net result is
that you just don’t move. Children can usually generalize this situation to
the case where one motion is faster than the other: “The stronger wins,”

Carol and Ming had worked through the motions described above and
a few others besides using a little microworld that I had written in Boxer.
The microworld allowed students to look at each of the motions individu-
ally, then I asked them to guess what would happen when we had both
motions at once. Taking time to think through why whatever happens
actually does happen is important, especially in cases where it is unex-
pected, but taking time to consider “why” is important even in the case
where students first guess correctly. The microworld also has facilities to
help students reflect. For example, they can slow the motions down or
run them one little step at a time, or they can show the paths of each
part of the motion and the path of the net motion. Seeing the path of the
turtle being generated, as if it were dragging a paintbrush along as it
moves on the flatcar, is especially illuminating. For the perpendicular mo-
tions, the turtle’s path will be an increasingly long vertical line (““vertical”
means across the flatcar) that moves with the flatcar to the right. Don’t
I wish you were reading this book in a computational medium so you
could see the simplifying visual effect!

Now, here is the piece de resistance of child expertise. I call the motion
movie reels, as depicted in figure 8.13d. The flatcar is moving in a circle
in a clockwise direction, starting its motion toward the right. The turtle
is moving similarly, but in a counterclockwise direction. Carol and Ming
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looked at the individual motions. Ming provided the first solution move.
Wouldn’t the motions cancel? After all, they are opposite, just like mov-
ing in opposite straight-line motions. Ming was casually moving his
hands around in circles side by side in opposite directions.

Carol started to agree, but then she began looking at her index fingers,
which she was moving more and more carefully out in front of her, each
simulating one of the two movie reel motions. She noticed that the two
motions start out in the same direction. “Hold it!”” She described how
the flatcar and robot both start moving toward the right. Then she ges-
tured and continued, “So it’s actually going to make a . . . *cause . . . It’s
going to make a line!” Carol is correct. The two circles combine into a
motion where the turtle simply moves back and forth in a horizontal line.

Carol made several superb moves all at the same time in leaping to the
line solution. First, she followed Ming’s move of considering the motions
as going together abstractly, rather than trying literally to simulate the
flatcar carrying the turtle. That is, she just looked at the two motions
and tried to combine them. That you can do this is not at all obvious.
The flatcar is carrying the turtle, not the other way around. Carol was
looking at this situation as if it didn’t matter who was carrying whom.
Actually, this is a theorem. You can reverse the motions of the flatcar
and the turtle, and you get exactly the same net result. Ming and Carol
seemed to have guessed this theorem, possibly based on experience, or
maybe they accidentally fell into using it implicitly. If I had asked them,
though, 'm sure they could not have articulated and certainly could not
have proved this theorem. In any case, Ming and Carol had a wonderful
simplification that will never fail, and it will help them solve many com-
plicated motion composition problems.

Carol did something else clever. She started looking at motion lo-
cally—that is, in short intervals of time—rather than the global consider-
ation of opposite circles as canceling, which Ming demonstrated in his
casual gesturing of opposite circles. Carol started focusing on the velocity
at a particular time, at the beginning of the circular motions. She saw one
of the main points of calculus, as I described in chapter 1—that whenever
motion isn’t uniform, you always need to say when in order to say any-
thing about speed or direction. Looking at the beginning of the movie
reels motion, she saw a case just like the one given in figure 8.13a, both
motions going the same direction.
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The final stroke of genius in Carol’s analysis is that she saw canceling
in addition to reinforcing. As became clear in asking her to explain her
reasoning to Ming, Carol saw that, in the vertical dimension (again, verti-
cal as the motions are portrayed on this page and on the computer
screen), the reverse circle motions are actually mirror images. The turtle
moves from the center to the top, while the flatcar moves from the center
to the bottom, and so on in synchrony. Thus, in net, the circles add their
motions in the horizontal direction, and their motions cancel in the verti-
cal direction, leaving a simple back-and-forth motion in a straight line.
Note that canceling does fit in this situation after all, although subtly.

What are the lessons of this example? First, some nonlessons. Ming
and Carol are not “the average case.”” The movie reels problem is quite
difficult, and not all elementary school students can master it, at least not
as quickly and elegantly as these two, so I do not mean to imply that all
learning can be as quick and faultless as in this example. On the other
hand—and this is a lesson—all students with whom we have come in
contact have strong intuitive resources of the same sort as Ming and
Carol. That is, they can reason well about motions. Competence with
motions is actually not surprising at all if you think that humans must
have evolved with strong dynamic spatial visualization skills in order
throw rocks and spears effectively, to block or catch moving objects, to
navigate while running, and so on. Every student who used this micro-
world could master all of the ways of thinking about motion I talked
about in preparation for the moving reels motion: canceling, reinforcing,
compromise. They could even think about motions separately in vertical
and horizontal components, and they could pick instants to focus on
rather than using a global gestalt of motion. All of this is within the reach
of essentially every late elementary school student.

On the basis of strong intuitive dynamic visual reasoning, we see where
computational media can pick up from text and other static media to
take us forward. This little microworld, which I programmed in about
a day, turns out to be plenty of help for students to learn quite a lot. There
is no magic. Just find a good source of (intuitive) knowledge, provide it
some computationally enhanced experience, a few ideas and time to re-
flect, and quite a lot of learning happens. When it comes to learning about
motion, a fine regime of competence exists, and teaching may capitalize
on it.
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Allow me to lay out some absolutely typical patterns of learning on the
basis of intuitive knowledge. First, students don’t always guess correctly.
Intuitive knowledge is not reliable in the way that more systematic knowl-
edge can be, but, critically, there is almost always a more adequate intu-
itive conceptualization available if the first guess fails. Students who don’t
see canceling or compromise at first come quickly to feel these ways of
thinking are sensible after seeing what actually happens and reflecting on
it. Seeing sense after the fact is just like what happened with my intuitive
electronics knowledge when I got into physics class. I didn’t know what
was taught there, but I could think about it and integrate my intuitive
knowledge appropriately.

Note how easily one could paint a negative picture of children. Without
applying a little care and patience, without looking to see what resources
students have available, and without giving them a situation that evokes
those resources, you could find that young students don’t know much
about composing motions. In particular, I can guarantee that many stu-
dents will think movie reels cancel the first time they see them, but you
now know what we learned from students such as Carol and Ming: can-
celing just needs a little encouragement and help fitting into this situation.
Then canceling becomes not a mistake, but part of a correct and powerful
conceptualization. I don’t think I can overemphasize that intuitive knowl-
edge is not perfect, but it provides resources that designers and teachers
need to know about and use.

A more subtle pattern of use of intuitive knowledge is in Ming and
Carol’s implicit use of the theorem that the motions of the turtle and
flatcar are interchangeable with the same result. This guess happens to
be brilliant because it works. On other occasions, kids will make brilliant
guesses that don’t work. The trick for us as educators is to collect those
brilliant guesses—right or wrong—and find how we can use them pro-
ductively. Even in the case where the brilliant guess has been elicited in
an environment where it works, there is more learning to do. Ming and
Carol couldn’t articulate or justify the interchangeability theorem, so
even they have an important opportunity to extend and refine what they
stumbled across. The first step is to realize that the theorem might not
be true. Knowledge often arises from the recognition of ignorance. This
1s a nice eximple where the more you “know” (like Carol and Ming
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apparently did in guessing the interchangeability theorem), the more you
are in a position to learn. Recall what learning in the regime of compe-
tence means.

Another typical pattern of intuitive learning is that children initially
conceptualize reinforcing, compromise, and canceling separately. They’re
just different phenomena. From a mathematical point of view, they are
all examples of vector addition. Thus, eventually students will unify many
disparate understandings under the banner of a single scientific idea. Re-
call the way algebra unified Galileo’s six fundamental theorems about
motion. I didn’t show Ming and Carol getting to that level of understand-
ing. Indeed, they did not get there; they were just subjects in a laboratory
study, not students in our motion class, so it would constitute a goal for
their extended learning about motion. Nonetheless, they had to learn a
lot even to get to the stage they reached. Intuitive knowledge is more the
basis for advancement than it is a given fact of life. Intuitive knowledge
is dynamic and generative. Looking forward, what Ming and Carol did
learn here will not be replaced or redone by “formal understanding.”
Instead, what they learned will make “formal learning” seem sensible
and easy.

A final episode with Carol and Ming serves to emphasize the critical
link between this particular child expertise and computational media.
One of the puzzles I put to them was where the turtle goes uniformly in
a straight line, but the flatcar “falls” downward. From the tick model in
chapter 2, you might recall, falling is just going downward a little more
each tick. (In other words, speed just increases in the simplest possible
way as time marches on.) These students had an excellent science teacher
at school. He had taught them about falling. When one of them asked
me whether the “falling” of the flatcar was actually like gravity, like real
falling, I put the question back to them. After a moment’s thought, they
said no. Their teacher had taught them that falling “goes like squares.”
(I am pretty sure what he taught them is that falling is measured by accel-
eration, thirty-two feet per second squared.) Carol was pretty sure (and
correct) that the falling she saw on the screen was “just going one more
each time,” rather than 1, 4, 9, 16, . . . . How poignant that an excellent
teacher with wonderful students but with the wrong medium had failed to
convey a powerful, simple, and intuitively apprehensible (with the right
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medium!) idea. Falling is precisely “going one more each time,” the pattern
Carol saw easily in the microworld’s falling motion. Their teacher probably
never showed them a fall in slow motion, certainly never with replay and
analytic facilities builtinto their experience, as with the composing motions
microworld, and absolutely never showed them the tick model.

Prodigious Products

This final example is meant to complement the two given above. Instead
of knowledge, I emphasize here some things that relate to technical as-
pects of a medium. In particular, I bring back issues concerning making
things with computational media. These issues are in the family of modi-
fiability, extendibility, adaptability, organic growth, cumulativity, long
lines of evolutionary development for software, alternate production
niches for software, communities of tool builders and sharers, and so on.
In addition, I discuss some activity-relevant issues.

The main focus of attention is the product of two energetic young men
in our sixth-grade motion course. This product was part of an indepen-
dent project on which they worked toward the end of the course. They
had many ideas and much competence on which to draw. Nonetheless,
the project struck me as remarkable.

Sean and Bob had produced a huge system—a graphing adventure
game. The story line, which the students had written into the introduc-
tion, starts with the fact that you are a friend of a movie star named
Michael. Michael is doing commercials for the 9.3167289 Lives cat food
company, and someone has written a “swear word” into the cue cards.
Now, Michael is running for his life from the evil corporate bosses, and
he asks you to help him. The game progresses through a long series of
adventures, where at each stage a motion is described that can extricate
Michael from a particular fix. You have to choose a graph that corre-
sponded to the life-saving motion. If you do not select correctly, you and
Michael die a horrible death, and the sequence of adventures starts all
over again. |

Here’s a sample problematic situation—in fact, the very first challenge
in the game. You are driving with Michael out of the parking lot and
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Figure 8.14
Graphs from the graphing adventure game.

need to speed past the guard post. Figure 8.14 shows your choices. The
bottom row, left, is correct. It shows 0 acceleration, which is equivalent
to moving at constant speed. If you choose top left, you get:

Are you sure you didn’t
drink too much coffee?

Your foot is tap dancing long pause KABOOM!!

on the pedal! You swerve
into the guard post, and . . .

Notice that this text gives the player informative feedback about the
selected graph. In fact, making this game educational, thus acceptable as
a class project, involved a long series of negotiations with their teacher.
The “educational” feedback in the text, a minor perturbation of utter
sixth-grade boyishness, was one result of the negotiation. Another result
was an (unfinished) tutorial about how to think about graphs, meant for
players who had difficulty.
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If you choose the lower-right graph in figure 8.14, you get:

You speed through the

gate, but you slow down,
and get your head blown off
by a surface-to-air-head
missile!!

long pause Die!!

Or the top right:

Michael gets nervous and
fights for the control of the
car! You crash!

long pause KABLAM!!

Later in the game, you are performing fancy motions such as accelerat-
ing while going backwards in time. You are “rewarded” with, for ex-
ample:

You speed toward the sun, but you

don’t slow down fast enough and
are turned to . . .

cosmic sloppy joes
long pause SIZZLE.....oeeeuunns

In the midst of the game comes a substantial change of pace. Having
gotten away, into outer space, you are attacked by space aliens and get
a chance at a shoot-em-up-style video game. Even that game has four
levels of difficulty.

These were the early days of working with Boxer, and I had only my
prior experience with other computational systems to compare. All of
the students in this class produced wonderful projects, but this one stood
out for its technical accomplishments. Compared to my previous experi-
ence, it was almost unbelievable. How did they do it? In particular, how
did they manage to store and reproduce all those graphs? And how had
they managed the embedded video game, especially given the hurried end-
of-year schedule?

I began to play detective. I knew these two students well enough to
know that they were not geniuses in disguise, but the project was inescap-
ably complex. It was larger then my own average Boxer project. I counted
boxes. There were nearly five hundred in the full game and much more
than one hundred in the space invaders subgame alone.

&
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I began to inspect their code. It didn’t take long to find an important
clue. Right in the middle of their program boxes, I found a box that was
evidently documentation for a graphing tool! It was fairly well written,
hence clearly not a sixth grade construction, so part of the program had
been “stolen.” Later I confirmed with a graduate student that he had
brought a partially constructed graphing tool into the class in order to
help Sean and Bob with their project. Adaptability and combinability of
the medium had helped them. A prior line of development, by others,
entered into this project and became part of it.

Let’s not jump too quickly past this point. It is absolutely not a trivial
point that students could—and should—appropriate some previously
written software seamlessly into their own product. First, they had to
understand this other software much more deeply than just to be able to
use it. They had to understand its “insides” enough to control it with
their own code because, for example, they used none of the user interface
to the prior graphing tool. Boxer’s structure, pokability, and inspectabil-
ity contributed here. As I have emphasized, one can count on the fact
that no previously written tool ever does exactly what you want. In this
case, the tool was designed to show one graph, but Bob and Sean needed
to show five at once. In addition, the graphing tool was intended to be
used mainly in cases where a process is producing values that will be
graphed in real time. They had to make appropriate and pretty substan-
tial changes.

When I looked to see what changes they had actually made, I was in for
a surprise. They actually took very little code from the original grapher.
Instead, they took ideas. In particular, they took the idea of representing
graphs as a list of numbers, and they took the basic configuration of
graphics box, sprites, and code to control them as a framework for draw-
ing graphs. They also used the basic outline of the grapher in terms of
how and when to draw the background pair of axes and labels. Most of
the rest of the code was completely new, however, even if they could have
reused the old grapher code. In particular, in order to “unpack” the lists
of point values that they had used to store graphs, they used an inefficient
collection of variables, one for each point. The code to draw the graphs
themselves was an inelegant, unstructured, repetitious poster child for
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bad programming style, but it did exactly what they wanted, and it was
their creation. What the project lacked in elegance, it excelled in showing
organic growth; the grapher was not just pasted into their project, but
modified and mutated in ways that matched the needs, interests, and
capabilities of the current owners of the line of development.

Taking ideas instead of code is a wonderful advertisement for what a
computational medium stands for. It is not simply having a computer
with a lot of stuff on it, even stuff that you can reuse. Reusing is fine,
but finding and wusing ideas is a much more general accomplishment. It’s
teaching fishing instead of handing out fish. The fact that the medium
expressed ideas for how to do things well enough that sixthZgrade stu-
dents could take the idea, not just the code, goes well beyond my experi-
ence with prior media and presents a very hopeful sign. Surely, with a
full learning culture (rather than merely the first Boxerized elementary
school classroom) to create things and also powerful ideas that can fit
this new medium, the scale of these students’ accomplishment could be
met by many if not most children.

Let me elaborate just a bit on what is happening here. One of the persis-
tent difficulties that I and others had in trying to bootstrap computation-
ally literate cultures was that individual constructions almost always
remained individual, so, for example, what one person did in a class al-
most never propagated to other students. Failure to propagate happened
in many, many ways. In groups of students who worked together on a
project, one student almost always took over the programming, and the
other students became marginal participants who frequently couldn’t
even effectively use the programming work created by the “group.”” I had
certainly noticed and worried about this phenomenon, but I took it to
be a cultural issue. Kids this age just don’t collaborate very well, I said
to myself, or the technically competent students are being isolationist,
which matches our stereotypes of “nerdy” programmers.

Henri had noticed a similar phenomenon in his work. He had long
been interested in the idea of computational tools for learning, but his
experience was that students merely used the tools, they never took them
apart, combined, extended, or modified them, even in simple ways.

Starting to use Boxer was almost like flipping a switch. All of a sudden,
collaboratich among students improved. It became instantly very rare
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that one student took over the programming in a collaborative group.
To be more precise, it continued to be true that individual students often
fell into the role of chief programmer, but this no longer marginalized
the other students. Instead, it became the norm that all could operate a
group software project. More impressive, we have videotaped exit inter-
views of students who seemed peripheral in the production of some soft-
ware, but they turned out completely fluent with its use. They could
explain how the program worked and even debug and change the pro-
gram on the fly. Another surprising occurrence was that during extended
group projects, when the “chief programmer” was missing, someone else
almost always just sat down to fill in. We still had chief programmers,
but with Boxer that role was more a convenience or an efficiency issue,
not a necessity. Notice the subtlety of the change from pre- to postcompu-
tational medium. The social phenomenon of chief programmer persisted,
but its characteristics changed radically. In particular, having a chief pro-
grammer became benign and not a danger to group ownership or group
learning. We learned (if we needed the lesson) that technology can have
critical effects in areas that we might think are autonomously social or
cultural.

Why this effect? How does Boxer facilitate collaboration? I’ve talked
about adaptability and extendibility, but how do they work? I believe
the core issue is visual expressiveness. The computer screen simply says
much more and more effectively with Boxer than it has with Boxer’s pre-
cursors. The principle of spatial metaphor has a significant role. Space is
much more extensively used in Boxer to express meaning than in previous
systems, which manifests itself with individuals, but also with groups. In
fact, it is very nearly the same phenomenon with individuals and groups.
Ted and others who managed complex systems on their own’ did so be-
cause they could effectively collaborate with themselves. That is, they
could understand and extend what they had done previously in order to
continue much farther than they could with a more primitive medium.
In groups, this phenomenology becomes evident and explicit. Students
are constantly looking at various parts of a complex system, pointing and
explaining as well as poking and watching. Much more happens on the
screen, and it happens via a richer, more expressive communication
channel.
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There are other reasons for the better collaboration effect, as well. One
worth mentioning here also follows from a principle I mentioned in chap-
ter 7: the principle of computational structuring. Compared to other sys-
tems, Boxer shows its basic structures more in the surface of applications
written in it. Almost everyone uses data boxes, the ability to execute com-
mands by clicking on them, and other similar resources in the “user in-
terface” to their applications. It’s a matter of ease and convenience.
Computational structures serve interface purposes, so why construct in-
terface structures that hide the computational structure? The advantage
of using everyday Boxer as the interface to programs comes down to
learning. Just by using things made in Boxer, our students keep learning
about Boxer, so they naturally come to be able to understand, use, and
even build and modify programs better. You can think of this process as
an instance of the principle of menial utility. Just as well, we can return
to the roller-coaster metaphor. In this case, almost any hill whatsoever
bootstraps more competence with the medium.

I want to turn toward activity aspects of Sean and Bob’s creation, al-
though this will bring us quickly back to technical issues. I troubled to
reproduce some of the text from the game in order to emphasize the per-
sonal meaning the project had for these students. If you can’t imagine
two preteen boys cackling and congratulating each other on coming up
with an even more gruesome method of dying, I believe you have missed
a not uncommon if also not terribly laudable component of young boy
culture. Surely “designing death” was a significant part of establishing
this project as valued and natural within their existing activity fabric. (I
hate to admit it, but I kind of like the cosmic sloppy Joes idea.) What
they did was also squarely within their regime of competence. You can
imagine how much more teacher pleasing the project would have been
without this “wasteful and off-topic” component of the activity. Imagine
how much more useful the project would have been as a learning experi-
ence had they used all the time they spent inventing disgusting ways to
die in order to think more carefully about how to teach graphing or to
include more advanced topics, and so on. That is not a choice we have,
however. We can accept continuity in the fabric of activity, we can accept
off-task but personally meaningful components, or we can settle for no
such projéct at all. Outside the regime of competence, outside a continuity
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in the fabric of activity, there would have been no commitment to this
project.

Don’t mistake this analysis for “let boys be boys” or “let children be
children.” Like knowledge, we should have goals and expect progress
along the dimension of activity, but you cannot jump too far ahead. Their
teacher, Tina, pushed and nudged this project toward educational ends,
but not so hard that she destroyed it as an enthusiastic personal experi-
ence for Sean and Bob. Someday they may have enthusiastic personal
experiences that mainly rather than peripherally build learning materials
for others. However, that is not where they are in this snapshot. The
lesson is that we negotiate, probe, try to understand, and foster possible
lines of development. We don’t abandon either educational goals or the
essence of children.

The space invaders subgame is a relevant case in point. Sean had started
this game much earlier in the year as part of another project, but Tina
had thrown it out of class. Sean, at that point, could not articulate any
connection at all between the game and what he was supposed to be
learning in this class, so Tina requested he change topics. Typically, Sean
did not abandon his space invaders game. Instead, he was one of the
students in the class who requested extra time working on Boxer after
school, when he finished his game as a stand-alone system. Sean managed
to sneak the game back into classwork in the context of an overtly educa-
tional game—graphing adventure. I don’t know what negotiation or sub-
terfuge led to that, but it seems to me completely plausible to argue that,
as motivation, space invaders served a very useful part of the graphing
adventure game—even if there was no direct conceptual connection. The
suppression and reentry of space invaders into the motion class represent
for me the persistence of activity issues in our pursuit of intellectual
advancement.

Technically, how did space invaders enter the graphing adventure
game? Issues of medium are again salient. Boxer allows an incredibly
simple means of joining programs. Just cut and paste one program into
the middle of the other. The spatial metaphor is responsible for this easy
and effective strategy. One can always manufacture more space: just in-
sert a new box. When the new box is closed, you have, very nearly, your
old world. When opened, you find a new universe in the old place. The
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contrast case is a typical application in which you simply cannot make
any space anywhere to put a new thing without delving deep into complex
and invisible processes that make things appear on the screen.

Sean and Bob, in fact, simply pasted space invaders right into the mid-
dle of the graphing adventure main box. The game was then instantly
playable in the context of graphing adventure; modular, visible box-
chunks are wonderfully portable. Then, step by step, they integrated the
new box better and better into the game play of graphing adventure. For
example, they discovered an advanced feature of Boxer that allowed them
to lock the box, keeping players out until they had progressed sufficiently
far with graphing puzzles. Then they added features such as having the
player’s score in space invaders affect the text he would see after he re-
turned to graphing adventure. This is prototypical of organic growth.
(1) There is a completely trivial principle of combining things—“paste
it in”—even if it is not ideal. No threshold. (2) Then you have lots of
time gradually to enhance integration. No ceiling.

Review

The message of this chapter has been a simple one: children are smart;
people are smart. This simple message is not simple-minded, however.
People are not perfectly smart in all possible ways, in all possible contexts.
Instead, we need to be clever in order to see exactly where human intelli-
gence lies and how to bring it out. In this chapter, we have seen that
children possess a remarkable ability to design and think about represen-
tations (inventing graphing). Who would have thought that? People also
possess powerful abilities to perceive and think about motion (Carol and
Ming). Motion competence may seem obvious after the fact, but almost
no current instruction of physics is based on exactly what students come
into class capable of doing. Instead, instruction in motion is delayed a
half decade or more in students’ lives while we build an alternative route
to understanding motion that relies on more formal means than their
natural talents. Children are capable of remarkably large and complex
constructions in computational media (Ted’s molecular toolkit, Sean and
Bob’s graphing adventure), but not any computer system allows students
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to collaborate with others (and with themselves!) in an organic, long-
term process of evolving such complex products.

These three classes of competence—metarepresentation, motion, and
programming—have very special relationships with computational me-
dia. Programming, I have argued from the beginning, transforms limited
consumer literacies into more powerful two-way literacies. Motion, along
with an enriched spatial expressiveness and interaction, is a fundamental
improvement of static media realizable with computational systems. To-
gether, these new modes of expressiveness promise new implementations
of material intelligence for humans.

Metarepresentation is the most subtle and unfamiliar of the competen-
cies that we have seen blossom between children and computers given a
sufficient computational medium, but metarepresentation may have radi-
cal and transformative implications. We may see tool-rich cultures of rep-
resentational innovators in computationally literate students, teachers,
and educational developers of the future. Genres such as the computa-
tional essay and the knowledge space may become commonplace in
school learning of science. These genres represent not just a new possibil-
ity, but a new kind of possibility. Text has limited capabilities as a meta-
medium, so that representational innovation is minimized a priori.

Although I have concentrated on knowledge, activity is a critical, com-
plementary perspective. Indeed, I could almost as well have called this
chapter “Kids Are Engaged,” with the same caveats that engagement is
culturally achieved—not automatic, not creatable on any ground, and
not uniformly supported by any medium. Every story of accomplishment
that showed surprising intelligence in this chapter is also a story of dedica-
tion and committed learning.




