
An Infrastructure for Network Development.
Proof of Concept: Fast UDP

Edgar A. León
Computer Science Department

University of New Mexico

Michal Ostrowski
IBM T. J. Watson Research

(Dated: March 1, 2005)

Scientific applications demand a tremendous amount of
computational capabilities. In the last few years, computa-
tional power provided by clusters of workstations and SMPs
has become popular as a cost-effective alternative to super-
computers. Nodes in these systems suffer from a variety of
performance and scalability problems that may affect the ap-
plications running on them. Two of these problems are: (1)
Host network processing scales poorly with respect to proces-
sor, bus and link bandwidths (this effect has become more ev-
ident as network speeds continue to increase); (2) Host over-
head, due to communication processing, significantly reduces
the processor availability to perform application’s work.

In recent years, network vendors have created network in-
terface controllers (NIC) which can be programmed and pro-
vide a significant amount of memory and computational re-
sources. These controllers allow overlap of computation and
communication by processing communication tasks on the
NIC and computational tasks on the host processor(s).

Although processing on the NIC is beneficial to applica-
tion’s performance in some cases, it is not clear what the ca-
pabilities of these smart NICs should be and how they inte-
grate with the rest of the system. The interactions between
the Application, the Operating System (OS) and the Network
are not well defined and should be studied further. These in-
teractions are a key component to application scalability and
performance.

To investigate these issues, we have created an infrastruc-
ture for network development. It is based on a functional
model of a NIC which can run arbitrary functionality. As
a proof of concept, we have used this infrastructure to im-
plement a simple communication mechanism,Fast UDP, that
improves application performance by carefully applying three
network optimizations. Thus, showing that this infrastructure
allow us to investigate network optimizations and NIC archi-
tectures that match current and future application’s demands.

In the first part of this work we describe the details of our
network infrastructure. This infrastructure has been imple-
mented in theMamboarchitecture simulator. Although this
system is not open source, we have created ashim layer, that
allows the creation and dynamic loading of smart network de-
vices without access to Mambo source. Thus, our infrastruc-
ture can be used by any institution with access to Mambo bi-
naries. An important component of the infrastructure is defin-
ing the functional abstraction the NIC provides to upper layers

of software running on the NIC. We have defined and imple-
mented a NIC API. By explicitly defining this API, NIC inde-
pendent code can be developed and potentially ran in any NIC
that implements this interface. Our NIC model also exposes
a number of registers that can be memory mapped to allow
communication to it.

The second part focuses on describing Fast UDP. This sys-
tem is composed by code running on the NIC and code run-
ning in the Operating System on the host. The operating sys-
tem we have used is K42, an open source, high-performance
OS. Fast UDP is a communication mechanism with UDP
matching semantics. In fact, the UDP stack in the host’s ker-
nel is unmodified. When a UDP packet arrives from the net-
work, the NIC matches the packet using its destination port,
and if a user has posted a received for that port, it will be de-
livered to the user buffer. The NICsplintersthe payload from
the header, moving the payload directly into application space
while control information (header) goes to the kernel. Thus,
the kernel remains aware of network processing, but applica-
tion’s data processing bypasses the kernel.

Using a simple UDP application we obtain a 5% perfor-
mance gain even when the application spends 80% of its time
computing. This performance improvement increases as the
application’s communication time increases.

In conclusion, we have created a network infrastructure that
allow us to:

1. Better understand recent and future network architec-
tures to fully take advantage of their capabilities;

2. Make a case for optimizations that improve application
performance and provide arguments for those ones who
do not.

3. Better understand the interactions between the Operat-
ing System, Applications and smart NICs to avoid bot-
tlenecks in the data path from the network all the way
to the application.

As a proof of concept, we have applied 3 network optimiza-
tions techniques to improve application performance:match-
ing on the NIC, NIC offloadingand splintering of control
and data. We obtained significant performance improvements
even for a computation-bound application.


