
Cache Injection for High-Performance Message-Passing Applications

Edgar A. León
Computer Science Department

University of New Mexico

Processor speeds increase at a faster rate than memory controllers. The effect of this growing disparity is
known as the memory wall problem. The greater the disparity the more cycles wasted accessing data from
memory. In applications where most of the data comes from the network, every access to memory is satisfied
by the longest path in the memory hierarchy since I/O data is placed into main memory. These delays may yield
ultimately to degrade the performance of the application. This problem presents an opportunity for improvement
by moving I/O data closer to the processor in the memory hierarchy. In this paper, we present a framework
to analyze this problem, and propose cache injection as a partial solution to the memory wall problem for
message-passing applications. Cache injection allows network interface controllers to move data directly into a
processor’s cache decreasing latency, and possibly increasing performance by up to 30%.

Scientific applications demand tremendous amounts of
computational capabilities. In the last few years, the compu-
tational power provided by clusters of workstations and SMPs
has become popular as a cost-effective alternative to super-
computers. Nodes in these systems are interconnected us-
ing high-speed networks via “smart” Network Interface Con-
trollers (NIC). These controllers allow the overlap of compu-
tation and communication by processing communication tasks
on the NIC and computational tasks on the host processor(s).

Parallel applications running on these clusters suffer from
a variety of performance and scalability problems: host pro-
cessor overhead due to communication processing [7], data
placement overhead, overhead due to external interrupts, cost
of splitting OS functionality between host and NIC, etc. These
problems are caused by the poor integration of the NIC with
the Operating System (OS) and applications. The interactions
between these entities are complex and are key to an applica-
tion’s performance.

This paper focuses on providing a framework where we can
study how data placement of network data in the memory hi-
erarchy affects application performance. Processor speeds in-
crease at a much faster rate than memory. As these speeds
increase, memory latency increases dramatically affecting ap-
plication performance. Although processors may be fast, data
cannot be accessed as fast as it may be produced by the net-
work. In fact, the faster the processor, the more it has to wait
to fetch data from main memory in terms of processor cycles.

To address this problem (and partially address the mem-
ory wall problem), we employ an architectural optimization
called cache injection [3]. This optimization places network
data closer to the processor in the memory hierarchy and thus
reducing memory latency. In particular, it injects data from
the network to a processor’s cache directly. Cache injection
has been studied recently to evaluate its impact on commod-
ity environments using TCP/IP [4]. The intent of this study is
to provide a framework where we can analyze its impact in a
high-performance computing environment.

Our architectural assumption consists of a multiprocessor
multi-core system (CMP - Chip-Level Multiprocessor). Mul-
tiple processor cores share a common second-level cache. Ev-
ery core has a level-one cache and may support one or more
logical threads. Second-level caches reside on the north side

of the memory bus. Level-three caches and memory con-
trollers reside on the south side. I/O devices (NIC and disk)
are attached to the I/O bus and communicate with the memory
through a bridge.

Cache injection is an architectural feature that allows I/O
devices such as the NIC to initiate bus transactions directed to
a target device. Without cache injection, this target device is
the main memory controller. With cache injection, the trans-
action can be directed to a particular cache in the system. The
target devices then snoop the bus to check whether they can
match the target. If so, the target consumes the data, otherwise
the memory controller does.

To investigate the effect of cache injection on a high-
performance networking environment, we use: (1) an archi-
tecture that provides cache injection capabilities in hardware;
and (2) a high-performance networking environment.

The former is provided by the IBM PowerPC full-system
simulator, Mambo, and a networking module that allows the
creation of NICs that can run arbitrary functionality [5]. This
module can be plugged in to Mambo dynamically. Simulated
NICs can be written in C and are accessed by the host through
memory mapped registers. Using this mechanism, a user pro-
cess can interact with the NIC directly, allowing OS and Hy-
pervisor bypass. Access to these registers is controlled by the
OS and/or Hypervisor [2].

To create a high-performance networking environment,
we developed a simple high-performance messaging system
called Fast UDP [6]. Fast UDP, a high-performance imple-
mentation of UDP, uses OS bypass to avoid the involvement
of the OS in every message reception. Notification of message
arrivals is implemented using a user queue that the applica-
tion polls. This system has been implemented using K42 [1],
a high-performance research OS developed by IBM.

This infrastructure allow us not only to analyze cache in-
jection but in general to analyze the trade-offs of moving OS
functionality between the host and the NIC in a multiproces-
sor multi-core system. This is possible due to: (1) the ability
of running OS services on the NIC; (2) the ability to define
and simulate multiprocessor multi-core multi-threaded archi-
tectures in Mambo; and (3) the dynamic customization of sys-
tem services in K42.

To characterize the potential benefits of cache injection in a

2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

R
un

ni
ng

 T
im

e
(m

se
c.

)

Size of Message (KB)

W/O Cache Injection
With Cache Injection

FIG. 1: Optimal Performance Improvement of Cache Injection
Mechanism

high-performance networking environment, we created a sim-
ple user application in K42 and measured its runtime with and
without cache injection. Cache injection is performed in a
uniprocessor system to the L2 cache.

The application uses the Fast UDP communication library
and consists of two phases: a communication phase, and a
computation phase. During the communication phase, the
process blocks waiting for network data to become avail-
able. In the computation phase, data is processed locally. By
measuring the running time we quantify how much faster or
slower the computation takes by having the data already in the
cache. Figure 1 shows the initial results of this research. From
this figure we see that as message sizes increase, application
performance increases by as much as 30%. Furthermore, not
shown in the figure, we see the expected performance decrease
when injecting too much data in the cache, that may be taking
out the working set of the application.

The contributions of this work are: (1) to provide an in-
frastructure to analyze cache injection for high-performance
applications, and in general an infrastructure to better under-
stand the interactions between the Operating System, Applica-
tions and smart NICs. This infrastructure allow us to identify,
measure and analyze the bottlenecks in the data path from the
network all the way to the application; and (2) propose cache
injection as a solution to partially address the memory wall
problem in a high-performance environment.

[1] Jonathan Appavoo, Marc Auslander, Maria Burtico, Dilma Da
Silva, Orran Krieger, Mark Mergen, Michal Ostrowski, Bryan
Rosenburg, Robert W. Wisniewski, and Jimi Xenidis. K42: an
open-source linux-compatible scalable operating system kernel.
IBM Systems Journal, 44(2):427–440, 2005.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In 19th ACM Sym-
posium on Operating Systems Principles (SOSP’03), The Sag-
amore, Bolton Landing (Lake George), NY, October 2003. ACM
SIGOPS.

[3] P. Bohrer, R. Rajamony, and H. Shafi. Method and apparatus
for accelerating Input/Output processing using cache injections,
March 2004. US Patent No. US 6,711,650 B1.

[4] Ram Huggahalli, Ravi Iyer, and Scott Tetrick. Direct cache ac-
cess for high bandwidth network I/O. In 32nd Annual Interna-

tional Symposium on Computer Architecture (ISCA 2005), pages
50–59, Madison, WI, June 2005.

[5] Edgar A. León and Michal Ostrowski. An infrastructure for net-
work development. Proof of concept: Fast UDP. In USENIX’05
Annual Technical Conference. Poster Session, Anaheim, CA,
April 2005.

[6] Edgar A. León and Michal Ostrowski. An infrastructure for the
development of kernel network services. In 20th ACM Sympo-
sium on Operating Systems Principles (SOSP’05). Poster Ses-
sion, Brighton, United Kingdom, October 2005. ACM SIGOPS.

[7] Richard P. Martin, Amin M. Vahdat, David E. Culler, and
Thomas E. Anderson. Effects of communication latency, over-
head, and bandwidth in a cluster architecture. In Proceedings
of the 24th International Symposium on Computer Architecture
(ISCA ’97), pages 85–97, Denver, CO, June 1997.

