; Turle
Geometry

The Computer as a
Medium for Exploring
Mathematics

Harold Abelson and
Andrea diSessa

Preliminary Notes

This is & book about exploring r.nat.hematics, and the most important
thing about exploring mathematics is for you to do it rather than just
passively read what we’ve written. Many of the sections (in particular
chapter 2, the latter part of chapter 3, &I.ld chapters 6 through 9) contain
extended descriptions of computer projects for you to implement and
investigate. Additional open-ended projects, indicated with a [P}, are
listed with the exercises at the end of each section. In the text and
exercises we have taken pains to show both the breadth and the depth

of possible work with turtle geometry. What is most encouraging to
us, however, 18 that we are certain that we have only scratched the

urface. So do not hesitate to depart from the problems and projects
we've included in order to follow your own ideas.

The computer used to undertake these projects must be capable of
producing drawings in response to “turtle graphics” commands. For-
tunately, most computer graphics systems can be readily adapted to
execute turtle commands. A detailed explanation of how to do this is
given in chapter 3, and appendix B includes a typical implementation of
turtle commands in BASIC. In addition, there are (as of January 1981) a
few commercially available computer systems that have turtle graphics
built in. The most widespread of these is the Pascal system for the
Apple II. (See appendix B for others.)

In writing a book about computer graphics projects we had to select a
notation in which to describe the algorithms. Using a standard program-
ing language such as BASIC would have forced us to specify numerous
implementation-dependent “computerish” details, which would have ob-
scured the simplicity of the programs. Our response was to choose a
notation in which turtle algorithms can be expressed simply, and yet
which is close enough to real programing languages so that you should
have little troubling translating our programs into the language of your

choice. In fact, our notation is quite similar to the programing language
Pascal (if one ignores details about declaring variables and data types),
and even closer to Logo, a language developed at MIT especially for this
kind of educational use. Appendix A provides details on our “computer
language” notation, and appendix B illustrates sample turtle programs
translated into standard programing languages.

Besides computer projects, we've included numerous exercises to test
understanding, suggest inquiry, or just pique the imagination. These
range in scope from simple problems to extended research topies. The
more difficult ones are indicated with a [D]. There are also a few
problems marked [IDD]. If you tackle one of them, be prepared for a real

Preliminary NOteg
XX '
we nrovided tWo separate answer sections, one of hintg
W _ | '
We've p te answers; exercises are marked with [H], | A
hether we've furnished a hint, an answer, o,

HA| exercise, try working with the hint

challenge. l
and one of more comple

or [HA], depending on W
botLh. If you get stuck on an |

ol the answer. ' .
be?re litj-,l:llzig nuci teel constrained to read this book straight through,
OU SiiC

Indeed. we hope even casual reade.rs will sample vari?us sections, digging
o thev find most interesting. The closest thlngs to prerequisites
mm]“thftchal;tf‘” are as follows: The first few sections of chapter |
if:mzlfce the basics of turtles and turtle geometry. Chapter 3 contains
the most essential technical material, vectors and coordinate methods,
which we use freely in explanations and programs 1n later chapters.
Chapter 5 broaches the new area of nonflat geometries, which will occupy
the rest of the book, but even here only the most general notions are
necessary to proceed. By and large we have placed the most important
material toward the beginnings of chapters and sections.

Ihe tradition of calling our display creatures “turtles” started with
Grey Walter, a neurophysiologist who experimented in Britain during
the early 1960s with tiny robot creatures he called “tortoises.” These
inspired the first turtles designed at MIT—computer-controlled robots
that moved around on the floor in response to the commands FORWARD

and RIGHT. Work in the present mathematical and computer-graphics
context followed directly and inherited the turtle terminology.

Turtle Geometry

Introduction to Turtle Geometry

We start with the simplest vocabulary of images,
with “left” and ‘right” and “one, two, three,” and
before we know how it happened the words and
numbers have conspired to make a match with

nature: we catch in them the pattern of mind and
matter as one.

Jacob Bronowski, The Reach of Imagination

This chapter is an introduction on three levels. First, we introduce you
to a new kind of geometry called turtle geometry. The most important
thing to remember about turtle geometry is that it is a mathematics

designed for exploration, not just for presenting theorems and proofs.
When we do state and prove theorems, we are trying to help you to
generate new 1deas and to think about and understand the phenomena
you discover.

The technical language of this geometry is our second priority. This
may look as if we're describing a computer language, but our real aim is
to establish a notation for the range of complicated things a turtle can
do in terms of the simplest things it knows. If you wish to actually pro-
gram a computer-controlled turtle using one of the standard programing
languages, you will need to know more details than are presented here;
see appendixes A and B.

Finally, this chapter will introduce some of the important themes
to be elaborated in later chapters. These themes permeate not only
geometry but all of mathematics, and we aim to give you rich and varied

experiences with them:.

1.1 Turtle Graphics

Imagine that you have control of a little creature called a turtle that
exists in a mathematical plane or, better yet, on a computer display
sereen. The turtle can respond to a few simple commands: FORU@
moves the turtle, in the direction it is facing, some number of units.
RIGHT rotates it in place, clockwise, some number of degrees. .BACK
and LEFT cause the opposite movements. The number that goeis xjnth a
command to specify how much to move is called the command’s input.

Introductiop

AI
!

| |
[

‘a) Turtle starts (b) FORWARD 100

o

|

(¢) RIGHT 90 (d) FORWARD 150

LEFT 45
A

(e) BACK 100 (f) LEFT 45
PENUP
FORWARD 100
Figure 1.1

A sequence of turtle commands.

In deseribing the effects of these o
BACK change the turtle’s position

18 located); RIGHT and LEFT
which the turtle ig facing).

The turt
| ;nc:)e can ldeave a trace ot.‘ the places it has been: The position-
changing commap $ can cause lines to appear on the screen. This is

PENUP and PEND

perations, we say that FORWARD and
(the point on the plane where the turtle
change the turtle’s heading (the direction in

Turtle Graphics

1.1.1 Procedures

Turtle geometry would be rather dyj] if it did not
turtle new commands. But luckily a]] we have to d
new trick is to give it a list of commands it alread
here’s how to draw a square with sideg 100 units

allow us to teach the
0 to teach the turtle a

Y knows. For example,
long:

TO SQUARE
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100

This is an example of a procedure. (Such definitions are also com-
monly referred to as programs or functions.) The first line of the pro-
cedure (the title line) specifies the procedure’s name. We've chosen to

name this procedure SQUARE, but we could have named it anything at
all. The rest of the procedure (the body) specifies a list of instructions
the turtle is to carry out in response to the SQUARE command.

There are a few useful tricks for writing procedures. One of them
is called iteration, meaning repetition—doing something over and over.

Here’s a more concise way of telling the turtle to draw a square, using
1teration:

TO SQUARE
REPEAT 4
FORWARD 100
RIGHT 90

This procedure will repeat the indented commands FORWARD 100 and

RIGHT 90 four times.

Another trick is to create a SQUARE procedure that takes an input for
the size of the square. To do this, specify a name for the input in the
title line of the procedure, and use the name in the procedure body:

TO SQUARE SIZE
REPEAT 4

FORWARD SIZE
RIGHT 90

6 Introdu@tmn

Now. when you use the command, you must specify the value to be useq
o the input, so you say SQUARE 100, just like FORWARD 100.

The chunk FORWARD SIZE, RIGHT 90 might be useful in other ¢qy,.
texts. which 18 & good reason to make it a procedure in its own right:

TO SQUAREPIECE SIZE
FORWARD SIZE
RIGHT 90

Now we can rewrite SQUARE using SQUAREPIECE as

TO SQUARE SIZE
REPEAT 4
SQUAREPIECE SIZE

Notice that the input to SQUARE, also called SIZE, is passed in turn as
an input to SQUAREPIECE. SQUAREPIECE can be used as a subproceduyre
in other places as well—for example, in drawing a rectangle:

TO RECTANGLE SIDE1 SIDE2
REPEAT 2

SQUAREPIECE SIDE1
SQUAREPIECE SIDE2

To use the RECTANGLE procedure you must specify its two inputs, for
example, RECTANGLE 100 50.

mwseen programs become more complex this kind of input notation
RECTM& bit hard to read, especially when there are procedures such as
GLE that take more than one input. Sometimes it helps to use

E:re;iheaes and commas to separate inputs to procedures. For example
€ RECTANGLE procedure can be written as |

TO RECTANGLE (SIDE1, SIDE2)
REPEAT 2

SQUAREPIECE (SIDE1)
SQUAREPIECE (SIDE2)

tfnn 48 a computer language that
Interact with turtles Appendix
language. It should not, be difficult
anguage that has accegg to the basic

» RIGHT, LEFT, PENUP, and PENDOWN

Turtle Graphics

TO TRY.ANGLE

SPrEiT TO TRIANGLE

FORWARD 100 RS
BIGHT 60 FORWARD 100
RIGHT 120
Figure 1.2

Attempt to draw a triangle.

Appendix B gives some tips on how to implement, these commands in
some of the more common computer languages, and includes sample
translations of turtle procedures.

1.1.2 Drawing with the Turtle

Let’s draw a figure that doesn’t use 90° angles—an equilateral triangle.
Since the triangle has 60° angles, a natural first guess at a triangle

procedure is

TO TRY.ANGLE SIZE
REPEAT 3
FORWARD SIZE
RIGHT 60

But TRY.ANGLE doesn’t work, as shown in figure 1.2. In fact, running
this “triangle” procedure draws half of a regular hexagon. The bug in
the procedure is that, whereas we normally measure geometric figures
by their interior angles, turtle turning corresponds to the exterior angle
at the vertex. So if we want to draw a triangle we should have tl?e
turtle turn 120°. You might practice “playing turtle” on a fe}v geometric
figures until it becomes natural for you to think of measuring a vertex
by how much the turtle must turn in drawing the vertex, rather than by

[Introductjgy, Turtle Graphi

-

TO THING
| FORWARD 100
| | RIGHT 90
| FORWARD 100
| RIGHT 90
| FORWARD 50
| | RIGHT 90
FORWARD 50
] RIGHT 90
i 5, FORWARD 100
10 HOUSE SIDE TO HOUSE SIDE RIGHT 90
SQUARE SIDE SQUARE SIDE FORWARD 25
TRIANGLE SIDE FORWARD SIDE | RIGHT 90
RIGHT 30 FORWARD 25
TRIANGLE SIDE | RIGHT 90 = ;g::ii
FORWARD 50 THL,:
Figure 1.3 _
() Initial attempt to draw a house fails. (b) Interface steps are needed, | 2 . ‘
the usual interior angle. Turtle angle has many advantages over interior . w® ‘ ‘ ' =
angle, as you will see. ‘
Now that we have a triangle and a square, we can use them as building . .
blocks in more complex drawings—a house, for example. But figure 1.3 | g \
shows that simply running SQUARE followed by TRIANGLE doesn’t quite | v
wor.k: The reason is that after SQUARE, the turtle is at neither the correct, “ 1 .
position nor the correct heading to begin drawing the roof. To fix this ® ’)
bug, we must add steps to the procedure that will move and rotate . L -
the turtle before the TRIANGLE procedure is run. In terms of designing
programs to draw things, these extra steps serve as an interface between s gkl
the part of the pro h % | R S i
program that draws the walls of the h |
B et e e house (the SQUARE THING ik
| and the part that draws the roof (the TRIANGLE procedt Sl o v
In general, thinking of e | PARRALAL Y g
; g Ol procedures as a number of mai
B9 Sitathces s 5 urah : €r ol main steps separated
strategy for planning complex drawings. Figure 1.4

ures 18 also a good way to create Designs made by rotating a simple doodle.

shows how to create claborate patterns by

10 IIltI‘odthiGn

Figure 1.5 |
F‘éﬁnﬂb 1, RIGHT 1, repeated draws a circular arc.

this is to make the turtle go FORWARD a little bit and then turp RIGHT 5
little bit, and repeat this over and over:

TO CIRCLE
REPEAT FOREVER
FORWARD 1
RIGHT 1

This draws a circular are, as shown in figure 1.5. Since this

goes on “forever” (until you press the stop button on your com
18 not very useful as a subprocedure in creatin
More useful would be a version of

draw the figure once and then stop.
turtle geometry, we’ll see that
turtle has turned through 360°. So if we
of FORWARD 1, RIGHT 1, the cirele wil]

T0 CIRCLE

program

puter), it
g more complex figures.
the CIRCLE procedure that would

generate the circle in chunks
close after precisely 360 chunks:

TO ARCR R DEg
REPEAT DEg

FORWARD R
RIGHT 1

Turtle Graphics

11

TO ARCL R DEG

REPEAT DEG
FORWARD R

LEFT 1

(See figure 1.6 and exercise 3 for mgre On making drawings with ares)
The circle program above actually draws regular 360gons, of course

rather than “real” circles, but for the purpose of making drawings on
the display screen this difference is irrelevant. (See exercises 1 and 2.)

a computer display. But we can also reg

figures. Let’s compare turtle deseriptions with & more familiar system
for representing geometric figures—the Cartesian coordinate system, in
which points are specified by two numbers, the z and y coordinates rela-
tive to a pair of axes drawn in the plane. To put Cartesian coordinates
into our computer framework, imagine a “Cartesian turtle” whose moves
are directed by a command called SETXY. SETXY takes two numbers as
inputs. These numbers are interpreted as z and y coordinates, and the

turtle moves to the corresponding point. We could draw a rectangle with
SETXY using

TO CARTESIAN.RECTANGLE (WIDTH, HEIGHT)
SETXY (WIDTH, 0)
SETXY (WIDTH, HEIGHT)
SETXY (0, HEIGHT)
SETXY (0, 0)

You are probably familiar with the uses of c:aordinates in geomeifr.y;
studying geometric figures via equations, plotting graphs of m;merlc :
relationships, and so on. Indeed, Descarte:.s’ marriage of alge ;'a a:; :
geometry is one of the fundamental insights in the developmené zl-tI::‘an
ematics. Nevertheless, these kinds of coordinate systems— ber; t;
polar, or what have you—are not the only ways to rela'te numaltem&-
geometry. The turtle FORWARD and RIGHT commands give 12111 s
tive way of measuring figures in the plane, a way thﬁt c:llll;[:i R
coordinate viewpoint. The geometry of coordinates 1s t:i sl
geometry; we shall refer to the geognetry of FPRWARD a;lcoordinat,es e
geometry. And even though we will be making use 0

TO CIRCLES TO PETAL SIZE

REPEAT 9
ARCR 1 360
RIGHT 40

ARCR SIZE 60
RIGHT 120
ARCR SIZE 60
RIGHT 120

10 FLOWER SIZE

T0 RAY R
REPEAT 2
ARCL R 90
ARCR R 90

TO SUN SIZE

REPEAT 9
RAY SIZE
RIGHT 160

fﬁgure 1.6
Some shapes that can be made using arcs

REPEAT 6

PETAL SIZE
RIGHT 60

o510

HUHSTER

Turtle Graphics 13

on, let us begin by studying turtle geometry as a system in its own right.
Whereas studying coordinate geometry leads to graphs and algebraic

equations, turtle geometry will introduce some less familiar, but no less
important, mathematical ideas.

Intrinsic versus Extrinsic

One major difference between turtle geometry and coordinate geometry
rests on the notion of the intrinsic properties of geometric figures. An
intrinsic property is one which depends only on the figure in question,
not on the figure’'s relation to a frame of reference. The fact that a
rectangle has four equal angles is intrinsic to the rectangle. But the
fact that a particular rectangle has two vertical sides is extrinsic, for
an external reference frame is required to determine which direction is
“yertical.” Turtles prefer intrinsic descriptions of figures. For example,
the turtle program to draw a rectangle can draw the rectangle in any

orientation (depending on the turtle’s initial heading), but the program
CARTESIAN.RECTANGLE shown above would have to be modified if we

did not want the sides of the rectangle drawn parallel to the coordinate
axes, or one vertex at (0,0).

Another intrinsic property 1s illustrated by the turtle program for
drawing a circle: Go FORWARD a little bit, turn RIGHT a little bit, and
repeat this over and over. Contrast this with the Cartesian coordinate

representation for a circle, 22 4+ y?> = r2. The turtle representation
makes it evident that the curve is everywhere the same, since the process
that draws it does the same thing over and over. This property of the

circle, however, is not at all evident from the Cartesian representation.
Compare the modified program

TO CIRCLE
REPEAT FOREVER
FORWARD 2
RIGHT 1

with the modified equation =2+ 2y® = r2. (See figure 1.7.) The drav:'ing
produced by the modified program is still everywhere the same, that s, a
circle. In fact, it doesn’t matter what inputs we use to FORWARD or RIF;HT
(as long as they are small). We still get a circle. The modified equagon}
however, no longer describes a circle, but rather an ellipse w‘hose sides
look different from its top and bottom. A turtle drawing an ellllpsehw?uld
have to turn more per distance traveled to get around its “pointy” sides

IHtI’OdUQtjGn

14

REPEAT FOREVER
FORWARD 2
RIGHT 1

v o
g

O

O Ii+2y2=r2
Figure 1.7

Modifying the turtle program still produces a circle. Modifying the equation giveg
an ellipse.

than to get around its flatter top and bottom. This notion of “how

pointy something is,” expressed as the ratio of angle turned to distance

traveled, is the intrinsic quantity that mathematicians call curvature
(See exercises 2 and 4.) |

Local versus Global

The turtle representation of a circle ;
Cartesian coordinate description, It i

Peclal point, the
geometry to ' a " the turtle doeg its
Ty 1o extend easily out of the Plane tg o " time allows turtle

Procedures versus Mts € Surfaceg

e :
gb ' ::zry 18 that turtle geometry Chal’&cterigtifﬂl T‘et

JECL8 In terms of procedures rather than i teﬂ Y deseps
mulating turtle-geometric descriptions we |, Wik

: ay
of procedural mechanisms (such as iterat;, © Bccesy (g a

R i o IS e S S

e e ™ R, 0

——— - —_——

15

the traditional algebraic formalism. Moreover
tions used In turtle geometry are readily modifi

makes turtle geometry a fruitful arena for
Iet’s enter that arena now.

the procedura] descrip-

ed in many ways. This
mathematical exploration

1.1.4 Some Simple Turtle Programs

If we were SELLEE SRS S S R geometry we might, heg;

by examining the graphs of some simple algebraic equations. Our inegln
tigation of turtle geometry begins instead by examining the geome??-
figures associated with simple procedures. Here’s ope of the s,illllralel:t(i

70 POLY SIDE ANGLE
REPEAT FOREVER

FORWARD SIDE
RIGHT ANGLE

It draws shapes like those in figure 1.8.

POLY is a generalization of some procedures we’ve already seen. Setting
the angle inputs equal to 90, 120, and 60, we get, respectively, squares,
equilateral triangles, and regular hexagons. Setting the angle input equal
to 1 gives a circle. Spend some time exploring POLY, examining how the
figures vary as you change the inputs. Observe that rather than drawing
each figure only once, POLY makes the turtle retrace the same path over
and over. (Later on we’ll worry about how to make a version of POLY
that draws a figure once and then stops.)

Another way to explore with POLY is to modify not only the inputs,
but also the program; for example (see figure 1.9),

TO NEWPOLY SIDE ANGLE
REPEAT FOREVER
FORWARD SIDE
RIGHT ANGLE
FORWARD SIDE
RIGHT (2 * ANGLE)

(The symbol “x” denotes multiplication.) You should have no difficulty
inventing many variations along these lines, particularly if you use such
procedures as SQUARE and TRIANGLE as subprocedures to replace or

supplement FORWARD and RIGHT.

Introducti(}n

16 Turtle Graphics
17
ANGLE = T2 ANGLE = 144 ANGLE = 30 ANGLE = 144
ANGLE = 1
ANGLE = g0 ANGLE = 45 ANGLE = 125
Figure 1.9
Shapes drawn by NEWPOLY.
Recursion
| One particularly important way to make new procedures and vary old
| ones is to employ a program control structure called recursion; that is,
ANGLE = 136 | to have a procedure use itself as a subprocedure, as in
ANGLE = '
e ik - TO POLY SIDE ANGLE

Shapes drawn by PoLY. FORWARD SIDE
- RIGHT ANGLE
POLY SIDE ANGLE

The final line keeps the process going over and over by including “do
POLY again” as part of the definition of POLY.

18

ANGLE = 90

ANGLE = 130 ANGLE = 117

Figure 1.10
Shapes drawn by POLYSPI.

One advantage of this slightly different way of representing POLY is
that it suggests some further modifications

to the basic program. For
instance, when it comes time to do POLY gga; i i ox
| gain, call it
it : with different

TO POLYSPI SIDE ANGLE
FORWARD SIDE

RIGHT ANGLE
POLYSPI (SIDE + 1, ANGLE)

Figure 1.10 shows some sample POLYSPI figures. Lask
Fhe program generates these figures: Each time the ¢ o culy at how
it goes one unit farther than the previous time urtle goeg FORWARD

IHtI‘Oductiﬂn

o ——— -—..-a—r-ﬁ;l.-.:F-—l.-.-l'- B i

. 1e Graphics
furtle i

10 X blowup;, 1 arm right

natural scale, 10 arms left

L reduction, 31 arms right, 41 left #5 reduction, 72 arms straight.

Figure 1.11
TI%& vertices of a POLYSPI.

A more general form of POLYSPI uses a third input (INC, for increment)
to allow us to vary how quickly the sides grow:

TO POLYSPI (SIDE, ANGLE, INC)
FORWARD SIDE
RIGHT ANGLE
POLYSPI (SIDE + INC, ANGLE, INC)

In addition to trying POLYSPI with various inputs, make uP some l-:;rt‘ t1,.&')111'
own variations. For example, subtract a bit from th? side ea(:; | lm:;
which will produce an inward spiral. Or double the side ea:ch Ol:lrlle,the
divide it by two. Figure 1.11 illustrates a pattern made drawing onfy

' ' ercise
vertices of POLYSPI, shown at four scales of magnification (see ex
13).

20

ANGLE = 40
INCREMENT = 30

ANGLE = 2
INCREMENT = 20

Figure 1.12
Examples of INSPI.

Another way to produce an inward

R spiral
ture) is to inerement piral (curve of

the angle each time:

TO INSPI (SIDE, ANGLE, INC)
FORWARD SIDF

RIGHT ANGLE
INSPI (SIDE, ANGLE + INC, INC)

Increasing curva-

The turtle pe

Ins spirali
ath begins K piraling

L0 unwind as the

Turtle Graphics

21
Exercises for Section 1.1

1. We said in the' B L) “fhen the inputs to the POLY procedy
gmall, the resulting figure will be Indistinguishable from a circlée 3[;&
s0Me€ i i hojﬁ large you can make the Inputs ane.l st,'Tl
have the figure look like a c1fc1e. For example, is an angle of 2(° 3m1n
enough to draw acceptable circles? 4

5. The sequence of figures POLY(2,2), POLY(1,1), POLY(. 5, .5)

all with the same curvature (turning divided by distance traveled), ap-

proachEE “in the limit” a true mathematical circle. What is the radius
of the circle? [HA]

3, [P] Write a procedure that draws circular arcs. Inputs should specify
the number of degrees in the arc as well as the size of the circle. Can

you use the result of exercise 2 so that the size input is the radius of the
circle? [A]

4. Although the radius of a circle is not “locally observable” to a turtle
who is drawing the circle, that length is intimately related to a loeal
quantity called the “radius of curvature,” defined to be equal to 1 =
curvature, or equivalently, to distance divided by angle. What is the
relation between radius and radius of curvature for a POLY with small

inputs as above? Do this when angle is measured in radians as well as
in degrees. [A]

5. [P] Construct some drawings using squares, rectangles, triangles,
circles, and circular arc programs.

6. [P] Invent your own variations on the model of POLYSPI and INSPI.

7. How many different 9-sided figures can POLY draw (not counting
differences in size or orientation)? What angle inputs to POLY produce
these figures? How about 10-sided figures? (Al

8. [PD] A rectangle is a square with two different ‘side lengtgxa.l MO:;
cenerally, what happens to a POLY that uses two different side lengt

as in the following program’

T0 DOUBLEPOLY (SIDE1, SIDE2, ANGLE)
REPEAT FOREVER

POLYSTEP SIDE1 ANGLE
POLYSTEP SIDE2 ANGLE

	IMG_1891.jpg
	IMG_1892.jpg
	IMG_1893.jpg
	IMG_1894.jpg
	IMG_1895.jpg
	IMG_1896.jpg
	IMG_1897.jpg
	IMG_1898.jpg
	IMG_1899.jpg
	IMG_1900.jpg
	IMG_1901.jpg
	IMG_1902.jpg
	IMG_1903.jpg

